\name{spenvnr} \alias{spenvnr} \title{Fit the sparse envelope model when the number of reponses is greater than the number of samples.} \description{ This function fits the sparese envelope model to the responses using the maximum likelihood estimation. When the dimension of the envelope is between 1 and r-1, we implemented the algorithm in Su Z, Zhu G, Chen X, Yang Y. Sparse envelope model: efficient estimation and response variable selection in multivariate linear regression. Biometrika. 2016 Sep 1;103(3):579-93. We use the algorithm in Rothman, A. J., Bickel, P. J., Levina, E., and Zhu, J. (2008) to estimate sigY and sigRes. } \usage{ ModelOutput = spenvnr(X, Y, u, lambda) } \arguments{ \item{X}{Predictors. An n by p matrix, p is the number of predictors. The predictors can be univariate or multivariate, discrete or continuous.} \item{Y}{Multivariate responses. An n by r matrix, r is the number of responses and n is number of observations. The responses must be continuous variables.} \item{u}{Dimension of the envelope. An integer between 0 and r.} \item{lambda}{Tuning parameter.} \item{maxiter}{Maximum number of iterations. Default value: 100.} \item{eps}{Relative convergence tolerance. Default value: 1e-1. } \item{init}{The initial value for the envelope subspace. An r by u matrix. Default value is the one generated by function initial_value.} \item{verbose}{Flag for print out model fitting process, logical 0 or 1. Default value: 0.} } %\details{} \value{ \item{alpha}{The estimated intercept in the envelope model. An r by 1 vector.} \item{beta}{The envelope estimator of the regression coefficients. An r by p matrix.} \item{Gamma}{The orthogonal basis of the envelope subspace. An r by u semi-orthogonal matrix.} \item{Gamma0}{The orthogonal basis of the complement of the envelope subspace. An r by r-u semi-orthogonal matrix.} \item{eta}{The coordinates of beta with respect to Gamma. A u by p matrix.} \item{paramNum}{The number of parameters in the envelope model. A positive integer.} \item{n}{The number of observations in the data. A positive integer.} \item{r}{The number of response. A nonnegative integer.} \item{u}{Dimension of the envelope. An integer between 0 and r.} \item{p}{The number of predictor. A positive integer.} \item{q}{The number of active response. A positive integer.} \item{where_1}{The active responses chosen by the sparse envelope model.} \item{where_0}{The inactive responses chosen by the sparse envelope model.} \item{lambda}{The tuning parameter choosed by BIC.} \item{fit_time}{The time costs for fitting the envelope model.} } \references{ The codes are implemented based on the algorithm in Su, Z., Zhu, G., Chen, X. and Yang, Y. (2016), Sparse Envelope Model: Efficient Estimation and Response Variable Selection in Multivariate Linear Regression. \emph{Biometrika}. 103, 579-593. } \author{Zhihua Su\cr Maintainer: Guangyu Zhu \email{gzhu22@ufl.edu}} \keyword{models} \keyword{regression}