Example of One-Way Multivariate Analysis of Variance

The data analyzed are the Fisher Iris data from Table 11.5 in Johnson and Wichern. Each observation consists of four quantities (sepal width and length, and petal width and length) measured on 50 blossoms from each of three varieties of Iris, *I. setosa*, *I. versicolor*, and *I. virginica* (Fisher, R. A. The use of multiple measurements in taxonomic problems *Ann. Eugen.* 7 (1936) 179-188).

Column 1 is variety number (1, 2, or 3), and columns 2 to 5 are $X_1 = \text{sepal length}$, $X_2 = \text{sepal width}$, $X_3 = \text{petal length}$, and $X_4 = \text{petal width}$.

One-way MANOVA using ANOVA on response variables

```
Cmd> y <- read("", "t11_05", quiet:T) # read JWData5.txt
Read from file "TP1:Stat5401:Data:JWData5.txt"
Cmd> varieties <- y[,1] # get variety id
Cmd> # 1=setosa, 2=versicolor, 3=virginica
Cmd> y <- y[-1] # remove varieties column
Cmd> N <- nrow(y)

Find residual SSCP matrix when $H_0$ is true

```

```
Cmd> ybar <- sum(y)/ N # ybar is grand mean row vector
Cmd> rcp0 <- (y - ybar)' %*% (y - ybar)
ybar is the mean of all the cases and is the best estimate of the common mean under the null hypotheses that all the means are zeros. Therefore $y - ybar$ is the matrix of residuals and rcp0 is the matrix of sums of squares and products of residuals, both computed assuming $H_0$ is true.

```

```
Cmd> print(rcp0) # Total matrix of SS and SP
rcp0:
      SepLen  SepWid  PetLen  PetWid
SepLen  102.17   -6.3227  189.87   76.924
SepWid  -6.3227   28.307   -49.119  -18.124
PetLen  189.87   -49.119   464.33   193.05
PetWid  76.924    -18.124   193.05    86.57

Find residual SSCP matrix when $H_0$ is false using univariate ANOVA

```

```
Cmd> # Do univariate ANOVA for each dependent variable
Cmd> varieties <- factor(varieties)
Cmd> anova("{y[,1]} = varieties",fstat:T) # ANOVA for sepal length
Model used is {y[,1]} = varieties

<table>
<thead>
<tr>
<th></th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSTANT</td>
<td>1</td>
<td>5121.7</td>
<td>5121.7</td>
<td>19326.50528</td>
<td>&lt; 1e-08</td>
</tr>
<tr>
<td>varieties</td>
<td>2</td>
<td>63.212</td>
<td>31.606</td>
<td>119.26450</td>
<td>&lt; 1e-08</td>
</tr>
<tr>
<td>ERROR1</td>
<td>147</td>
<td>38.956</td>
<td>0.26501</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cmd> residuals1 <- RESIDUALS # save sepal length residuals
```
Example of One-Way MANOVA

Cmd> b1 <- coefs(); b1 # coefficients for sepal length
component: CONSTANT
(1) 5.8433
component: varieties
(1) -0.83733 0.092667 0.74467 Variety effects alphahat

Cmd> anova("{y[,2]} = varieties",fstat:T) # ANOVA for sepal width
Model used is {y[,2]} = varieties

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSTANT</td>
<td>1402.1</td>
<td>1402.1</td>
<td>12151.14260</td>
<td>< 1e-08</td>
</tr>
<tr>
<td>varieties</td>
<td>11.345</td>
<td>5.6725</td>
<td>49.16004</td>
<td>< 1e-08</td>
</tr>
<tr>
<td>ERROR1</td>
<td>16.962</td>
<td>0.11539</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cmd> residuals2 <- RESIDUALS # save sepal Width residuals

Cmd> b2 <- coefs(); b2 # coefficients for Sepal Width
component: CONSTANT
(1) 3.0573
component: varieties
(1) 0.37067 -0.28733 -0.083333 Variety effects

Cmd> anova("{y[,3]} = varieties",fstat:T) # ANOVA for petal length
Model used is {y[,3]} = varieties

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSTANT</td>
<td>2118.4</td>
<td>2118.4</td>
<td>11439.11809</td>
<td>< 1e-08</td>
</tr>
<tr>
<td>varieties</td>
<td>437.1</td>
<td>218.55</td>
<td>1180.16118</td>
<td>< 1e-08</td>
</tr>
<tr>
<td>ERROR1</td>
<td>27.223</td>
<td>0.18519</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cmd> residuals3 <- RESIDUALS # save petal Length residuals

Cmd> b3 <- coefs(); b3 # coefficients for Petal Length
component: CONSTANT
(1) 3.758
component: varieties
(1) -2.296 0.502 1.794 Variety effects alphahat

Cmd> anova("{y[,4]} = varieties",fstat:T) # ANOVA for petal width
Model used is {y[,4]} = varieties

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSTANT</td>
<td>215.76</td>
<td>215.76</td>
<td>5151.66322</td>
<td>< 1e-08</td>
</tr>
<tr>
<td>varieties</td>
<td>80.413</td>
<td>40.207</td>
<td>960.00715</td>
<td>< 1e-08</td>
</tr>
<tr>
<td>ERROR1</td>
<td>6.1566</td>
<td>0.041882</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cmd> residuals4 <- RESIDUALS save petal width residuals

Cmd> b4 <- coefs(); b4 # coefficients for Petal Width
component: CONSTANT
(1) 1.1993
component: varieties
(1) -0.95333 0.12667 0.82667 Variety effects alphahat

Cmd> residuals <- hconcat(residuals1,residuals2,residuals3,residuals4)
150 by 4 matrix residuals contains the ANOVA (least squares) residuals for all four variables. These are residuals computed with no restrictions on the parameters, that is assuming the alternative \(H_1 \) is true.
Example of One-Way MANOVA

```
Cmd> setlabels(rcp1,structure(getlabels(y,2),getlabels(y,2)))
Cmd> rcp1 # residual SSCP matrix under H_1
       SepLen      SepWid      PetLen      PetWid
SepLen 38.956       13.63      24.625       5.645
SepWid 13.63      16.962      8.1208      4.8084
PetLen 24.625      8.1208      27.223      6.2718
PetWid 5.645      4.8084      6.2718      6.1566
```

This is the matrix of sums of squares and products of residuals computed without assuming H₀ is true.

Find the hypothesis matrix H and error matrix E

```
Cmd> h <- rcp0 - rcp1 # compute hypothesis matrix of SS & SP
Cmd> e <- rcp1 # compute error matrix of SS & SP
Cmd> print(h,e)
```

One-way MANOVA by direct computation of SSCP matrices

```
Cmd> # Compute group mean vectors using macro groupcovar()
Cmd> stuff <- groupcovar(varieties,y)
Cmd> stuff # group sizes n, group means as rows of matrix
```

```
component: n
(1)          50          50          50
component: means
(1,1)       5.006       3.428       1.462       0.246
(2,1)       5.936        2.77        4.26       1.326
(3,1)       6.588       2.974       5.552       2.026
component: covariance
(1,1)     0.26501    0.092721     0.16751    0.038401
(2,1)    0.092721     0.11539    0.055244    0.03271
(3,1)     0.16751    0.055244     0.18519    0.042665
(4,1)    0.038401     0.03271    0.042665    0.041882
```
Example of One-Way MANOVA

Compute H from vectors of means from formula for H in 1-way MANOVA

```
Cmd> h1 <- dmat(4,0)  # alternative computation of h
Cmd> for(i,run(3)){  # accumulate h1 in loop over groups
    d <- vector(stuff$means[i,] - ybar)
    h1 <-+ stuff$n[i] * d %*% d';
}
Cmd> setlabels(h1,structure(getlabels(y,1),getlabels(y,1)))
```

Compute E from residuals from of group means

```
Cmd> res1 <- y[varieties==1,] - stuff$means[1,]  # group 1 residuals
Cmd> res2 <- y[varieties==2,] - stuff$means[2,]  # group 2 residuals
Cmd> res3 <- y[varieties==3,] - stuff$means[3,]  # group 3 residuals
Cmd> list(res1,res2,res3)
res1 REAL 50 4
res2 REAL 50 4
res3 REAL 50 4
Cmd> residuals1 <- vconcat(res1, res2, res3)  # all residuals
Cmd> list(residuals1)
residuals1 REAL 150 4
Cmd> e1 <- residuals1' %*% residuals1  #SS and SP matrix of residuals
Cmd> print(h1,e1)  # same as before
h1:
    SepLen  SepWid  PetLen  PetWid
SepLen  63.212  -19.953  165.25  71.279
SepWid  -19.953   11.345  -57.24 -22.933
PetLen  165.25  -57.24    437.1 186.77
PetWid  71.279  -22.933  186.77  80.413
e1:
    SepLen  SepWid  PetLen  PetWid
SepLen  38.956   13.63   24.625   5.645
SepWid  13.63   16.962   8.1208  4.8084
PetLen  24.625   8.1208  27.223  6.2718
PetWid  5.645   4.8084  6.2718  6.1566
```

One-way MANOVA by regression on dummy variables

This time we do regression by a white box method, computing coefficients from \((X'X)^{-1}X'Y\) where column 1 of \(X\) is \(1_n\) and the remaining columns are contrast vectors comparing groups 1 and 2 with group 3.

```
Cmd> x1 <- (varieties == 1) - (varieties == 3)
Cmd> x2 <- (varieties == 2) - (varieties == 3)
```

\(x1\) has 1's for variety 1, 0 for variety 2 and –1 for variety 3. \(x2\) has 0's for variety 1, 1 for variety 2 and –1 for variety 3.
Example of One-Way MANOVA

```
Cmd> hconcat(varieties, x1, x2)[vector(1,50,51,100,101,150),]
```

<table>
<thead>
<tr>
<th>Variety</th>
<th>Variety</th>
<th>Variety</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(2)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(3)</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>(4)</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>(5)</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>(6)</td>
<td>3</td>
<td>-1</td>
</tr>
</tbody>
</table>

Case 1 of group 1
Case 50 of group 1
Case 1 of group 2
Case 50 of group 2
Case 1 of group 3
Case 50 of group 3

```
Cmd> X <- hconcat(rep(1,N), x1, x2)# constant vector & dummies matrix
Cmd> bhat <- solve(X' %*% X, X' %*% y); bhat #regression coefficients
```

(1,1) 5.8433 3.0573 3.758 1.1993
(2,1) -0.83733 0.37067 -2.296 -0.95333
(3,1) 0.092667 -0.28733 0.502 0.12667

```
Compare these with the values computed earlier using anova().
```

```
Cmd> vector(b1$CONSTANT, b2$CONSTANT, b3$CONSTANT, b4$CONSTANT)
(1) 5.8433 3.0573 3.758 1.1993 

Cmd> hconcat(b1$varieties, b2$varieties, b3$varieties, b4$varieties)
(1,1) -0.83733 0.37067 -2.296 -0.95333 
(2,1) 0.092667 -0.28733 0.502 0.12667 
(3,1) 0.74467 -0.083333 1.794 0.82667 

This has a row for group 3 consisting of the estimates of \( \alpha_3 = -\alpha_1 - \alpha_2 \). These effects sum to zero across groups.

```
Cmd> -sum(bhat[-1,]) # same as last line of preceding
(1,1) 0.74467 -0.083333 1.794 0.82667
```

```
Cmd> residuals2 <- y - X %*% bhat # regression residuals
Cmd> e2 <- residuals2' %*% residuals2; e2 # same as before
```

```
SepLen 38.956 13.63 24.625 5.645
SepWid 13.63 16.962 8.1208 4.8084
PetLen 24.625 8.1208 27.223 6.2718
PetWid 5.645 4.8084 6.2718 6.1566
```

**Computation of Test Statistics Based on Relative Eigenvalues**

```
Cmd> eigs <- releigen(h,e); eigs # compute relative eigen things
```

<table>
<thead>
<tr>
<th>Component: Values</th>
<th>Relative eigenvalues, last 2 are 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 32.192</td>
<td>0.28539  7.8772e-15  -4.7485e-16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Component: Vectors</th>
<th>Relative eigenvectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) SepLen -0.068406</td>
<td>0.0019879  0.14375  0.22004</td>
</tr>
<tr>
<td>SepWid -0.12656</td>
<td>0.17853  -0.20981  -0.070133</td>
</tr>
<tr>
<td>PetLen 0.18155</td>
<td>-0.076864  -0.24008  -0.064018</td>
</tr>
<tr>
<td>PetWid 0.2318</td>
<td>0.23417  0.37038  -0.066357</td>
</tr>
</tbody>
</table>

Cmd> # Note that only 2 eigenvalues are essentially non-zero,
Cmd> # reflecting the fact that fh (hypothesis d.f) is 2.
Example of One-Way MANOVA

\[
\begin{pmatrix}
32.192 & 0 & 0 & 0 \\
0 & 0.28539 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\]

\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

\[
\begin{pmatrix}
32.192 & 0.96987
\end{pmatrix}
\]

\[
\begin{pmatrix}
2366.1
\end{pmatrix}
\]

\[
\begin{pmatrix}
2 & 147 & 0.5 & 71
\end{pmatrix}
\]

\(f_e\lambda_{\max}/f_h\) is the largest among group F-statistic for test equality of means for any linear combination of response variables. The coefficients of the maximizing linear combination are the elements of the corresponding eigenvector. The following demonstrates this numerically.

An approximate critical value for \(\theta_{\max} = \lambda_{\max}/(1 + \lambda_{\max})\) can be read off from charts included in another handout. They are entered with \(s = \min(p, f_h), m = (|f_h - p| - 1)/2\) and \(n = (f_e - p - 1)/2\).
Example of One-Way MANOVA

The approximate 1% critical value for $\theta_{\text{max}}$ from the chart for $s = 2$, $m = 1/2$ and $n = 71$ is 0.113, much less than $\theta_{\text{max}} = 0.970$. $H_0$ is strongly rejected.

Test of $H_0$ by Bonferronized univariate $F$-tests

```r
Cmd> # diagonals of h and e are univariate hypothesis and error SS
Cmd> f <- vector((diag(h)/fh)/(diag(e)/fe)); f # univariate f's
(1) 119.26 49.16 1180.2 960.01
Cmd> p*(1 - cumF(f,fh,fe)) # Bonferronized P-values
(1) 0 0 0 0
Cmd> # All highly significant
```

Test of $H_0$ by Hotelling's generalized $T_0^2$

```r
Cmd> # Now compute Hotelling's generalized $T \text{0}^2$ (trace statistic)
Cmd> t0sq <- fe*trace(solve(e) %*% h); t0sq # as $fe*\text{trace } e^{-1} h$
(1,1) 4774.2
Cmd> fe*sum(eigs$values) # or as sum of relative eigenvalues
(1,1) 4774.2
From relative eigenvalues
```

In large samples, $(f_e - p - 1)T_0^2/f_e$ is approximately $\chi_{pf_e}^2$.

```r
Cmd> m2 <- fe - p - 1
Cmd> cumchi(m2*t0sq/fe, fh*p, upper:T)
(1) 0
Rediculously small P-value
```

Although it doesn’t matter here because $H$ is so large relative to $E$, you can find a more exact $P$-value using macro `cumtrace()` in the new version of macro file `Mulvar.mac`.

```r
Cmd> addmacrofile("") # find new version of mulvar.mac
Cmd> cumtrace(trace(solve(e,h)),fh,fe,p,upper:T)
(1) 0
```

Test of $H_0$ by likelihood ratio statistic $\Lambda^*$

```r
Cmd> lambdastar <- det(solve(h+e)); lambdastar = Wilk's statistic
(1) 0.023439
Cmd> det(e)/det(h+e)
(1) 0.023439
Another way from H and E
Cmd> 1/prod(1 + eigs$values)
(1) 0.023439
From relative eigenvalues
Cmd> m1 <- fe - (p - fh + 1)/2; m1 # adjusting constant
(1) 145.5
Cmd> # Compute corrected log likelihood ratio test, with null
Cmd> # distribution approximately chisq(fh*p) = chisq(8)
Cmd> lrtest <- -m1*log(lambdastar); lrtest
(1,1) 546.12
Cmd> # A somewhat more accurate approximation due to Rao uses F
Cmd> approxf <- ((fe-p+1)/p)*(1 - sqrt(lambdastar))/sqrt(lambdastar)
```

7
Example of One-Way MANOVA

\[
\begin{align*}
\text{Cmd} &> \text{approxf} \quad \# \text{Distributed when } \min(p,fh)=2 \text{ as } F(2*p,2*(fe-p+1)) \\
& (1,1) \quad 199.15 \\
\text{Cmd} &> \text{vector}(2*p,2*(fe-p+1)) \quad \# \text{degrees of freedom for approximate } F \\
& (1) \quad 8 \quad 288 \\
\text{Cmd} &> \text{cumF(approxf,2*p,2*(fe-p+1),upper:T)} \quad \# \text{P-value, highly significant} \\
& (1) \quad 1.365e-112
\end{align*}
\]

Actually, since \(\min(p, fh) = 2\), Rao's F is exact.

There is a black box way to compute this using \text{cumwilks()} from new version of Mulvar.mac.

\[
\begin{align*}
\text{Cmd} &> \text{cumwilks(lambdastar,fh,fe,p,all:T)} \\
\text{component: P} & (1) \quad 1.365e-112 \\
\text{component: f} & (1) \quad 199.15 \\
\text{component: df1} & (1) \quad 8 \\
\text{component: df2} & (1) \quad 288
\end{align*}
\]

Without \text{all:T} you get just the P-value:

\[
\begin{align*}
\text{Cmd} &> \text{cumwilks(lambdastar,fh,fe,p)} \\
& (1) \quad 1.365e-112
\end{align*}
\]

Test of \(H_0\) by Pillai’s trace statistic

\[
\begin{align*}
\text{Cmd} &> \text{pillai <- trace(solve(h+e,h)); pillai} \\
& (1) \quad 1.1919 \\
\text{Cmd} &> \text{sum(vals/(1+vals))} \quad \# \text{same thing from relative eignevalues} \\
& (1) \quad 1.1919 \\
\text{Cmd} &> \text{m3 <- fe + fh} \quad \# \text{multiplier for Pillai’s trace statistic V} \\
\text{Cmd} &> \text{v <- m3*pillai;v} \\
& (1) \quad 177.59
\end{align*}
\]

In large samples, when \(H_0\) is true, V is approximately \(\chi^2_{pfh}\)

\[
\begin{align*}
\text{Cmd} &> \text{cumchi(v,fh*p,upper:T)} \\
& (1) \quad 3.2959e-34
\end{align*}
\]

Although it’s not really needed here, you can get a more accurate P-value using macro \text{cumpillai()} in the new version of file Mulvar.mac.

\[
\begin{align*}
\text{Cmd} &> \text{cumpillai(pillai, fh,fe,p,upper:T)} \\
& (1) \quad 1.7638e-31
\end{align*}
\]

One-Way MANOVA using the \text{manova()} command

\[
\begin{align*}
\text{Cmd} &> \text{varieties <- factor(varieties)} \quad \# \text{already done above} \\
\text{Cmd} &> \# \text{preceding ensures that varieties interpreted as factor levels}
\end{align*}
\]
Example of One-Way MANOVA

Cmd> manova("y=varieties") # simplest 1-way MANOVA model
WARNING: summaries are sequential

SS and SP Matrices

DF
CONSTANT 1

SS

<table>
<thead>
<tr>
<th>Variances</th>
<th>SepLen</th>
<th>SepWid</th>
<th>PetLen</th>
<th>PetWid</th>
</tr>
</thead>
<tbody>
<tr>
<td>SepLen</td>
<td>5121.7</td>
<td>2679.8</td>
<td>3293.9</td>
<td>1051.2</td>
</tr>
<tr>
<td>SepWid</td>
<td>2679.8</td>
<td>1402.1</td>
<td>1723.4</td>
<td>550.01</td>
</tr>
<tr>
<td>PetLen</td>
<td>3293.9</td>
<td>1723.4</td>
<td>2118.4</td>
<td>676.06</td>
</tr>
<tr>
<td>PetWid</td>
<td>1051.2</td>
<td>550.01</td>
<td>676.06</td>
<td>215.76</td>
</tr>
</tbody>
</table>

varieties 2

Hypothesis matrix H

<table>
<thead>
<tr>
<th>Variances</th>
<th>SepLen</th>
<th>SepWid</th>
<th>PetLen</th>
<th>PetWid</th>
</tr>
</thead>
<tbody>
<tr>
<td>SepLen</td>
<td>63.212</td>
<td>-19.953</td>
<td>165.25</td>
<td>71.279</td>
</tr>
<tr>
<td>SepWid</td>
<td>-19.953</td>
<td>11.345</td>
<td>-57.24</td>
<td>-22.933</td>
</tr>
<tr>
<td>PetLen</td>
<td>165.25</td>
<td>-57.24</td>
<td>437.1</td>
<td>186.77</td>
</tr>
<tr>
<td>PetWid</td>
<td>71.279</td>
<td>-22.933</td>
<td>186.77</td>
<td>80.413</td>
</tr>
</tbody>
</table>

ERROR1 147

Error matrix E

<table>
<thead>
<tr>
<th>Variances</th>
<th>SepLen</th>
<th>SepWid</th>
<th>PetLen</th>
<th>PetWid</th>
</tr>
</thead>
<tbody>
<tr>
<td>SepLen</td>
<td>38.956</td>
<td>13.63</td>
<td>24.625</td>
<td>5.645</td>
</tr>
<tr>
<td>SepWid</td>
<td>13.63</td>
<td>16.962</td>
<td>8.1208</td>
<td>4.8084</td>
</tr>
<tr>
<td>PetLen</td>
<td>24.625</td>
<td>8.1208</td>
<td>27.223</td>
<td>6.2718</td>
</tr>
<tr>
<td>PetWid</td>
<td>5.645</td>
<td>4.8084</td>
<td>6.2718</td>
<td>6.1566</td>
</tr>
</tbody>
</table>

Cmd> list(SS, DF, TERMNAMES, RESIDUALS, HII)

DF: Degrees of freedom for each term

<table>
<thead>
<tr>
<th>Variances</th>
<th>SepLen</th>
<th>SepWid</th>
<th>PetLen</th>
<th>PetWid</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSTANT</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VARITIES</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERROR1</td>
<td>147</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TERMNAMES: Names for each term

(1) "CONSTANT"
(2) "varieties"
(3) "ERROR1"

Cmd> print(DF, TERMNAMES)

DF:

<table>
<thead>
<tr>
<th>Variances</th>
<th>SepLen</th>
<th>SepWid</th>
<th>PetLen</th>
<th>PetWid</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSTANT</td>
<td>5121.7</td>
<td>2679.8</td>
<td>3293.9</td>
<td>1051.2</td>
</tr>
<tr>
<td>VARITIES</td>
<td>2679.8</td>
<td>1402.1</td>
<td>1723.4</td>
<td>550.01</td>
</tr>
<tr>
<td>ERROR1</td>
<td>3293.9</td>
<td>1723.4</td>
<td>2118.4</td>
<td>676.06</td>
</tr>
</tbody>
</table>

TERMNAMES: Names for each term

(1) "CONSTANT"
(2) "varieties"
(3) "ERROR1"
Example of One-Way MANOVA

```
Cmd> fh <- DF[2]; fe <- DF[3]; vector(fh, fe)
 varieties ERROR1
 2 147
Cmd> releigen(SS[2,],SS[3,]) # again same results
component: values
(1) 32.192 0.28539 7.5171e-15 1.7978e-16
component: vectors
 (1) (2) (3) (4)
SepLen -0.068406 0.0019879 0.13261 0.22693
SepWid -0.12656 0.17853 -0.20606 -0.080491
PetLen 0.18155 -0.076864 -0.2366 0.07589
PetWid 0.2318 0.23417 0.37322 -0.047837
Cmd> h <- matrix(SS[2,]); e <- matrix(SS[3,])
Cmd> fh <- DF[2]; fe <- DF[3], p <- nrows(h)
Cmd> cumwilks(det(e)/det(h+e),fh,fe,p)
(1) 1.365e-112
```

MANOVA Canonical Variables

An important use of the eigenvectors $\hat{u}_j$ of $H$ relative to $E$ is in computing the estimated MANOVA canonical variables $\hat{z}_j = \hat{u}_j y$, associated with the null hypothesis $H_0$ being tested, where $y$ is the $p$ by 1 vector of response variables. If $\hat{U} = [\hat{u}_1, \hat{u}_2, \hat{u}_3, \ldots \hat{u}_p]$ is the matrix of eigenvectors (releigen(h,e)$vectors), the estimated canonical variables are the columns of the $n$ by $p$ matrix $Z = Y \hat{U}$. Thus the $i^{th}$ canonical variable is $\hat{z}_i = \hat{u}_j y = y' \hat{u}_i$, a linear combination of the response variables.

If you compute a $p$ by $p$ hypothesis matrix $H_{zz}$ and an error matrix $E_{zz}$ treating the canonical variables as data, then $H_{zz} = \hat{U} \hat{H} \hat{U} = \text{diag}(\hat{\lambda}_1, \hat{\lambda}_2, \ldots, \hat{\lambda}_p)$ and $E_{zz} = I_p$. Thus the canonical variables are uncorrelated and the univariate F-statistic for testing $H_0$, using only $\hat{z}_i$ is $(f_e / f_h) \hat{\lambda}_i$.

This can be interpreted as saying that $\hat{z}_i$ is the linear combination of the original variables for which $H_0$ is “most violated,” that is, has the largest F-statistic. Similarly, $\hat{z}_2$ is the linear combination for which $H_0$ is “most violated” among all linear combinations that are uncorrelated with $\hat{z}_1$, etc.

For $j > s = \min(f_h, p)$, $\hat{z}_j = 0$ and the F-statistic based on $\hat{z}_j$ is zero, that is, there is no deviation from $H_0$ – all the sample group means of $\hat{z}_j$ are identical. In a sense, the first $s$ canonical variables have “extracted” all the information concerning possible violations of $H_0$.

It is worth repeating that a particular set of canonical variables is associated with a particular null hypothesis. In an analysis with several hypothesis tests based on hypothesis matrices $H_{0,1}, H_{0,2}, \ldots$, there will be different sets of canonical variables associated with each $H_{0,i}$.

It can be informative to plot the first few canonical variables associated with a null hypothesis against each other. You often see much greater delineation of group structure in canonical variable plots than in plots of the original data. Furthermore, the
coefficients in these linear combinations, that is, the elements of the eigenvectors, sometimes provide information as to how the overall $H_0$ is violated.

\begin{verbatim}
Cmd> # Make "canonical variable" plots
Cmd> manova("y=varieties",silent:T) # start from the beginning
Cmd> h <- matrix(SS[2,]); e <- matrix(SS[3,])
Cmd> eigs <- releigen(h,e)
Cmd> u <- eigs$vectors ; print(u)
u: Coefficients of canonical variables
(1) (2) (3) (4)
SepLen -0.068406 0.0019879 0.13261 0.22693
SepWid -0.12656 0.17853 -0.20606 -0.080491
PetLen  0.18155 -0.076864 -0.2366 -0.07589
PetWid  0.2318  0.23417  0.37322 -0.047837
\end{verbatim}

The columns of $u$ are the eigenvectors of $H$ relative to $E$ and the elements in row $i$ are the coefficients of variable $i$ in computing the canonical variables.

\begin{verbatim}
Cmd> # compute values of all 4 estimated canonical vars
Cmd> z <- y %*% u # z is 150 by 4
Cmd> # Each column of z is linear combination of columns of y
Cmd> manova("z=varieties",silent:T) # do MANOVA on Z's
Cmd> round(SS[2,,],12) # $H_{zz} = \text{diag}(\text{eigenvalues}); E_{zz} = I_4
\end{verbatim}

\begin{verbatim}
<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>varieties (1)</td>
<td>32.192</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(2)</td>
<td>0</td>
<td>0.28539</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(4)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
\end{verbatim}
Example of One-Way MANOVA

Cmd> symbols <- vector("\11","\12","\13") [varieties] # medium sized
Cmd> plotmatrix(z,symbols:symbols,lower:T, \
   title:"MANOVA Canonical Variable Plots for Iris Data",labels:"CanVar")

MANOVA Canonical Variable Plots for Iris Data

CanVar2

CanVar3

CanVar4

CanVar1 CanVar2 CanVar3

z

Cmd> # Compare these plots with some plots of the original data
Cmd> plotmatrix(y,lower:T, \
   title:"Fisher Iris Data",symbols:symbols,xlab:" ",ylab:" ")
Example of One-Way MANOVA

Testing homogeneity of variance matrices
An important assumption underlying MANOVA is that the within group variance matrices are equal, that is, $\Sigma_1 = \Sigma_2 = \ldots = \Sigma_g$. Assuming the multivariate normality of each population, an adjusted form of the log likelihood ratio test statistic to test $H_0: \Sigma_1 = \Sigma_2 = \ldots = \Sigma_g$ against $H_1: \Sigma_i \neq \Sigma_j$ for some $i \neq j$, is

$$M = -C_d \times f \times \ln \tilde{\lambda}_d = C_d \times \left[ \ln \det(S) - \frac{1}{f} \sum_i \ln \det(\Sigma_i) \right],$$

where

$$C_d = 1 - \frac{2p^2 + 3p - 1}{6(p+1)(g-1)} \left( \sum_i \frac{1}{f_i} - 1 \right)$$

Under the null hypothesis of equal $\Sigma$'s, $M$ is approximately distributed as $\chi^2_f$, where $f = p(p+1)(g-1)/2$. This is a generalization of Bartlett’s test for univariate homogeneity of variance. Like Bartlett’s test, it is not at all robust to departures from normality. That is, when the populations are not normal the distribution of $M$ under $H_0$ may very poorly approximated by $\chi^2$. Here is an example of the computation of $M$ to check variance matrix equality.

Cmd> S <- tabs(y, varieties, covar:T) # compute all within group covs
Cmd> S # 3 dimension array
(1,1,1) 0.12425 0.099216 0.016355 0.010331 s1
(1,2,1) 0.099216 0.14369 0.011698 0.009298
(1,3,1) 0.016355 0.011698 0.030159 0.0060694
(1,4,1) 0.010331 0.009298 0.0060694 0.011106
(2,1,1) 0.26643 0.085184 0.1829 0.05578 s2
(2,2,1) 0.085184 0.098469 0.082653 0.041204
(2,3,1) 0.1829 0.082653 0.22082 0.073102
(2,4,1) 0.05578 0.041204 0.073102 0.039106
(3,1,1) 0.40434 0.093763 0.30329 0.049094 s3
(3,2,1) 0.093763 0.104 0.07138 0.047629
(3,3,1) 0.30329 0.07138 0.30459 0.048824
(3,4,1) 0.049094 0.047629 0.048824 0.075433
Cmd> s1 <- matrix(S[1,,]); s2 <- matrix(S[2,,]); s3 <- matrix(S[3,,])
Cmd> print(s1,s2,s3)
s1:
Variance matrix for variety 1
(1,1) 0.12425 0.099216 0.016355 0.010331
(2,1) 0.099216 0.14369 0.011698 0.009298
(3,1) 0.016355 0.011698 0.030159 0.0060694
(4,1) 0.010331 0.009298 0.0060694 0.011106
s2:
Variance matrix for variety 2
(1,1) 0.26643 0.085184 0.1829 0.05578
(2,1) 0.085184 0.098469 0.082653 0.041204
(3,1) 0.1829 0.082653 0.22082 0.073102
(4,1) 0.05578 0.041204 0.073102 0.039106

13
Example of One-Way MANOVA

\[
\begin{array}{cccc}
(1,1) & 0.40434 & 0.093763 & 0.30329 & 0.049094 \\
(2,1) & 0.093763 & 0.104 & 0.07138 & 0.047629 \\
(3,1) & 0.30329 & 0.07138 & 0.30459 & 0.048824 \\
(4,1) & 0.049094 & 0.047629 & 0.048824 & 0.075433 \\
\end{array}
\]

\[\text{Cmd> } p \leftarrow \text{ncols}(y); \ g \leftarrow 3; \text{fe1} \leftarrow 49; \text{fe2} \leftarrow 49; \text{fe3} \leftarrow 49\]

\[\text{Cmd> } \text{fe} \leftarrow \text{nrows(y)} - \ g \# \text{ or } \text{fe1} + \text{fe2} + \text{fe3}\]

\[\text{Cmd> } \text{spooled} \leftarrow (\text{fe1}*s1 + \text{fe2}*s2 + \text{fe3}*s3)/\text{fe} \# \text{ or } e/\text{df}\]

\[\text{Cmd> print(spoooled,fe*spooled)}\ # \text{ note } \text{fe*spooled is same as e/spooled:}\]

\[
\begin{array}{cccc}
(1,1) & 0.26501 & 0.092721 & 0.16751 & 0.038401 \\
(2,1) & 0.092721 & 0.11539 & 0.055244 & 0.03271 \\
(3,1) & 0.16751 & 0.055244 & 0.18519 & 0.042665 \\
(4,1) & 0.038401 & 0.03271 & 0.042665 & 0.041882 \\
\end{array}
\]

\[
\begin{array}{cccc}
(1,1) & 38.956 & 13.63 & 24.625 & 5.645 \\
(2,1) & 13.63 & 16.962 & 8.1208 & 4.8084 \\
(3,1) & 24.625 & 8.1208 & 27.223 & 6.2718 \\
(4,1) & 5.645 & 4.8084 & 6.2718 & 6.1566 \\
\end{array}
\]

\[\text{Cmd> } \text{bartlett} \leftarrow \text{fe}*(\log(\text{det(spoooled)}) - \left(\text{fe1}\log(\text{det(s1)}) + \text{fe2}\log(\text{det(s2)}) + \text{fe3}\log(\text{det(s3)}))/\text{fe}\right)\]

\[\text{Cmd> } f \leftarrow p*(p+1)*(g-1)/2; \text{ vector(bartlett,f)}\ # \text{ Raw test statistic, df}\]

(1) 146.66 20

\[\text{Cmd> } \text{cd} \leftarrow 1 - ((2*p*p+3*p-1)/(6*(p+1)*(g-1))) * (1/\text{fe1}+1/\text{fe2}+1/\text{fe3}-1/\text{fe})\]

\[\text{Cmd> } \text{cd} \# \text{ correction factor}\]

(1) 0.961

\[\text{Cmd> vector(cd*bartlett, 1-cumchi(cd*bartlett,f))\# highly significant}\]

(1) 140.94 0 \text{ Test statistic and P-value}\]