Example of Generalized Least Squares (GLS) Factor Analysis in MacAnova

Here is MacAnova output illustrating GLS factor extraction. Two methods are used, the iterative method described in the handout on factor extraction as implemented in `stepgls()` and direct minimization of the GLS criterion as implemented in `facanal()`.

The data are the chicken bone data in file `cbbones.txt`.

```
Cmd> bonedata <- read("","bonedata") # read cbbones.txt
bonedata        276        6 format labels
) Bone measurements on n = 276 outbred female chickens, all in mm.
) Col. 1:  skull length
) Col. 2:  skull breadth
) Col. 3:  femur length (leg bone)
) Col. 4:  tibia length (leg bone)
) Col. 5:  humerus length (wing bone)
) Col. 6:  ulna length (wing bone)
Read from file "TP1:Stat5401:Data:cbbones.txt"

Cmd> r <- cor(bonedata) # compute correlation matrix

Iteration using `stepgls()`

`stepgls()` is used similarly to `stepuls()` and `stepml()`:

```
Cmd> result <- stepgls(r, psi, m)
```

or

```
Cmd> result <- stepgls(r, psi, m, print:T)
```

where \( r \) is a \( p \) by \( p \) variance matrix or correlation matrix, \( \psi \) is a vector whose value is the current values of \( \psi_1, ..., \psi_p \), the diagonal elements of \( \Psi \), \( m \) is the number of factors. With `print:T`, the new value of \( \psi \) and a goodness of fit quantity is printed. Argument \( \psi \) can also be a structure whose first component is a vector containing the diagonal elements \( \psi_1, ..., \psi_p \) of \( \Psi \).

result is a structure with three components, \( \psi \), loadings, and crit, where \( \psi \) is the vector of updated uniqueesses \( \psi_j \), loadings is the updated matrix of loadings, and crit is a goodness of fit criterion (see below). crit actually measures the goodness of the fit provided by the argument \( \psi \) with non-updated loadings.

Because `stepgls()` accepts a structure as first argument, you can use `result` in place of `psi` in the next iteration. In fact, a generic step of the iteration is

```
Cmd> psihat <- stepgls(s,paihat,m [,print:T])
```
Besides returning a structure as values, stepgls() creates variables PSI, LOADINGS and CRITERION as "side effects". These are identical to components psi, loadings and crit of the returned value.

The goodness of fit criterion crit is

$$tr(I_p - S^{-1}\Sigma)^2 = \sum_{m \leq i \leq p}(1 - \frac{1}{\lambda_i})^2$$

where $\lambda_1 \geq ... \geq \lambda_p$ are the eigenvalues of $S$ relative to $\Psi$. This quantity is reduced on each iteration, and its minimum is achieved at the GLS estimate. The value of $\sum_{m \leq i \leq p}(1 - \frac{1}{\lambda_i})^2$ is the same whether $S$ is the sample covariance or correlation matrix. At convergence, this can be used as a goodness-of-fit statistic for the m-factor model, since, in large samples, when $\Sigma$ is of factor analytic form,

$$\{f_e - (2p+5)/6 - 2m/3\} \sum_{m \leq i \leq p}(1 - \frac{1}{\lambda_i})^2$$

is approximately distributed as $\chi_f^2$, where $f = \{(p-m)^2 - p - m\}/2$.

Iteration stops with an error message if it happens that $\lambda_m < 1$. In that case you can retrieve the most recent estimates from PSI and loadings.

Cmd> setoptions(format="10.6f")  # all output with 6 decimals
Cmd> psi0 <- 1/diag(solve(r)); psi0  # compute starting values
   (1) 0.528691 0.565077 0.121657 0.109907 0.099535 0.096204
Cmd> psihat <- stepgls(r,psi0,2,print:T)  # take one step
   psi:  Printed because of print:T
   SklLngth SklBrdth FemLngth TibLngth HumLngth UlnLngth
   0.446862 0.446961 0.079338 0.066505 0.056627 0.061822
   criterion:
   (1) 1.410360  Criterion at starting value
Cmd> iter <- 1  # initialize iteration count
Cmd> n <- 30; for(i in 1:n){  # print on every 5-th iteration
    if(iter %% 5 == 0){  # print every 5th iteration
        print(iter_crit:vector(iter,psihat$crit),psi:psihat$psi)
    }
    iter <- iter+1; psihat <- stepgls(r,psihat,2);;
}
Example of GLS factor estimation in MacAnova

psi:
  SklLngth  SklBrdth  FemLngth  TibLngth  HumLngth  UlnLngth
  0.473004  0.492874  0.115787  0.010769  0.002529  0.091985
iter_crit:
  (1)  20.000000   0.256241
psi:
  SklLngth  SklBrdth  FemLngth  TibLngth  HumLngth  UlnLngth
  0.473006  0.493203  0.116013  0.010480  0.001349  0.092764
iter_crit:
  (1)  25.000000   0.256224
psi:
  SklLngth  SklBrdth  FemLngth  TibLngth  HumLngth  UlnLngth
  0.472988  0.493353  0.115891  0.010814  0.000721  0.092764
iter_crit:
  (1)  30.000000   0.256209
psi:
  SklLngth  SklBrdth  FemLngth  TibLngth  HumLngth  UlnLngth
  0.472966  0.493470  0.115712  0.011244  0.000202  0.092944
Cmd> # do a few more iterations; looks like psi[5] may hit 0
Cmd> n <- 5;for(@i,1,n){;# print on every iteration
  print(vector(iter,psihat$crit),psihat$psi)
  iter <- iter + 1; psihat <- stepgls(r,psihat,2);;}
iter_crit:
  Iter & crit
  (1) 31.000000   0.256206
psi:
  SklLngth  SklBrdth  FemLngth  TibLngth  HumLngth  UlnLngth
  0.472961  0.493492  0.115675  0.011331  0.000102  0.092978
iter_crit:
  (1) 32.000000   0.256203
psi:
  SklLngth  SklBrdth  FemLngth  TibLngth  HumLngth  UlnLngth
  0.472956  0.493514  0.115638  0.011418  0.000003  0.093012
ERROR: non-positive psi; cannot continue in macro stepgls
Cmd> #stepgls aborts as psi[5] goes through 0.
Cmd> print(PSI,LOADINGS,CRITERION)
PSI: psi at start of last step
  SklLngth  SklBrdth  FemLngth  TibLngth  HumLngth  UlnLngth
  0.472956  0.493514  0.115638  0.011418  0.000003  0.093012
LOADINGS: loadings at start of last step
  (1) (2)
  SklLngth  0.621696  0.123570
  SklBrdth  0.583901  0.074885
  FemLngth  0.878654  0.332685
  TibLngth  0.875638  0.471085
  HumLngth  0.999940 -0.004155
  UlnLngth  0.937578  0.154590
CRITERION:
  (1)  0.256203
Example of GLS factor estimation in MacAnova

Cmd> # Do varimax rotation of loadings
Cmd> loadings_rot <- rotation(LOADINGS, reorder:F, kaiser:T)
Cmd> loadings_rot

(1)        (2)
SklLngth   0.473473  0.421424
SklBrdth   0.465542  0.360304
FemLngth   0.589123  0.731879
TibLngth   0.516425  0.849687
HumLngth   0.864305  0.502866
UlnLngth   0.730132  0.608159

It doesn't seem to have simpler structure than unrotated loadings. Try quartimax rotation:

Cmd> loadings_rot <- rotation(LOADINGS, kaiser:T, method:"quartimax", 
                              reorder:F)
Cmd> loadings_rot

(1)        (2)
SklLngth   0.633705 -0.013909
SklBrdth   0.586269 -0.053260
FemLngth   0.929831  0.134638
TibLngth   0.956839  0.270410
HumLngth   0.975342 -0.220469
UlnLngth   0.948813 -0.051989

Cmd> # Now do scatter plots of each set of loadings.
Cmd> plot(Factor_1:LOADINGS[,1], symbols:run(6), 
         Factor_2:LOADINGS[,2], xmin:-1.6, xmax:1.6, ymin:-1, ymax:1, 
         title:"Unrotated GLS chicks loadings, m=2")
Cmd> plot(Factor_1:loadings_rot[,1], symbols:run(6), 
         Factor_2:loadings_rot[,2], xmin:-1.6, xmax:1.6, ymin:-1, ymax:1, 
         title:"Quartimax rotated GLS chicks loadings, m=2")

Cmd> # The values of xmin and xmax were chosen so that the 
Cmd> # horizontal and vertical scales would be about the same
Example of GLS factor estimation in MacAnova

**Direct minimization of GLS criterion using facanal()**
You can use `facanal()` to estimate $\Psi$ and $L$ by direct minimization of the GLS criterion. If desired, you can specify a rotation method keyword `rotate`, with Kaiser normalization the default.

```r
Cmd> result <- facanal(r, 2, method="gls", rotate="quartimax")
WARNING: no convergence in 30 iterations
```

Estimated uniquenesses:
```
 SklLngth SklBrdth FemLngth TibLngth HumLngth UlnLngth
maximized gls criterion:
 0.479700 0.493621 0.115341 0.008253 0.008253 0.091438
```

Quartimax rotated estimated loadings:

```
 SklLngth SklBrdth FemLngth TibLngth HumLngth UlnLngth
Factor 1 0.472930 0.493621 0.115341 0.008253 0.000000 0.091438
```

SklLngth  SklBrdth  FemLngth  TibLngth  HumLngth  UlnLngth
```
```
minimized gls criterion:
(1)   0.128098
```

`facanal()` did not fully converge in the default maximum number of iterations.

Redo, allowing for 100 iterations.

```r
Cmd> result <- facanal(r, 2, method="gls", rotate="quartimax",
                         maxit=100)
```

Convergence in 47 iterations by criterion 2

Estimated uniquenesses:
```
          SklLngth SklBrdth FemLngth TibLngth HumLngth UlnLngth
maximized gls criterion:
               0.472930  0.493486  0.115341  0.012007  0.000000  0.091438
```

Quartimax rotated estimated loadings:

```
          SklLngth SklBrdth FemLngth TibLngth HumLngth UlnLngth
Factor 1  0.472930  0.493486  0.115341  0.012007  0.000000  0.091438
```

SklLngth SklBrdth FemLngth TibLngth HumLngth UlnLngth
```
```
minimized gls criterion:
(1) 0.128098
```

The GLS criterion computed by `facanal()` is $\frac{1}{2}\sum_{m=1}^{n} (1 - 1/\sigma_i)^2$, half the criterion used by `stepgls()`.

```r
Cmd> 2*result$criterion # make comparable with stepgls() criterion
(1) 0.256196
```

This is slightly smaller than 0.256203, the value reached by `stepgls()` before it quit. The estimated uniquenesses and rotated loadings are very close to those found by `stepgls()`.