MacAnova function `cluster()` performs a hierarchical cluster analysis of objects by sequential agglomeration of objects into larger and larger clusters.

There are several agglomerating methods available, the default being *average linkage*. Others include single linkage, complete linkage, and Ward's method.

`cluster()` can work with any of the following types of information:

1. A n by p data matrix `X` whose rows represent values for p variables describing an object.
2. A n by n matrix `D = [d_{ij}]` of *dissimilarity* measures or distances between n objects.
3. A n by n matrix `S = [s_{ij}]` of *similarity* measures.

For obvious reasons, `cluster()` requires n > 2.

By default, `cluster()` prints a *class table* and a crude *dendrogram* or cluster *tree*. The class table is a table of cluster membership with one line per case or object. The join points of the dendrogram are labelled with the value of the *criterion*, the distance or similarity between the clusters merged at that level.

There are several optional arguments, indicated by "..." in argument lists.

Data matrix input

`cluster(x, ...)`, where `x` contains data matrix `X` first standardizes the columns of `x` so as to remove dependence on the scales of the variables. It subtracts column means and divides each column by the standard deviation. To suppress standardization, use `cluster(x, standard:F, ...)`.

Let `x_1`, `x_2`, ..., `x_n` be the rows of the standardized matrix (rows of `X` if not standardized). Then for every `i ≠ j`, `cluster()` computes squared Euclidian distance `d_{ij} = \|x_i - x_j\|^2 = \sum_{1 ≤ k ≤ p} (x_{ki} - x_{kj})^2` between `x_i` and `x_j`. `cluster()` then uses a hierarchical agglomerating algorithm to form clusters using these distances. The objects being clustered are the cases corresponding to the rows of `X`.
Cluster Analysis in MacAnova

Dissimilarity or similarity matrix input

cluster(dissim:d), where d is an n by n matrix with n ≥ 2, uses the elements d[i, j], with j > i of the upper triangle half of d as a dissimilarity measure or distance. Each row (and column) of d corresponds to an object being clustered, and d[i, j] is the dissimilarity or distance between objects i and j.

Computationally, matrix d is treated as if it were Euclidian distance. This means, that if d[i, j] = \sqrt{\|x_i - x_j\|^2}, then cluster(dissim:d) produces the same clustering as cluster(x,standard:F, ...).

cluster(similar:s, ...), where s is an n by n matrix with n ≥ 2, uses the upper triangle of s as a similarity matrix. That is, s[i, j] is a measure of the similarity between objects i and j.

cluster(similar:s) is computationally equivalent to cluster(dissim:d)) where d is computed by d <- 2*max(vector(s))-s. The use of a similarity matrix is particularly useful when the objects being clustered are variables rather than cases. In that case you might use r_{ij} or \left| r_{ij} \right| to measure the similarity of variables X_i and X_j, where r_{ij} is their sample correlation. When s[i, j] is r_{ij}, 2*(max(vector(s))-s) is the matrix of Euclidean distances \|\hat{X}_i - \hat{X}_j\| between the vectors of standardized variables.
Cluster Analysis in MacAnova

Optional keywords used in cluster()

You control the behavior of `cluster()` using keywords, as summarized in this table:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Possible values</th>
<th>Default value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>nclust</td>
<td><code>2 ≤ integer ≤ nrows(x)</code></td>
<td><code>min(9, nrows(x))</code></td>
<td>Number of clusters to summarize</td>
</tr>
<tr>
<td>method</td>
<td>"average", "complete", "single", "median", "ward", "mcquitty", "centroid"</td>
<td>"average"</td>
<td>Agglomerative clustering method</td>
</tr>
<tr>
<td>keep</td>
<td>"classes", "crit", "distance", "all"</td>
<td>None</td>
<td>Items to be returned as value</td>
</tr>
<tr>
<td>print</td>
<td>F T</td>
<td>F with keep T without keep</td>
<td>Stops printing Forces printing</td>
</tr>
<tr>
<td>tree</td>
<td>F T</td>
<td>F with keep T without keep</td>
<td>No dendrogram Forces dendrogram</td>
</tr>
<tr>
<td>classes</td>
<td>F T</td>
<td>F with keep T without keep</td>
<td>No class table Forces class table</td>
</tr>
<tr>
<td>standard</td>
<td>F T</td>
<td>T</td>
<td>Standardize data before clustering</td>
</tr>
<tr>
<td>reorder</td>
<td>T F</td>
<td></td>
<td>Reorder rows of printed class table</td>
</tr>
</tbody>
</table>

Saving results

By default, the only action of `cluster()` is to print results; it returns `NULL` as a value. You use keyword `keep` to ensure that some of the results are saved in a MacAnova variable. The value of `keep` should be one of "classes", "crit", "distance", or "all", or a vector of more than one, for example, `keep:vector("crit", "classes")`.

`keep:“all”` is equivalent to `keep:vector("crit", "classes", "distance")`.

When you use `keep` to save just one item, `cluster()` returns the item as a vector or matrix. When you save more than one item, `cluster()` returns a structure with components `distances`, `classes` and/or `criterion`.

When you use `keep`, printed output is normally suppressed. You can still force printing of the class table or the dendrogram by `class:T` or `tree:T`, respectively; `print:T` forces both to be printed.
Cluster Analysis in MacAnova

Reordering rows of the class table
You can use the `reorder` function to change the order of the rows of the printed class table so that objects (cases) in the same cluster are together. This does not affect the ordering of rows in the class table that is returned as a value when `keep="class"` is an argument.

A simple example
The output from `cluster()` is not easy to understand, and is probably best illustrated by its use with a small set of data whose structure is clear. The data is generated as random samples of size 3, 3, and 2 from bivariate normal populations with means \(\mu_1 = [10, 30]' \), \(\mu_2 = [15, 28]' \), and \(\mu_3 = [20, 31]' \), and variance matrices \(\Sigma_1 = 4I_2 \), \(\Sigma_2 = \text{diag}[1^2, 1.5^2] \), and \(\Sigma_3 = \text{diag}[1.5^2, 0.5^2] \). I reorder rows of \(x \) using vector `permute` as a subscript so that data from different populations are scrambled.

```
Cmd> setseeds(67871,32211)# done to allow recreation of results
Cmd> x1 <- vector(10+2*rnorm(3),15+rnorm(3),20+1.5*rnorm(2))
Cmd> x2 <- vector(30+2*rnorm(3),28+1.5*rnorm(3),31+.5*rnorm(2))
Cmd> permute <- vector(5,3,2,8,6,1,7,4) # selector to mix up data
Cmd> x1 <- x1[permute]; x2 <- x2[permute]
Cmd> groups <- vector(1,1,1,2,2,2,3,3)[permute] # group ID
Cmd> x <- hconcat(x1,x2) # bivariate data matrix
Cmd> hconcat(groups,x) # population number and bivariate data
(1,1)  2  15.606  27.451
(2,1)  1  7.2295  29.53
(3,1)  1  9.9958  30.821
(4,1)  3  17.241  31.21
(5,1)  2  16.212  25.889
(6,1)  1  10.644  28.937
(7,1)  3  20.954  31.244
(8,1)  2  14.528  24.695
```

In an actual cluster analysis, only \(x_1 \) and \(x_2 \) would be available, not the group number.
Cluster Analysis in MacAnova

Cmd> plot(x1,x2,symbols:groups,ymin:24,ymax:32,xmin:6,xmax:22,title:"Small bivariate sample from a mixture of three populations")

Cmd> xs <- standardize(x) # standardize x
Cmd> describe(xs,mean:T,stddev:T) # Check standardization
component: mean
(1) -3.3827e-16 -7.2164e-16
component: stddev
(1) 1 1
Cmd> # Create matrix to hold Euclidean distances
Cmd> n <- nrows(x); d <- dmat(n,0) # n by n matrix of 0
Cmd> # Fill it with distance
Cmd> for(i,1,n-1){ # loops over 1 <= i < j <= 8
 for(j,i+1,n){
 d[i,j] <- d[j,i] <- sqrt(sum(vector(xs[i,]-xs[j,])^2));
 }
}
Cmd> print(format:"7.3f",d)

d: Matrix of distances among the cases for standardized data
(1,1) 0.000 2.052 1.845 1.551 0.641 1.260 1.936 1.132
(2,1) 2.052 0.000 0.807 2.340 2.485 0.801 3.148 2.536
(3,1) 1.845 0.807 0.000 1.629 2.418 0.770 2.459 2.658
(4,1) 1.551 2.340 1.629 0.000 2.147 1.735 0.831 2.683
(5,1) 0.641 2.485 2.418 2.147 0.000 1.746 2.396 0.610
(6,1) 1.260 0.801 0.770 1.735 1.746 0.000 2.486 1.910
(7,1) 1.936 3.148 2.459 0.831 2.396 2.486 0.000 2.995
(8,1) 1.132 2.536 2.658 2.683 0.610 1.910 2.995 0.000
Pop # 2 1 1 3 2 1 3 2

5
cluster(x) # cluster using Average Linkage (default)

Case Number of Clusters
No. 2 3 4 5 6 7 8
----- -- -- -- -- -- -- --
 1 1 1 1 1 1 1 1
 2 1 3 3 3 3 3 3
 3 1 3 3 3 6 6 6
 4 2 2 2 2 2 2 2
 5 1 1 4 4 4 4 4
 6 1 3 3 3 6 7 7
 7 2 2 2 5 5 5 5
 8 1 1 4 4 4 4 8

Class table

Criterion Dendrogram

+ 2.3442 +-----------------+
 2.1452 +--------+
 0.91973 +--+
 0.83119 | |
 0.80388 | |
 0.76965 | |
 0.60954 | |

Cluster No. 1 4 8 3 6 7 2 5
Clusters 1 to 8 (Top 7 levels of hierarchy).
Clustering method: Average linkage
Distance: Euclidean (standardized)

Note the argument to cluster() is x, not xs, because cluster() automatically standardizes. cluster(xs,standard:F) would produce the same output.

The class table

The first part of the output is the class table, a table of cluster membership. Each row corresponds to a case. Each column corresponds to a stage in the agglomerative algorithm, with earlier stages at the right. The column heading is the number of clusters at that stage.

The entry in the row labeled i and the column labeled j is the ID number of the cluster to which case i is assigned at the stage at which there are exactly j clusters, that is at stage n - j = 8 - j in the merging process. Stage 0 corresponds to the start when there are n = 8 "clusters" of size 1. Stage n-1 = 7 is the final stage at which there is j = 1 cluster of size n. It is not in the class table, but if it were, it would consist of n 1's. It is represented by the topmost "+" in the dendrogram.

When two clusters merge, the ID of the merged cluster is the minimum of the ID’s of the two clusters. Because there are only 8 cases in this example, the last column, with heading "8" because there are 8 clusters, corresponds to stage 0, before any agglomeration, with ID’s 1 through 8.
corresponding to each case in a non-obvious order. If I had used nclus: 7, say, as an argument, the last column would have heading “7” and would correspond to stage 1, the stage with 7 clusters after the first merge.

Relationship of case number and cluster ID

In interpreting the dendrogram, a common mistake is to interpret cluster ID number as if it were related to case number. This is not correct. There is no obvious correspondence between the case number and the ID, but there is a logic to the numbering.

Cluster ID numbers are assigned *after* the clustering process is completed in such a way that at each stage, the cluster with the highest ID (equal to the number of clusters at that stage) is merged with another cluster. This can be seen clearly in the following step by step listing of the clusters. The numbers in {...} are the case numbers in each cluster.

<table>
<thead>
<tr>
<th>Clus ID</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 0</td>
<td>{1}</td>
<td>{4}</td>
<td>{2}</td>
<td>{5}</td>
<td>{7}</td>
<td>{3}</td>
<td>{6}</td>
<td>{8}</td>
</tr>
<tr>
<td>Stage 1</td>
<td>{1}</td>
<td>{4}</td>
<td>{2}</td>
<td>{5,8}</td>
<td>{7}</td>
<td>{3}</td>
<td>{6}</td>
<td></td>
</tr>
<tr>
<td>Stage 2</td>
<td>{1}</td>
<td>{4}</td>
<td>{2}</td>
<td>{5,8}</td>
<td>{7}</td>
<td>{3,6}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 3</td>
<td>{1}</td>
<td>{4}</td>
<td>{2}</td>
<td>{5,8}</td>
<td>{7}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 4</td>
<td>{1}</td>
<td>{4,7}</td>
<td>{2,3,6}</td>
<td>{5,8}</td>
<td>{7}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 5</td>
<td>{1,5,8}</td>
<td>{4,7}</td>
<td>{2,3,6}</td>
<td>{5,8}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 6</td>
<td>{1,2,3,5,6,8}</td>
<td>{4,7}</td>
<td>{2,3,6}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 7</td>
<td>{1,2,3,4,5,6,7,8}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Initially (at stage 0) there are 8 clusters, each consisting of a single case. To get to stage 1, cases 5 and 8 (clusters 4 and 8) merged to form a new cluster 4 with no cluster labelled 8 remaining. At the next step, going from 7 to 6 clusters, cases 3 and 6 (clusters 6 and 7) merged to form a new cluster 6 with no cluster labelled 7 remaining. A step 3, a partition of the data into 5 clusters is accomplished by merging case 2 (cluster 3) and cases 3 and 6 (cluster 6) to form a new cluster 3 consisting of cases 2, 3, and 6. And so on until the final stage (not included in the printed class table) when there is one cluster consisting of all the cases. The way I am counting the stages, there are n - k clusters at stage k.

Because these data are artificial, we know in advance that the “correct” number of clusters is 3. The partition of cases when there are 3 clusters
Cluster Analysis in MacAnova

(Stage 5 above) shows that cluster() has correctly grouped the cases, with clusters 1, 2, and 3 corresponding exactly to the initial groups 2, 3, and 1. It would have been a meaningless coincidence if the cluster numbers had matched the group numbers.

Interpreting the dendrogram

The dendrogram below the class table summarizes the final steps of agglomeration in graphical form. Agglomeration starts at the bottom when there are 8 (in general, nclust) clusters. The numbering on the bottom corresponds to the cluster ID numbers in the right most column in the class table, not to case numbers.

As you move up in the dendrogram, each level corresponds to a merging event as agglomeration goes to the next stage. The printed value of the criterion is either the dissimilarity or similarity between the clusters merged at that level. Thus \(h = .60954 \) (see the table of distance between cases above) rounds to \(.610 = \| \mathbf{x}_5 - \mathbf{x}_6 \| \), the distance between clusters \(4 = \{5\} \) and \(8 = \{8\} \). Here \(\mathbf{x}_i \) is a vector of standardized variables.

At the next level up, the criterion = \(.76965 = \| \mathbf{x}_3 - \mathbf{x}_6 \| \), the distance between clusters \(6 = \{3\} \) and \(7 = \{6\} \). Up an additional level, \(.80388 \) is (because we are using the average linkage method) the square root of the average squared distances between cases in cluster \(3 = \{2\} \) and cases in cluster \(6 = \{3, 6\} \), that is

\[
\left\{ \left(\| \mathbf{x}_2 - \mathbf{x}_3 \|^2 + \| \mathbf{x}_2 - \mathbf{x}_6 \|^2 \right)/2 \right\}^{1/2} = \sqrt{(.8072 + .8012)/2} = .804 \approx .80388.
\]

The top level at which the final two clusters \(\{1 \text{ and } 3\} \) are merged into 1, has criterion value 2.3442 is the square root of the average squared distances between cases in cluster \(\{1,2,3,5,6,8\} \) and those in \(\{4,7\} \).

```
Cmd> J1 <- vector(1,2,3,5,6,8); J2 <- vector(4,7) # selectors
Cmd> sqrt(sum(vector(d[J1,J2]^2]))/12)
(1) 2.3442
```

When order=T is an argument, the printed class table is reordered so that cases in the same cluster are adjacent. Here is cluster() output when reorder:T is used:
Cluster Analysis in MacAnova

Cmd> `cluster(x,reorder:T)`

<table>
<thead>
<tr>
<th>Case</th>
<th>Number of Clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>2 3 4 5 6 7 8</td>
</tr>
<tr>
<td>----</td>
<td>__ __ __ __ __ __</td>
</tr>
<tr>
<td>1</td>
<td>1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>5</td>
<td>1 1 4 4 4 4 4</td>
</tr>
<tr>
<td>8</td>
<td>1 1 4 4 4 4 4</td>
</tr>
<tr>
<td>2</td>
<td>1 3 3 3 3 3 3</td>
</tr>
<tr>
<td>3</td>
<td>1 3 3 3 6 6 6</td>
</tr>
<tr>
<td>6</td>
<td>1 3 3 3 6 7 7</td>
</tr>
<tr>
<td>4</td>
<td>2 2 2 2 2 2 2</td>
</tr>
<tr>
<td>7</td>
<td>2 2 2 5 5 5 5</td>
</tr>
</tbody>
</table>

Reordered class table

Clusters 1 to 8 (Top 7 levels of hierarchy).

Clustering method: Average linkage
Distance: Euclidian (standardized)

The dendrogram is unchanged, but the rows of the class table have been reordered so that, at every stage, all the cases in each cluster are adjacent.

Graphical clues to the number of clusters

The values of the criterion offer clues as to how many clusters you actually may have. Using `keep: "crit"`, you can save these values for use in making various plots. I used `reverse()` to order them from first stage (bottom of tree) to last (top of tree) so they are increasing. The last value is the distance between the last two clusters that are merged.

Cmd> `criterion <- reverse(cluster(x,keep: "crit"))`; `criterion`

```
(1)  0.60954  0.76965  0.80388  0.83119  0.91973
(6)  2.1452   2.3442
```
Cluster Analysis in MacAnova

Cmd> stages <- run(7) # stage or merge number,
Cmd> clustersleft <- 8 - stages # number of clusters at stage
Cmd> lineplot(stages,criterion,symbols:clustersleft,ymin:0,
 xlab:"Stage", ylab:"Criterion",
 title:"Merging criterion plotted against stage")

Stage i is the result of the ith merge which transitions from 8 - i + 1
clusters to 8 - i clusters. The points are labelled with the number of
clusters after the merging (8 - i). There is a substantial jump in the value
of the criterion (distance between clusters) when we go from the "correct"
number of clusters (3) at stage 5, to too few clusters (2) at stage 6. This
is the sort of evidence that you are looking for in attempting to decide on
how many clusters there are.

A better way to view this same information is to plot the changes in the
criteria between successive stages. A large change indicates the merging
of two clusters that are quite far apart compared to previous merges and
hence possibly ought not to be merged.
Cluster Analysis in MacAnova

Cmd> J <- stages[-1]; changes <- criterion[J] - criterion[J-1]
Cmd> lineplot(J,changes,symbols:clustersleft[-1]+1,ymin:0,
 xlab:"Stage", ylab:"Increase", title:
 "Increase in criterion from preceding to current stage vs stage")

The quantity plotted is the increase between the criterion achieved at a
given stage and the criterion achieved at the preceding stage. There is a
large change between the criterion at stage 5 (8 - 5 = 3 clusters) to stage
6 (8 - 6 = 2 clusters), indicating the merger of two clusters that were
relatively far apart compared to the distance between clusters merged at
previous stages. The labels of the plotted values are the number of
clusters before the merge. Thus, the fact that the peak is labeled 3
suggests three clusters might be appropriate.
Effect of specifying a smaller number of clusters

Often only the output corresponding to the last few stages is of interest. When nclus:m is an argument, the bottom of the dendrogram and the right most column of the class table correspond to stage n - m when there are m clusters. Nothing is printed about stages with more than m clusters.

Cmd> cluster(x,nclus:4)

Case Number of Clusters
No. 2 3 4
---- -- -- --
 1 1 1 1
 2 1 3 3
 3 1 3 3
 4 2 2 2
 5 1 1 4
 6 1 3 3
 7 2 2 2
 8 1 1 4

Criterion
 +
 2.3442 +--------+
 2.1452 +-----+ |
 0.91973 +++ |
Cluster No. 1 4 3 2

Clusters 1 to 4 (Top 3 levels of hierarchy).
Clustering method: Average linkage
Distance: Euclidian (standardized)

The three columns of the class table are the same as the first three columns of the full class table, and the dendrogram gives the structure of the top few lines of the full dendrogram, with empty columns squeezed out. That is, cluster 4 is already the merger of clusters 5, and 8, cluster 3 is already the merger of cluster 3, 6, and 7, and cluster 2 is already the merger of original clusters 2, and 5.

nclus:m also affects what is returned when you use keyword keep. The class table and criterion vector pertain only to the results from stage n - m on.

Cmd> cluster(x,nclus:4,keep:vector("class","crit"))

component: classes
 (1,1) 1 1 1
 (2,1) 1 3 3
 (3,1) 1 3 3
 (4,1) 2 2 2
 (5,1) 1 1 4
 (6,1) 1 3 3
 (7,1) 2 2 2
 (8,1) 1 1 4

component: criterion
 (1) 2.3442 2.1452 0.91973
Cluster Analysis in MacAnova

Cluster analysis of a larger data set

Here is an application of cluster to the data in file cbspots.txt, transformed to \(\log_{10}(1 + y) \).

```
Cmd> spots <- read("","spots") # read from cbspots.txt
spots          50     20 format labels
) Density measurements on 19 identifiable spots on each of 50 electrophoretic gels, each spot corresponding to a particular (probably unknown) protein.
) The data in each row was derived from the blood of a rat subjected to a treatment expected to affect its thyroid hormones.
) There were 10 treatments in all, including a control (treatment 2).
) Col. 1: trt = treatment number (1-10)
) Col. 2-20: density measurements on spots 1-19.
)

Read from file "TP1:Stat5401:Data:cbspots.txt"

Cmd> groups <- vector(spots[,1],labels:NULL)

Cmd> print(formats:"2.0f",Case_No:run(50),Group_No:groups)
Case_No:
  (1)  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22
  (23) 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
  (45) 45 46 47 48 49 50
Group_No:
  (1)  1  1  1  1  2  2  2  2  2  2  2  2  2  3  3  3  3  3  3  3  3  3  3
  (23) 4  4  4  5  5  5  5  5  5  5  6  6  6  6  7  7  8  8  8  8  8  8  9
  (45) 9  9 10 10 10 10

Cmd> y <- log10(1 + spots[,-1]) # transform data
```

Here is output from `cluster()`.

I have added a column to the class table giving the actual group membership **(bold)**.

The sample size is 50 which means that the complete dendrogram would have 50 roots and the full class table would be 50 by 49. We are interested in the final stages so I used nclust:20.
Cluster Analysis in MacAnova

Cmd> `cluster(y,nclust:20,reorder:T) # cases will be reordered`

<table>
<thead>
<tr>
<th>Case</th>
<th>Number of Clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20</td>
</tr>
<tr>
<td>------</td>
<td>---------------------</td>
</tr>
<tr>
<td>1</td>
<td>1 1</td>
</tr>
<tr>
<td>2</td>
<td>1 1</td>
</tr>
<tr>
<td>3</td>
<td>1 1</td>
</tr>
<tr>
<td>4</td>
<td>1 1</td>
</tr>
<tr>
<td>5</td>
<td>1 1</td>
</tr>
<tr>
<td>6</td>
<td>2 2</td>
</tr>
<tr>
<td>7</td>
<td>2 2</td>
</tr>
<tr>
<td>8</td>
<td>2 2</td>
</tr>
<tr>
<td>9</td>
<td>2 2</td>
</tr>
<tr>
<td>10</td>
<td>2 2</td>
</tr>
<tr>
<td>11</td>
<td>2 2</td>
</tr>
<tr>
<td>12</td>
<td>2 2</td>
</tr>
<tr>
<td>13</td>
<td>2 2</td>
</tr>
<tr>
<td>14</td>
<td>2 2</td>
</tr>
<tr>
<td>15</td>
<td>2 2</td>
</tr>
<tr>
<td>16</td>
<td>2 2</td>
</tr>
<tr>
<td>17</td>
<td>2 2</td>
</tr>
<tr>
<td>18</td>
<td>2 2</td>
</tr>
<tr>
<td>19</td>
<td>2 2</td>
</tr>
<tr>
<td>20</td>
<td>2 2</td>
</tr>
</tbody>
</table>

14
Cluster Analysis in MacAnova

If you carefully examine the reordered class table you can see a good deal of correspondence between clusters found at various stages and the original groups. Both the dendrogram and the class table show that one cluster, \(3 = \text{[28]}\), remains a "singleton" consisting of a single case right up to the final merge from two clusters, distance 9.5263 apart, to one.

Let's see what the values of the criterion might suggest about the numbers of clusters. Macro cluscritplot() in file mvgraphics.mac eases the job of plotting the criterion and changes in the criterion against stage. You can provide either the vector of criterion values or a structure with a vector component criterion as may be returned by cluster().

Here are plots of the criterion and changes of the criterion against stage similar to those above.
Cluster Analysis in MacAnova

Cmd> info <- cluster(y,nclust:20,keep:vector("crit","classes"))

Cmd> N <- nrow(y) # sample size

Cmd> cluscritplot(info,N,values:T,\
 title:"Criterion vs stage for ave. linkage clustering")

Cmd> cluscritplot(info,N,change:T,\
 title:"Change vs stage for ave. linkage clustering")

The stages start with stage 31 when there are 50 - 31 = 19 clusters. The plot of the criterion itself does not seem very informative in terms of determining an appropriate number of clusters.

The plot of the changes may be more helpful. The quantity plotted at stage \textit{i} is the change in the criterion (always an increase) found during the merge to 50-i clusters as compared to the criterion found during the merge to 50-i+1 clusters. They are labelled with the number, 50-i+1, of clusters \textit{before} the merge. The small maximum at stage 44 labeled with 7 is weak evidence that the number of clusters is near 7. There is much stronger evidence that the number of clusters is not less that 5 because of the start of a string of rapidly increasing distances at stage 46.

Here is a comparison of the actual groups with the cluster membership when there are 10 clusters, the "correct number."

Cmd> print(format:"2.0f",groups,Clusters:vector(info$classes[,9]))

\begin{verbatim}
groups:
 (1) 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3
 (23) 4 4 4 5 5 5 5 5 5 5 6 6 6 7 7 8 8 8 8 9 9
 (45) 9 9 10 10 10 10

Clusters: Average linkage clusters
 (1) 1 8 8 8 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4
 (23) 7 7 7 10 10 3 4 4 4 4 6 6 6 10 10 5 5 5 5 5 5 2 2
 (45) 2 2 9 9 9 9
\end{verbatim}

There are 4 underlined clusters (5, 6, 7 and 9) that coincide with the original groups, (groups 8, 6, 4 and 10). Cluster 2 is made up of groups 2
Cluster Analysis in MacAnova

and 9. Three out of four members of group 1 make up cluster \textbf{8}, with the remaining element a singleton (cluster consisting of a single element). As noted above, cluster \textbf{3} is a singleton, consists only of case 28. Altogether, average linkage clustering does a pretty good job of recovering the original groups.

Here is similar output from the stage when there are 7 clusters:

\begin{verbatim}
Cmd> print(format:"2.0f",groups,Clusters:vector(info$classes[,6]))
groups:
 (1) 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3
 (23) 4 4 4 4 5 5 5 5 5 5 5 6 6 6 6 7 7 8 8 8 8 9 9
 (45) 9 9 10 10 10
Clusters:
 (1) 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4
 (23) 7 7 7 4 4 3 4 4 4 4 4 6 6 6 4 4 5 5 5 5 5 2 2
 (45) 2 2 2 2 2 2
\end{verbatim}

Arguably, this is a more accurate clustering than with 10 clusters. Groups 1, 4, 6 and 8 match clusters \textbf{1}, \textbf{7}, \textbf{6} and \textbf{5}. And, except for case in the group 5 that makes up the singleton cluster \textbf{3}, each of the other groups is entirely within one cluster, groups 2, 9 and 10 in cluster \textbf{2}, and groups 3, 5 and 7 in cluster \textbf{5}.

Another way to evaluate the clustering is with a "confusion table", a cross tabulation of the actual groups and the cluster numbers.

\begin{verbatim}
Cmd> table <- tabs(groups,info$classes[,9])
Cmd> setlabels(table,structure("G","C")) # labels w row & col numbers
Cmd> print(format:"3.0f",table)
\end{verbatim}

\begin{verbatim}
table: \textbf{Rows are groups, columns are clusters}
 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
G1 1 0 0 0 0 0 0 0 0 0 0
G2 0 0 0 0 0 0 0 0 0 0 0
G3 0 0 0 0 0 0 0 0 0 0 0
G4 0 0 0 0 0 0 0 0 0 0 0
G5 0 0 0 0 0 0 0 0 0 0 0
G6 0 0 0 0 0 0 0 0 0 0 0
G7 0 0 0 0 0 0 0 0 0 0 0
G8 0 0 0 0 0 0 0 0 0 0 0
G9 0 0 0 0 0 0 0 0 0 0 0
G10 0 0 0 0 0 0 0 0 0 0 0
\end{verbatim}

It's easier to see what's going on if you reorder the groups (rows) so that, as far as possible, the maximum count in a column is on the diagonal. It's a little tricky so I wrote macro \texttt{ordertable()} (posted to web page) to attempt it. It does a reasonably good job.
Cluster Analysis in MacAnova

Cmd> ordertable <- read("","ordertable")
ordertable macro dollars
) Macro to reorder rows and columns of a "confusion" table so that
) the diagonal dominates.
)
Usage:
) table <- ordertable(groups, clusters)
) table <- ordertable(groups, classtable, nclust)
) groups vector of N positive integers identifying the group
) each case belongs to
) clusters vector of N positive integers identifying the cluster
) each case belongs to
) classtable N by m matrix of positive integers, intended to be
) the matrix returned cluster(x,method:meth,
) keep:="classes")
) nclust integer, 2 <= nclust <= ncols(classtable) + 1. This
) defines a vector clusters = classtable[,nclust-1]
) table the reordered g = max(groups) by max(clusters)
) confusion matrix tabs(,groups, clusters)
)
) The columns of the confusion matrix is first reordered from largest
) cluster to smallest. Then rows are reordered in stages, so as to
) put the column maxima on the diagonal as far as possible.
)
Read from file "TP1:Macros:Mulvar:ordertable.mac"

Cmd> print(format:="3.0f",ordertable(groups,info$classes,10))

MATRIX: Rows are groups, columns are clusters

<table>
<thead>
<tr>
<th></th>
<th>C2</th>
<th>C4</th>
<th>C5</th>
<th>C9</th>
<th>C10</th>
<th>C8</th>
<th>C7</th>
<th>C6</th>
<th>C3</th>
<th>C1</th>
</tr>
</thead>
<tbody>
<tr>
<td>G2</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G3</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G8</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>G4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G5</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>G9</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

This shows the structure reasonable well. If row i and column i both have
non-zero values only where they meet on the diagonal, this indicates a
perfect match.
Cluster Analysis in MacAnova

Do the same with the 7 cluster solution.

```
Cmd> print(format="3.0f", ordertable(groups, info$classes, 7))
```

MATRIX: Rows are groups, columns are clusters

<table>
<thead>
<tr>
<th></th>
<th>C2</th>
<th>C4</th>
<th>C5</th>
<th>C1</th>
<th>C6</th>
<th>C7</th>
<th>C3</th>
</tr>
</thead>
<tbody>
<tr>
<td>G2</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G3</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G8</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G5</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>G7</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G10</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G9</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Use of single and complete linkage methods

Let's look at two other agglomerative cluster methods applied to these data, single linkage and complete linkage.

```
Cmd> info <- cluster(y, method="single", nclust=20, tree=T, \
keep=vector("crit", "classes")) #tree:T means print dendrogram
```

Criterion Single linkage dendrogram

```
Cluster No. 1 5 9 4 2 13 18 11 10 8 20 16 7 6 12 15 14 19 17 3
```

Clusters 1 to 20 (Top 19 levels of hierarchy).

Clustering method: Single linkage

Distance: Euclidian (standardized)
Cluster Analysis in MacAnova

Cmd> cluscritplot(info,N,values:T, \title:"Criterion vs stage for sing. linkage clustering")

Cmd> cluscritplot(info,N,change:T, \title:"Change vs stage for sing. linkage clustering")

There is no clear identification of the number of clusters although 8 (where change starts to increase), or 7 (biggest change before final push) might be a an informed guess.

Cmd> print(format:"2.0f",groups,Clusters:vector(info$classes[,9]))
groups:
   (1)  1  1  1  1  2  2  2  2  2  2  2  2  2  2  2  3  3  3  3  3  3  3  3  3
   (23) 4  4  4  5  5  5  5  5  5  6  6  6  7  7  8  8  8  8  9  9
   (45) 9  9 10 10 10 10
Clusters:  Single linkage clusters
   (1)  1  5  4  9  2  2  2  2  2  2  2  2  2  2  2  6  6  6  6  6  6  6  6  6
   (23) 10  7 10  6  6  3  6  6  6  6  6  6  6  6  8  8  8  8  2  2
   (45) 2  2 2  2  2  2

There is only a single cluster, 8, which coincides with an actual group. Five clusters (1, 3, 4, 5 and 7) are singletons. Single linkage often yields lots of singletons.

Here are reordered confusion matrices for the 10 and 7 cluster solutions.

Cmd> print(format:"3.0f",ordertable(groups,info$classes,10))
MATRIX:
   C2  C6  C8  C10  C7  C9  C5  C3  C1  C4
G2   11  0   0   0   0   0   0   0   0   0
G3   0   7   0   0   0   0   0   0   0   0
G8   0   0   5   0   0   0   0   0   0   0
G4   0   0   0   2   1   0   0   0   0   0
G7   0   2   0   0   0   0   0   0   0   0
G1   0   0   0   0   1   1   0   1   1   1
G6   0   3   0   0   0   0   0   0   0   0
G5   0   6   0   0   0   0   1   0   0   0
G10  4   0   0   0   0   0   0   0   0   0
G9   4   0   0   0   0   0   0   0   0   0
Cluster Analysis in MacAnova

Cmd> print(format="3.0f", ordertable(groups, info$classes, 7))

MATRIX:

<table>
<thead>
<tr>
<th></th>
<th>C2</th>
<th>C6</th>
<th>C5</th>
<th>C1</th>
<th>C4</th>
<th>C3</th>
<th>C7</th>
</tr>
</thead>
<tbody>
<tr>
<td>G2</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G3</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G9</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G5</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>G10</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>G6</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G8</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G7</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Here is a complete linkage cluster analysis.

Cmd> info <- cluster(y, method="complete", nclust=20, tree=T, \keep:vector("crit","classes"))

Criterion Complete linkage dendrogram

Clusters 1 to 20 (Top 19 levels of hierarchy).
Clustering method: Complete linkage
Distance: Euclidian (standardized)
Cluster Analysis in MacAnova

Cmd> cluscritplot(info,N,values:T,
        title:"Criterion vs stage for comp. linkage clustering")

Cmd> cluscritplot(info,N,change:T,
        title:"Change vs stage for comp. linkage clustering")

Ω

Cmd> print(format:"2.0f",groups,Clusters:vector(info$classes[,9]))

      groups:
       (1) 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3
       (22) 3 4 4 4 5 5 5 5 5 5 6 6 6 7 7 8 8 8 8 8 8 8
       (43) 9 9 9 9 10 10 10 10

Clusters:  Complete linkage clusters
       (1) 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3
       (22) 3 8 8 8 5 5 7 3 3 3 3 6 6 6 5 5 4 4 9 9 9 9
       (43) 10 10 10 10 9 9 9 9

There are 5 clusters, 1, 2, 6, 8, and 10, that coincide with groups. These correspond to groups 1, 2, 6, 4 and 9. There is one singleton, cluster 7 consisting of case 28, in group 5.

Cmd> print(format:"3.0f",ordertable(groups,info$classes,10))

        C2  C3  C9  C1  C5  C10  C6  C8  C4  C7
  G2   11  0  0  0  0  0  0  0  0  0
  G3    0  7  0  0  0  0  0  0  0  0
  G10   0  0  4  0  0  0  0  0  0  0
  G1    0  0  0  4  0  0  0  0  0  0
  G5    0  4  0  0  0  0  0  0  0  1
  G9    0  0  0  0  4  0  0  0  0  0
  G6    0  0  0  0  0  0  0  3  0  0
  G4    0  0  0  0  0  0  0  0  3  0
  G8    0  0  3  0  0  0  0  0  2  0
  G7    0  0  0  2  0  0  0  0  0  0

22
Cluster Analysis in MacAnova

```r
Cmd> print(format="3.0f", ordertable(groups, info$classes, 7))

MATRIX:

<table>
<thead>
<tr>
<th></th>
<th>C2</th>
<th>C3</th>
<th>C5</th>
<th>C1</th>
<th>C6</th>
<th>C4</th>
<th>C7</th>
</tr>
</thead>
<tbody>
<tr>
<td>G2</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G3</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G5</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>G1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G8</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G9</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G4</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G10</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G7</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```

**Choice of variables**

The choice of variables input to a clustering algorithm can have a profound effect on its success. When you include variables that themselves do not cluster, you may dilute the effect of other variables that do cluster. Any steps that can be taken to select more informative variables will usually pay dividends. One method that is sometimes helpful is to replace the data by the first few principal components. Here we apply average linkage clustering to the first 4 correlation principal components.

```r
Cmd> eigs <- eigen(cor(y)); eigs$values # 4 values > 1
 (1) 8.1623 3.7179 1.7374 1.1274 0.89645
 (6) 0.76408 0.56048 0.53438 0.36238 0.2947
 (11) 0.20819 0.16422 0.12944 0.10691 0.080667
 (16) 0.054977 0.050571 0.02898 0.018455

Cmd> princomps <- standardize(y) %*% eigs$vectors[,run(4)]

Cmd> describe(princomps, var:T) # variances = eigenvalues
 (1) 8.1623 3.7179 1.7374 1.1274

Cmd> info <- cluster(princomps, nclust:20, \
 keep:vector("classes","crit"), standard:F) # don't standardize
```

23
Cluster Analysis in MacAnova

Cmd> cluscritplot(info,N,values:T,\
       title:"Criterion vs stage for ave. linkage, PCs")

Cmd> cluscritplot(info,N,change:T,\
       title:"Change vs stage for ave. linkage, PCs")

The bump at stage 45 = 50-5, corresponding a change from 6 to 5 clusters, might suggest 6 might be an appropriate number of clusters although that is not clear.

Cmd> print(format:"2.0f",groups,Clusters:vector(info$classes[,9]))
groups:
   (1)  1  1  1  1  2  2  2  2  2  2  2  2  2  2  2  2  3  3  3  3  3  3  3  3
   (22)  3  4  4  4  5  5  5  5  5  5  5  5  6  6  6  6  7  7  8  8  8  8  8  8
   (43)  9  9  9  9  10  10  10  10
Clusters: Principal components average linkage clusters
   (1)  1  1  9  1  2  2  2  2  2  2  2  2  2  2  4  4  4  4  4  4  4  4
   (22)  4  7  8  2  5  5  5  10  10  10  10  5  5  3  3  6  6  6  6
   (43)  7  7  7  7  6  6  6  6

Cmd> print(format:"3.0f",ordertable(groups,info$classes,10))
MATRIX:

   C2  C4  C6 C10  C5  C7  C1  C3  C9  C8
G2  11  0  0  0  0  0  0  0  0  0
G3  0  7  0  0  0  0  0  0  0  0
G10  0  0  4  0  0  0  0  0  0  0
G5  0  0  0  4  3  0  0  0  0  0
G7  0  0  0  0  2  0  0  0  0  0
G9  0  0  0  0  0  4  0  0  0  0
G1  0  0  0  0  0  0  3  0  1  0
G8  0  0  3  0  0  0  0  2  0  0
G6  0  0  0  3  0  0  0  0  0  0
G4  1  0  0  0  0  1  0  0  0  1
Cluster Analysis in MacAnova

Cmd> print(format="3.0f", ordetable(groups, info$classes, 6))

MATRIX:

<table>
<thead>
<tr>
<th></th>
<th>C2</th>
<th>C4</th>
<th>C6</th>
<th>C5</th>
<th>C1</th>
<th>C3</th>
</tr>
</thead>
<tbody>
<tr>
<td>G2</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G3</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G10</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G5</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>G8</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>G7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G6</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G9</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G4</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Only two of 10 clusters coincide (3 and 9) with groups and 11 out of 12 cases in cluster 2 are in group 2. This does not do as well as complete linkage applied to the original data. There is one singleton, cluster 1. Principal components has not improved things with these data.

To see what is probably the best that might possibly be done. I computed the first 4 MANOVA canonical variables from these data and input them to cluster(). By design, these variables are the linear combinations of the original variables that best separate the known populations. Of course, this is not possible in any real situation because when you have pre-defined groups there is no need to do cluster analysis.

Cmd> groups <- factor(groups) # make sure groups is a factor
Cmd> manova("y=groups",silent:T)
Cmd> eigs <- releigen(SS[2,,],SS[3,,]) # relative eigen stuff
Cmd> z <- y %*% (eigs$vectors[,run(4)]) # compute canonical variables
Cmd> info <- cluster(z,nclust:20,keep:vector("classes","crit"),
standard:F) # don't standardize
Cluster Analysis in MacAnova

Cmd> `cluscritplot(info,N,values:T, \
title:"Criterion vs stage for ave. linkage, CanVars")`

Cmd> `cluscritplot(info,N,change:T, \
  title:"Change vs stage for ave. linkage, CanVars")`

Note a clear bump at stage 41 = 50-9 would suggests 10 as the right number of clusters, while another bump at stage 46 = 50 - 4 suggests these might be grouped in 5 “super clusters”.

Cmd> `print(format:"2.0f",groups,Clusters:vector(info$classes[,9]))`

groups:
(1) 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3
(22) 3 4 4 4 5 5 5 5 5 5 5 6 6 6 7 7 8 8 8 8 8
(43) 9 9 9 9 10 10 10 10
Clusters: Canonical variables average linkage clusters
(1) 1 1 1 1 2 2 2 2 2 2 2 2 2 2 6 6 6 6 6 6 6
(22) 6 3 3 3 4 4 4 4 4 4 4 4 4 8 8 8 10 10 5 5 5 5
(43) 7 7 7 7 9 9 9 9

Cmd> `print(format:"3.0f",ordertable(groups,info$classes,10))`

MATRX:

<table>
<thead>
<tr>
<th></th>
<th>C2</th>
<th>C4</th>
<th>C6</th>
<th>C5</th>
<th>C7</th>
<th>C9</th>
<th>C1</th>
<th>C3</th>
<th>C8</th>
<th>C10</th>
</tr>
</thead>
<tbody>
<tr>
<td>G2</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G5</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G3</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Remarkably, the 10 clusters selected exactly correspond to the original groups, numbered a different way. Clearly, using the right variables helps a lot.
Cluster Analysis in MacAnova

```r
Cmd> print(format: "3.0f", ordertable(groups, info$classes, 5))
```

**MATRIX:**

<table>
<thead>
<tr>
<th></th>
<th>C2</th>
<th>C4</th>
<th>C3</th>
<th>C5</th>
<th>C1</th>
</tr>
</thead>
<tbody>
<tr>
<td>G2</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G5</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G10</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>G1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>G4</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G3</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G7</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G9</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G6</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

"Super cluster" 2 consists of groups 2 and 3, 4 consists of groups 5, 6 and 7, 3 consists of groups 10, 3, and 4 and 5 and 6 are groups 8 and 1.

We do just as well with only 3 canonical variables (not shown), but worse with only 2.

```r
Cmd> info <- cluster(z[,run(2)], nclust: 20, \
keep: vector("classes", "crit"))
```

```r
Cmd> print(format: "2.0f", groups, Clusters: vector(info$classes[, 9]))
```

**groups:**

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(22)</th>
<th>(43)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>1 1</td>
<td>3 4</td>
<td>9 9</td>
</tr>
<tr>
<td>G2</td>
<td>2 2</td>
<td>4 4</td>
<td>9 9</td>
</tr>
<tr>
<td>G3</td>
<td>2 2</td>
<td>5 5</td>
<td>10 10</td>
</tr>
<tr>
<td>G4</td>
<td>2 2</td>
<td>5 5</td>
<td>10 10</td>
</tr>
<tr>
<td>G5</td>
<td>2 2</td>
<td>5 5</td>
<td>10 10</td>
</tr>
<tr>
<td>G6</td>
<td>2 2</td>
<td>5 5</td>
<td>10 10</td>
</tr>
<tr>
<td>G7</td>
<td>2 2</td>
<td>5 5</td>
<td>10 10</td>
</tr>
<tr>
<td>G8</td>
<td>2 2</td>
<td>5 5</td>
<td>10 10</td>
</tr>
<tr>
<td>G9</td>
<td>2 2</td>
<td>5 5</td>
<td>10 10</td>
</tr>
<tr>
<td>G10</td>
<td>2</td>
<td>5 5</td>
<td>10 10</td>
</tr>
</tbody>
</table>

**Clusters:**

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(22)</th>
<th>(43)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>1 1</td>
<td>3 7</td>
<td>6 6</td>
</tr>
<tr>
<td>G2</td>
<td>1 1</td>
<td>3 7</td>
<td>6 6</td>
</tr>
<tr>
<td>G3</td>
<td>1 1</td>
<td>3 7</td>
<td>6 6</td>
</tr>
<tr>
<td>G4</td>
<td>1 1</td>
<td>3 7</td>
<td>6 6</td>
</tr>
<tr>
<td>G5</td>
<td>1 1</td>
<td>3 7</td>
<td>6 6</td>
</tr>
<tr>
<td>G6</td>
<td>1 1</td>
<td>3 7</td>
<td>6 6</td>
</tr>
<tr>
<td>G7</td>
<td>1 1</td>
<td>3 7</td>
<td>6 6</td>
</tr>
<tr>
<td>G8</td>
<td>1 1</td>
<td>3 7</td>
<td>6 6</td>
</tr>
<tr>
<td>G9</td>
<td>1 1</td>
<td>3 7</td>
<td>6 6</td>
</tr>
<tr>
<td>G10</td>
<td>1</td>
<td>3 7</td>
<td>6 6</td>
</tr>
</tbody>
</table>

Only two clusters coincide with groups. There are no singletons.

We can gain some idea of how apparent the actual groups are by scatter plots of the first three canonical variables against each other:
Cluster Analysis in MacAnova

Cmd> plot(z[,1],z[,2],symbols:groups,
   title:"Scatter plot of MANOVA can vars 1 and 2",
   xlab:"MANOVA Canonical Variable 1",ylab:"Canonical Var 2")
Cmd> plot(z[,1],z[,3],symbols:groups,
   title:"Scatter plot of MANOVA can vars 1 and 3",
   xlab:"MANOVA Canonical Variable 1",ylab:"Canonical Var 3")
Cmd> plot(z[,2],z[,3],symbols:groups,
   title:"Scatter plot of MANOVA can vars 2 and 3",
   xlab:"MANOVA Canonical Variable 2",ylab:"Canonical Var 3")

Canonical variable 1 is primarily determined by the distance group 1 is from everything else, but also helps separate the other groups.