This was a closed book two-hour exam. Students were allowed two 8.5” by 11” sheet of notes. A book of tables was provided. This included standard normal probabilities, t distribution critical values, χ^2 distribution critical values, and F distribution critical values. Most of the MacAnova output was in a separate exhibit booklet.

1. During the 1996 presidential campaign, one of the Republican candidates based his campaign on a proposal for a “flat tax” (income tax with just one rate). A polling organization interviewed random samples of Republicans in Delaware and Arizona, both on the same day. In both states those interviewed were asked the identical question “Do you favor the flat tax proposal?”. Out of 260 Delaware Republicans interviewed, 90 favored the flat tax and 170 did not, while out of 140 Arizona Republicans interviewed, 62 favored the flat tax and 78 did not.

(a) Is there evidence the actual proportion of Delaware Republicans favoring the flat tax differs from the actual proportion of Arizona Republicans that favor it? Use $\alpha = .05$.

(b) Find a 95% confidence interval for the difference between Delaware and Arizona in the actual proportions of Republicans favoring the flat tax.

(c) Suppose now the actual proportion of Arizona Republicans who favor the flat tax is .45. How many Arizona Republicans must be sampled for the 95% margin of error in estimating this proportion to be 4% (.04)?

2. University researchers put 12 SafeHouse brand radon detectors in a chamber that exposed them to 105 picocuries per liter of radon. The readings were as follows:

<table>
<thead>
<tr>
<th>91.9</th>
<th>97.8</th>
<th>111.4</th>
<th>122.3</th>
<th>105.4</th>
<th>95.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>103.8</td>
<td>99.6</td>
<td>96.6</td>
<td>119.3</td>
<td>104.8</td>
<td>101.7</td>
</tr>
</tbody>
</table>

Exhibit 2 (Problem 2)

Cmd> radon <- vector(91.9, 97.8, 111.4, 122.3, 105.4, 95, 103.8, 99.6, 96.6, 119.3, 104.8, 101.7)

Cmd> sum(radon)
(1) 1249.6

Cmd> sum((radon - sum(radon)/12)^2)
(1) 971.43

(a) Is there convincing evidence that SafeHouse brand radon detectors are biased, that is their mean measurement differs from 105? Use $\alpha = .05$. Be sure to state the null and alternative hypotheses.

(b) Find a 95% confidence interval for the mean measurement of SafeHouse brand radon detectors when exposed to 105 picocuries per liter of radon.
3. Two astronomers, H and M measured the corrected red shift (km/sec) of 10 type SO galaxies. Here is a table of their results:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astronomer</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>1507</td>
<td>858</td>
<td>1205</td>
<td>832</td>
<td>2206</td>
<td>924</td>
<td>4607</td>
<td>2592</td>
<td>1930</td>
<td>5378</td>
</tr>
<tr>
<td>M</td>
<td>1471</td>
<td>778</td>
<td>1155</td>
<td>915</td>
<td>2194</td>
<td>1033</td>
<td>4430</td>
<td>2670</td>
<td>2050</td>
<td>5278</td>
</tr>
<tr>
<td>Difference d</td>
<td>36</td>
<td>80</td>
<td>50</td>
<td>-83</td>
<td>12</td>
<td>-109</td>
<td>177</td>
<td>-78</td>
<td>-120</td>
<td>100</td>
</tr>
</tbody>
</table>

Exhibit 3

Cmd> x1 <- vector(1507,858,1205,832,2206,924,4607,2592,1930,5378)
Cmd> x2 <- vector(1471,778,1155,915,2194,1033,4430,2670,2050,5278)
Cmd> d <- x1 - x2
Cmd> vector(sum(x1),sum(x2),sum(d))
 (1) 22039 21974 65
Cmd> xbar1 <- describe(x1,mean:T); xbar2 <- describe(x2,mean:T)
Cmd> write(vector(sum((x1 - xbar1)^2),sum((x2 - xbar2)^2)))
VECTOR:
 (1) 22890618.9 21349016.4
Cmd> write(sum((x1 - xbar1)*(x2 - xbar2)))
NUMBER:
 (1) 22074567.4
Cmd> dbar <- describe(d,mean:T)
Cmd> write(sum((d - dbar)^2))
NUMBER:
 (1) 90500.5

(a) Is this a paired or a two sample comparison? Explain your answer.

For the remainder of this question, your answers must be consistent with your answer to (a).

(b) H was a fairly inexperienced graduate student and M was an experienced professor. Is there evidence at the 10% level of significance that H’s measurements tended to be systematically greater than those of M.

(c) Find a 95% confidence interval for the difference between the average of measurements by H and the average of measurements by M?
4. The Cheese data set in the Appendix to *IPS* contains data relating the taste of cheese to the concentrations of three chemicals, acetic acid, hydrogen sulfide and lactic acid. The variables are

- **taste**: Taste score, an average of scores from several tasters
- **acetic**: natural log of the concentration of acetic acid
- **h2s**: natural log of the concentration of hydrogen sulfide
- **lactic**: concentration of lactic acid

There are 30 samples of cheese, all manufactured by the same process.

Exhibit 4

```cmd>
readdata("") # file cheese.txt
# File cheese.txt from publisher's web site
# Data for Appendix data set CHEESE, p. D-1 of IPS4
# Col. 1: id = case number (1-30)
# Col. 2: taste = taste score combined from several tasters
# Col. 3: acetic = log acetic acid concentration
# Col. 4: h2s = log hydrogen sulfide concentration
# Col. 5: lactic = lactic acid concentration
Read from file "TP1:Stat5021:Stat5021S03:Data:Appendix:cheese.txt"
Column 1 saved as REAL vector id
Column 2 saved as REAL vector taste
Column 3 saved as REAL vector acetic
Column 4 saved as REAL vector h2s
Column 5 saved as REAL vector lactic
```

```cmd>
regress("taste=acetic+h2s+lactic",pval:T)
Model used is taste=acetic+h2s+lactic

<table>
<thead>
<tr>
<th>Coef</th>
<th>StdErr</th>
<th>t</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSTANT</td>
<td>-28.877</td>
<td>19.735</td>
<td>-1.4632</td>
</tr>
<tr>
<td>acetic</td>
<td>0.32774</td>
<td>4.4598</td>
<td>0.073489</td>
</tr>
<tr>
<td>h2s</td>
<td>3.9118</td>
<td>1.2484</td>
<td>3.1334</td>
</tr>
<tr>
<td>lactic</td>
<td>19.671</td>
<td>8.6291</td>
<td>2.2796</td>
</tr>
</tbody>
</table>

N: 30, MSE: 102.63, DF: 26, R^2: 0.65177
Regression F(3,26): 16.221, P-value: 3.8102e-06, Durbin-Watson: 1.5751
To see the ANOVA table type 'anova()'
```

```cmd>
SS
CONSTANT  acetic  h2s  lactic  ERROR1
18057     2314.1  2147  533.32  2668.4
```

```cmd>
DF
CONSTANT  acetic  h2s  lactic  ERROR1
1         1       1     1      26
```

```cmd>
regpred(vector(6,8,1.6),estimate:F)# acetic=6,h2s=8,lactic=1.6
component: SEest
(1)   2.7302
component: SEpred
(1)   10.492
```
(a) What is the null hypothesis H_0 tested by $F = 16.221$ (underlined in `regress()` output)? What is the alternative hypothesis H_a? What critical value should be used for a test when $\alpha = .01$?

(b) Find a 95% confidence interval for the coefficient of `lactic`.

(c) Estimate with a 95% confidence interval the mean taste score when log acetic acid concentration is 6, log hydrogen sulfide concentration is 8, and lactic acid concentration is 1.6.

5. An experiment was conducted to compare birch plywood made with 6 different resin glues, numbered here 1 through 6. 10 pieces of plywood made with each glue were tested and the shear strength (PSI = pounds per square inch) measured. In the following table are the values of PSI for each of the 60 pieces of plywood.

<table>
<thead>
<tr>
<th>Glue</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean shear strength</td>
<td>502</td>
<td>470</td>
<td>500</td>
<td>520</td>
<td>551</td>
<td>620</td>
</tr>
<tr>
<td>Mean shear strength</td>
<td>458</td>
<td>483</td>
<td>502</td>
<td>510</td>
<td>556</td>
<td>643</td>
</tr>
<tr>
<td>Mean shear strength</td>
<td>445</td>
<td>478</td>
<td>480</td>
<td>582</td>
<td>592</td>
<td>589</td>
</tr>
<tr>
<td>Mean shear strength</td>
<td>479</td>
<td>493</td>
<td>519</td>
<td>530</td>
<td>562</td>
<td>576</td>
</tr>
<tr>
<td>Mean shear strength</td>
<td>468</td>
<td>498</td>
<td>459</td>
<td>495</td>
<td>566</td>
<td>576</td>
</tr>
<tr>
<td>Mean shear strength</td>
<td>463</td>
<td>466</td>
<td>499</td>
<td>543</td>
<td>558</td>
<td>581</td>
</tr>
<tr>
<td>Mean shear strength</td>
<td>517</td>
<td>492</td>
<td>500</td>
<td>513</td>
<td>573</td>
<td>606</td>
</tr>
<tr>
<td>Mean shear strength</td>
<td>494</td>
<td>479</td>
<td>509</td>
<td>540</td>
<td>557</td>
<td>633</td>
</tr>
<tr>
<td>Mean shear strength</td>
<td>499</td>
<td>534</td>
<td>528</td>
<td>523</td>
<td>633</td>
<td>562</td>
</tr>
<tr>
<td>Mean shear strength</td>
<td>463</td>
<td>531</td>
<td>538</td>
<td>532</td>
<td>638</td>
<td>579</td>
</tr>
</tbody>
</table>

Exhibit 5

```r
cmd> psi <- vector(502, 458, 445, 479, 468, 463, 517, 494, 499, 463, 
 470, 483, 478, 493, 498, 466, 492, 479, 534, 531, 
500, 502, 480, 519, 459, 499, 500, 509, 528, 538, 
520, 510, 582, 530, 495, 543, 513, 540, 523, 532, 
551, 556, 592, 562, 566, 558, 573, 557, 633, 638, 620, 
643, 589, 576, 576, 581, 606, 633, 562, 579)

cmd> glue <- factor(vector(rep(1,10), rep(2,10), rep(3,10), 
  rep(4,10), rep(5,10), rep(6,10)))

cmd> print(format:"1.0f", glue)
glue:
(1) 1 1 1 1 1 1 1 1 1 1
(31) 4 4 4 4 4 4 4 4 4 4
Cmd> `tabs(psi,glue,mean:T,count:T,stddev:T)`

<table>
<thead>
<tr>
<th></th>
<th>(1) 478.8</th>
<th>492.4</th>
<th>503.4</th>
<th>528.8</th>
<th>578.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(6)</td>
<td>596.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

component: `count`

<table>
<thead>
<tr>
<th></th>
<th>(1) 10</th>
<th>10</th>
<th>10</th>
<th>10</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(6)</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

component: `stddev`

<table>
<thead>
<tr>
<th></th>
<th>(1) 23.16</th>
<th>23.396</th>
<th>22.707</th>
<th>23.63</th>
<th>32.139</th>
</tr>
</thead>
<tbody>
<tr>
<td>(6)</td>
<td>27.428</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cmd> `anova("psi=glue")`

Model used is `psi=glue`

<table>
<thead>
<tr>
<th></th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSTANT</td>
<td>1</td>
<td>16838104</td>
<td>16838104</td>
</tr>
<tr>
<td>glue</td>
<td>5</td>
<td>115280</td>
<td>23056.1</td>
</tr>
<tr>
<td>ERROR1</td>
<td>54</td>
<td>35486.9</td>
<td>657.165</td>
</tr>
</tbody>
</table>

(a) On the basis of these data, can you statistically conclude that the six glues differ with respect to the PSI of plywood made using them? Use $\alpha = .05$. Be sure to give the critical value used.

(b) Glues 1 and 3 were made by different manufacturers and were intended to have the same properties. Is there statistical evidence at the 5% level of significance that their mean strengths were not the same?

6.

A die is a cube whose faces have 1, 2, 3, 4, 5, or 6 spots with 6 opposite 1, 5 opposite 2, and 4 opposite 3. When a fair die is rolled, each face should have equal probability $1/6$ of being on top and hence each number should have probability $1/6$. A particular die has its spots deeply cut into the surface. It is conjectured that it is biased in favor of higher numbers, because lower numbers have less material cut away and are thus more likely to be on the bottom. If the die is not biased, a 5 or a 6 should occur with probability $p = 2/6 = 1/3$. If the die is biased as conjectured then $p > 1/3$.

The following experiment procedure is proposed to examine this conjecture.

The die is to be rolled independently 7 times and the number of times $(X)$ a 5 or a 6 is on top will be counted. If $X \geq 5$ (that is, at least five 5’s or 6’s appeared out of 7 trials), the die will be considered to be biased.

Here is an table of the probability distributions of $X$ when $p = 1/3$ and when $p = 3/4$.

<table>
<thead>
<tr>
<th>$X$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p = 1/3$</td>
<td>0.0585</td>
<td>0.2048</td>
<td>0.3073</td>
<td>0.2561</td>
<td>0.1280</td>
<td>0.0384</td>
<td>0.0064</td>
<td>0.0005</td>
</tr>
<tr>
<td>$p = 3/4$</td>
<td>0.0001</td>
<td>0.0013</td>
<td>0.0115</td>
<td>0.0577</td>
<td>0.1730</td>
<td>0.3115</td>
<td>0.3115</td>
<td>0.1335</td>
</tr>
</tbody>
</table>
(a) The procedure described can be considered to be a test of a particular null hypothesis $H_0$ against a particular alternative hypothesis $H_a$. State $H_0$ and $H_a$.

(b) Find the exact value of the significance level $\alpha$ for this test. Do not use a normal approximation.

(c) Suppose in fact that $p = 3/4$. Find the exact value of $\beta$ for this test. Do not use a normal approximation.