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Abstract Let T, = (;;) be an n X n random matrix such that its distribution is the
normalized Haar measure on the orthogonal group O(n). Let also W, := maxi<; j<n [Vij]-
We obtain the limiting distribution and a strong limit theorem on W,,. A tool has been
developed to prove these results. It says that up to n/ (logn)? columns of T, can be
approximated simultaneously by those of some Y, = (y;;) in which y;; are independent
standard normals. Similar results are derived also for the unitary group U(n), the special

orthogonal group SO(n), and the special unitary group SU(n).

1 Introduction

To study the generality of mutual incoherence of two orthogonal bases, Donoho and Huo
[14] studied a behavior of the largest entry in a random orthogonal matrix. Their result is
stated in italics as follows:

Let T = (v;;) denote a real n X n orthogonal matriz, uniformly distributed on the or-

thogonal group O(n). Let W, = maxi<; j<n |7ij|- Then,

P {Wn > 24/log(n)/n(1+ 6)} —0 (1.1)

as n — oo for any € > 0.

This result says roughly that the order of W,,, measured in probability, is at most
ZW. Their simulations also suggest that a normalized W), converges to some prob-
ability distribution.

In this paper, for a sequence of such W,,’s, we find out its almost sure behavior. More-
over, we prove that the distribution of W), converges weakly to an extreme distribution.
Further, we show that the similar results also hold for unitary groups U(n), special orthog-

onal groups SO(n), and the special unitary group SU(n).
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First, let us review the definitions of the groups mentioned above. The orthogonal
group O(n) and the unitary group U(n) are the sets of all n x n real orthogonal matrices
and complex unitary matrices, respectively. The special orthogonal group SO(n) and the
special unitary group SU(n) are the subgroups of O(n) and U(n) such that every matrix
in these subgroups has determinant equal to 1. All of the above groups are equipped with
the natural matrix product. For details, see [19] and [35].

For any compact group G with multiplication ”-”, for example, O(n), U(n), SO(n) and
SU(n), there exists an unique Haar-invariant probability measure y, that is, u(g; - C - g2) =
u(C) for any measurable subset C C G, g1 € G and g9 € G. We call such p a normalized
Haar measure, or normalized Haar distribution, when G is equal to one of the above four
groups. To check these details readers are referred to [16], [17] or [30].

Now we state our results. For any n x n matrix I'y, = (7;;), we define

W = 1.2
= max |yl (1.2)

As usual, log z is the natural logarithm of a positive number z.
The result in (1.1) says roughly that the magnitude of W, is at most 24/(logn)/n. The

following gives the property of W, in terms of convergence in probability.

PROPOSITION 1 (i) Suppose 'y, follows the normalized Haar measure on O(n) or SO(n).
Then \/WWn converges to 2 in probability as n — oo;

(i) if Ty, follows the normalized Haar measure on U(n) or SU(n), then /n/lognWy,
converges to \/2 in probability as n — cc.

This result is stronger than (1.1) by the definition of convergence in probability.

We next look at the almost sure behavior for a sequence of such W,’s. To obtain an
almost behavior, a structure of the sequence {W,,; n > 1} has to be assumed. Inspired by
a common procedure for simulating a sequence of Haar distributed matrices in statistical
programs, we assume that {W,; n > 1} is an independent sequence. A result is obtained

as follows:

THEOREM 1 Let {T';;; n > 1} be a sequence of independent random matrices. Let also
Wy, be as in (1.2). If, for each n > 1, T, follows the normalized Haar distribution on the
orthogonal group O(n) or the special orthogonal group SO(n), then

() liminf

im i n W, =2 a.s. and limsup W =6 a.s.;
n—oo \/ logn n—»00 \/
(ii) the sequence {v/n/lognWy,,n > 2} is dense in [2,v/6] a.s.



In contrast to Proposition 1 the quantity WWM under the independence as-
sumption, does not concentrate on any particular value in the long run. Instead, the
sequence {/n/lognW,,,n > 2} visits every neighborhood whose center is in [2,+/6] almost
surely. This has an analogy with the classical Hartman-Wintner-Strassen’s Law of Iter-
ated Logarithm: let {&;; ¢ > 1} be a sequence of i.i.d. random variables with mean zero,
variance one and partial sums S, = > i ; &. Let also d,, = \/W. Then S,/d,
converges to zero in probability as n goes to infinity. However, limsup,, Sp,/d, = 1 a.s., and
liminf, Sp/dn = —1 a.s. and {Sp/dn; n > 3} is dense in [—1,1] almost surely. See, e.g.,
section 7.9 from [15] for the real case and section 8.2 from [28] for extensions to random
variables taking values in Banach spaces.

The heuristic for deriving Theorem 1 comes from the maximum of independent standard
normals. One can check easily that the above result also holds if \/nW, is replaced by
W, = max; <;<pn2 [§n,i], where {&n 551 < i < n?,n > 1} is a triangular array of i.i.d. standard
normals.

The next result is about the unitary groups.

THEOREM 2 Suppose that {T'y; n > 1} is a sequence of independent random matrices.
Let W, be as in (1.2). If, for each n > 1, T, follows the normalized Haar distribution on
the unitary group U(n) or the special unitary group SU(n), then

(1) hmlnfM Wn—\/ias and lim sup Wn—\/gas
n—00 Og’l’b n—oo
(73) the sequence {\/n/lognW,,n > 2} is dense in [\/_,\/_] a.s.

The key difference of proving Theorems 1 and 2 is that normalized entries of I';, in Theorem 2
asymptotically follow the exponential distribution with parameter one. But the counterparts
in Theorem 1 follow asymptotically the standard normal distribution. This distinction is
also reflected in the following two results on limiting distributions. We first consider the

case that I'), is an Haar orthogonal invariant matrix.

THEOREM 3 Suppose I';, has the normalized Haar distribution on the orthogonal group
O(n) or the special orthogonal group SO(n). Then

lim P(nW? — 4logn + log(logn) < z) = exp(—Ke %/?)

n—oo
for any x € R, where K = /1/2m.

Again, the heuristic of figuring out the above result is thinking of v/nW,, as the maximum

of the absolute values of n2 i.i.d. standard normals. Then the above conclusion is drawn



quickly. Actually, there are similar results for i.i.d. normals in the literature. For instance,
on p. 377 from [8] the following result is stated: Let W] = maxi<;<p &, where {{;;1 <4 <

n} are i.i.d. standard normals. Then
P(W!" < (2logn — log(log n) — log(4w) + 2z)/?) — e** (1.3)

as n — oo for any z € R This can also be seen in Theorem 1.5.3 on p.14 from [27]. Our

Theorem 3 can be rewritten in the following form:

P(/nW,, < (4logn — log(logn) — log(27) + 22)Y/?) » e™¢ ", z € R, (1.4)
as n — 0o. One can see clearly that W), and /nW,, share the same scale and the same lim-
iting distribution. The only difference is the normalized constant: — log(8) corresponding
to W, in (1.3) and —log(27) in (1.4). This is because there is no absolute value sign in
the definition of W,]. But there is such sign in that of W,,.

For the unitary group and its subgroup SU(n), we have the following conclusion:

THEOREM 4 Suppose I'y, follows the normalized Haar distribution on the unitary group
U(n) or the special unitary group SU(n). Then,

lim P(nW? —2logn < z) = exp(—e™%)

n—oo

forany z € R

Historically, Genedenko [18] studied the limiting behavior of U, := maxi<;<p &, where
{&;i1=1,2,---,} is a sequence of i.i.d. random variables. He actually obtained the suffi-
cient and necessary conditions for different limiting distributions of U,,. A recent treatment
in this direction can be found in [33]. When the &;’s are weakly dependent, a good way to
study U, is the Chen-Stein Poisson approximation method. See, e.g., Arratia, Goldstein,
and Gordon [3] and Jiang [21] for details and applications in biology in Jiang [22].

The primary concern of Random Matrix Theory is the eigenvalues of different random
matrices; see [29] for a book-length treatment. However, Diaconis, Eaton and Lauritzen
[11], and D’Aristotile, Diaconis and Newman [7] studied the entries of random orthogonal
matrices based on statistical problems. As mentioned earlier, this paper investigates the
entries of Haar invariant matrices based on an image analysis problem initially studied by
Donoho and Huo [14]. On the other hand, the maxima of the entries of sample correlation
matrices is treated by Jiang [23] due to a statistical testing problem. It seems that the

study of entries of random matrices is also interesting.



The proofs of the above theorems rely on the following approximation theorems. The
first one is about Haar measures on the orthogonal groups. It describes how an Haar
invariant orthogonal matrix is similar to a matrix with i.i.d. standard normals as entries.
Such a relationship is characterized by measuring their component-wise differences. It is
also the rigorous mathematical implementation of our heuristics of deriving Theorems 1

and 3 as mentioned earlier.

THEOREM 5 For eachn > 2, there exists matrices 'y, = (Vij)1<i j<n and Yy, = (¥ij)1<i,j<n
whose 2n? elements are random variables defined on the same probability space such that
(i) the law of T, is the normalized Haar measure on the orthogonal group Op;

(1) {yij; 1 < 1,5 < n} are i.i.d. random variables with the standard normal distribution,

(i1i) set €n(m) = maxi<i<n,1<j<m [Vnyi; — yizl for m =1,2,--- ,n. Then
—nr2/16 1 —s7/2 1 7t2 o
Plen(m) 2 rs +26) < dme™0 04 Smn | e P4 2\ 3ty vm)

for any r € (0,1/4), s >0, t>0, and m < (r/2)n.

The idea behind the proof of the above theorem is as follows: Let Y, = (y;;) beannxn
matrix where the y;;’s are independent standard normals. Then Y, /y/n has roughly the
same law as that of I';, as in Theorem 5. Why? First, it is orthogonal invariant. Second, it
is almost orthogonal: the length of the first column of Y, /v/n is (337, v /n)'/? which goes
to one rapidly (the convergence rate is governed by large deviations); the inner product of
the first and second columns of Y, /+/n is equal to (1/y/n) - (31 yi1yi2/+/n), which goes
to zero in the order of o(1/4/n) by the classical central limit theorem. Such heuristic is
rigorously executed by using the Gram-Schmidt algorithm on Y,,, which generates an Haar
invariant orthogonal matrix.

Recall ¢ = v/—1. The next approximation theorem is about the unitary group.

THEOREM 6 For each n > 2, there ezists two n x n matrices 'y, = (7pq) and Y, =
((mpq + 1Ypq) /V'2) such that vp,’s, Tpg’s and ypq’s are random variables defined on the same
probability space, and
(i) the law of Ty, is the normalized Haar measure on the unitary group U(n);
(i) the 2n? random variables {Tpq, Ypq; 1 < p,q < n} are independent standard normals;
(ii3) set en(m) = maxi<p<n,1<q<m [V Ypg — (Tpg + 1Ypg) /V2| for m =1,2,--- ,n. Then
-n
P(en(m) > rs+2t) < dme " 1® 4 mne*" + 6an (1 + 12(mt—jt\/ﬁ)>
for any r € (0,1/4), s >0, t>0, and m < (r/2)n.



One curious question is: what is the largest order of m,, such that €,(m,) goes to zero

in probability? By choosing special values of 7, s,t and m,, we have

COROLLARY 1 Let m,, = [n/(logn)?]. Let also e,(my) be as in Theorem 5 or Theorem

6. Then en(my) — 0 in probability as n — oo.

Recently, Jiang [25] proved that the maximum order of m,, is o(n/logn) when IT';, is an
orthogonal matrix generated by performing the Gram-Schmidt algorithm on the columns
of Y,,, where the entries of Y,, are independent standard normals.

We next make some remarks about Theorems 5 and 6.

Let 'y, = (7ij) be a random orthogonal matrix which is uniformly distributed on O(n).
Borel [4] showed that

1 X
P(vny1 < z) — 2—/ e P2 gt
T

—00
as n — oo. He obtained this result in studying “Equivalence of Ensembles” in statistical
mechanics. Later, D’Aristotle, Diaconis, Eaton, Freedman, Lauritzen and Newman have
extended this result and applied it to some statistical problems; see [7], [11] and [13]. In
particular, Diaconis, Lauritzen and Eaton [11] showed that the variation distance between
the joint distribution of the entries of the upper-left &, x k, block of \/nI';, and that of k,%
independent standard normals converges to zero provided k, = o(n'/3) (the largest order
of k,, such that the variation distance goes to zero is an open problem, see section 6.3 from
[10]; it has been solved recently by Jiang [24]: the largest order is o(n'/?)).

Our Theorems 5 and 6 study the relationship between the above I';, and Y,,, where Y,
is a matrix with independent standard normals as entries. Our results show that the largest
difference between entries of the first m columns of T';, and the corresponding entries of Y,
converges to zero in probability when m = m,, = O(n/(logn)?). This provides another way
to characterize the relationship between I';, and Y.

There are some other studies on the entries of Haar invariant matrices. Pickrell [32],
Olshanky and Vershik [31], and Borodin and Olshansky [5] have studied entries of matrices
in terms of conjugation by random unitary matrices.

We now list some other recent results about Haar measures on some classical groups.
Diaconis and Evans [12] proved a functional central limit theorem of eigenvalues of Haar
distributed random matrices. Also, Johansson [26] obtained a result on the speed that the
traces of Haar distributed random matrices converge in distribution to the standard normal

distribution.



Finally, we give the outline of this paper. The proofs of Proposition 1, Theorems 1, 2,
3 and 4, and Corollary 1 are given in Section 2. Theorems 5 and 6 are given in Section 3.

In Section 4, some known results are listed for proofs in previous sections.

2 Proofs of Theorems on Maxima of Entries

Let C be the set of all complex numbers. For z = z + iy € C, as usual, |z| = /22 + y2.
The notation ||v|| is the Euclidian norm for a vector v € C*. For a p X ¢ matrix M = (m;;),
we use the following notation: |M]| := max{|m;;|,1 < ¢ < p,1 < j < g}. For a random
vector X, its probability distribution is denoted by £(X). The standard normal distribution
is denoted by N(0,1).

To prove the Theorems on maxima of entries, we accept, for now, Theorems 5 and 6.
They will be proved later in Section 3. Theorems 1, 2, 3 and 4 are proved first. Then we
prove Corollary 1 and Proposition 1. There is no circular reasoning in this process.

The following lemma, tells us that we only need to work on the Haar measure on O(n)

or U(n) in order to obtain conclusions for SO(n) or SU(n).

LEMMA 2.1 Let p1, pa, v1 and vy be the normalized Haar measures on O(n), SO(n), U(n)
and SU(n), respectively. We have

(@) (T €O0M);|T| <) = p2(T € SO(); T < 2);
(i) v (T € Un); 0| <) = va(T" € SU(n); T < )

for any t > 0.

Proof. (i) Let K = O(n), G = {e,e'} and H = SO(n), where e = diag(1,1,--- ,1) and e’ =
diag(—1,1,1,--- ,1). It is easy to check that both G and H are closed subgroups of K, and H
is a normal subgroup of K. Further, K = GH := {gh; g€ Gand h € H}, GNH = {e} and
K C R". Let p3 be the normalized Haar measure on G, that is, us({e}) = us({e'}) = 1/2.
Then by Corollary 7.6.2 on p. 144 from [36],

/ £ (k) (k) / / £(gh) 3 (dg) sz (dh) (2.5)

for any px-integrable real function f(z) defined on K. Choose f(z) = I{|z| <t}, z € K
and t > 0. Note that |gh|| = ||h| for any g € G and h € H. Then (i) follows.
(ii) Similarly, let K = U(n), G = {diag(e’,1,1,--- ,1); 8 € [0,27)} and H = SU(n).

Then all the remaining arguments in (i) are valid here. So (ii) is proved. [ |



Proof of Theorem 1. By Lemma 2.1 and the independence assumption about the
W,’s, we only need to prove the result about O(n).
We claim that

lim sup ILWnS\/f_i a.s. and liminf, [— Wp >2 a.s. (2.6)
\ logn

n—oo n—0o0 ogn

and

P(\/n/lognW, € (a,b) i.0.) =1 (2.7)

for any (a,b) C (2,v6).

Suppose (2.6) and (2.7) are true. Then (2.7) implies that {\/n/lognW,; n > 2} is
dense in [2,v/6] a.s. So (ii) is valid. Tt follows from (ii) that (2.6) still holds if the two
inequality signs are reversed respectively. Then (i) follows. Now we prove the two claims.

The proof of the lower bound in (2.6). For any a € (0,1), set b, = 2(1—a)+/logn. Then,
by Theorem 5, there exist T'y, = (71,79, ,¥,) and Y = (y1,¥2,- - ,¥n) = (i) for which

{yij;1 < 4,5 < n} are i.i.d. random variables with the standard normal distribution and

Theorem 5 holds. Recall Wy, = maxi<j<n ||, and || - || is a norm. By the definition of
en(m)
I — 1l < 1= lyqlll < . .
e [Vl = max Iyl < a1Vl = Iyl < eam) @8)

It follows that

P(Wy < by/v/n) < P(lgljg);n Ivry;ll < bn) < P(IYnmll < bn + €n(m)) (2.9)
for any 1 < m < n, where Yy, := (y1,¥2, "+ ,¥m)- Now, in Theorem 5, choose m =

mn = [n/(ogn)?], 7 = (logn)~", s = (logn)(logyn)~/? and t = \/(logn)/log, n, where
logy n := log(logn). We have that
P(en(m) > 3+/(logn)/logy n)

1 2 1 3\ —n/2
S 4'n/ . eXp —I— 3”2 . exp — ( Og n) _|_ 377/2 1 + ( Og n)
2logyn 6n logy n

"~
16(log n)?
for sufficiently large n, where we also used the facts that 1/s <1, 1/t < 1 and 3(m++/n) <

6n/(logn)? for n large enough. The last term above is O(exp(—(logn)?)). Therefore we

have

P(en(m) > 3v/(logn)/log,n) = O(e~ (8 ")3/2) (2.10)



as n — o0o. Recall b, = (2 — 2a)+/logn. Then by (2.9),

P(Wy, < bn/v/n)

P(|Ynm| < bn + 3\/(log n)/(logyn)) + P(ey(m) > 34/ (logn)/ log, n)
P([Ynmll < b,) + O(e08™*?),

IN

IA

as n — oo, where b, = (2 — a)y/logn. By the second inequality of Lemma 4.1, we have
that P(y11 > b)) < exp(—(2 — @)?(logn)/2) as n is sufficiently large. It follows from

independence that
P(IYnmll <) = (1 =2P(y1,1 > 8,))"™ < exp(—2nmpP(y11 > b),)) < exp(—n)

for sufficiently large n, where C is a positive constant depending on « only. Also, the fact

that 1 + 2 < e” for any = € R is used in the first inequality. In conclusion,

P(Wy, < bn/v/n) = Oe 108™°")

as n — 0o, This implies >, ~; P(W,, < b,/+/n) < co. By the Borel-Cantelli lemma,

W, >2(1-a) a.s.

lim inf
n—00 logn

The lower bound in (2.6) is proved since « € (0,1) in the above inequality is arbitrary.
The proof of the upper bound in (2.6). For any € € (0,1), set h, = (v/6 + ¢)1/(logn)/n.

Recall ', = (7;;) follows the normalized Haar distribution on O(n). We know that £L(vy;;) =

L&, {%)*1/2) for any 1 < i,j5 < n, where §,1 < ¢ < n are independent standard

normals. Then

P(Wy>hy) < n?P(l&] > k(> €)Y
=1

AN

2P(l6r] > haV'n — 023 ) 4 n?P(3 €2 <n—n?3).  (2.11)

Take X; = &7 — 1, ap = n~ /3, A = (=1,1)° and tp = 1/4 in (ii) of Lemma 4.2. Then
Eexp(tpX1) < oo and

PO & <n-n??)<P <| S -1 > n2/3> <e (2.12)
i=1

for n large enough. By the second inequality of Lemma 4.1, since h,v/n —n?/3 > 1 as n is
sufficiently large,

20 _ 2/3
2P(|&1] > hnV/n —n2/3 ) < n%exp (—M) = O(n~(1+9) (2.13)

9



as n — oo. Therefore, by (2.11), (2.12) and (2.13), >_,.~; P(Wy, > hy) < co. By the Borel-
Cantelli lemma, limsup,,_,, \/n/lognW, < V6 +e, a.s. This implies the upper bound in
(2.6).

The proof of (2.7). Since the W,,’s are independent, by the Borel-Cantelli lemma, we
only need to show that

ZP(\/n/ lognW, € (a,b)) = o0 (2.14)

n>1

for any (a,b) C (2,v6). Replace h,, in (2.11) by by/(logn)/n. Note that h,(n — n?/3)1/2 ~
(V64 ¢)v/Iogn and by/(logn)/n-v/n — n2/3 ~ by/logn. By the same argument as in (2.11),

we obtain that

P(y/n/lognW, >b) < p(4-01)/2 (2.15)
as n is sufficiently large for fixed b < b. By (2.8), we use the fact Wy, > maxi<j<m [|v;]| to
obtain

P(y/n/lognW, >a) > P(|Yuml — en(m) > ar/logn)

Y

P(|Ynml > fn) — P(en(m) > 3+/(logn)/logsn), (2.16)

where f, = ay/logn + 34/(logn)/logyn and m = my as in (2.10). Now, by independence
and the first inequality of Lemma 4.1,

2fn e mn
P([Ynmll > fn)=1-(1-P >f)™m>1-(1- ——2" ¢ fn/2) (2.17
(¥l > o) =1 = (1= Pa| > o)™ 21 - (1= )
Sincel—z<e®forallz €eR 1—-(1—2z)">1—e "™ ~ nz if nz — 0. Remember a > 2.
It is easy to check that

4-a})/2 < 2mnfn

T V2r(1+ f2)

when n — oo for any a; > a. In summary,

n! e~ 122 50
P(I Yl > fa) > nlt=a0)/2 (2.18)

as n is sufficiently large. Therefore by (2.10), (2.16) and the above inequality

P(y/n/lognW, > a) > n(4—ai)/2

as n is sufficiently large for fixed a; > a. Combining this with (2.15), we obtain

P(y/n/lognW, € (a,b)) = P(y/n/lognW, >a)— P(y/n/lognW, > b)

> pl-ad)/2 _  @-8)/2 (=)

10



as n — oo for any interval (a1,b1) C (a,b) C (2,v6). Therefore, (2.14) follows. The entire

proof is complete. ]

The essence of the proof of Theorem 1 is Theorem 5. Theorem 6 bears some analogy
with Theorem 5. The following proof of Theorem 2, based on Theorem 6, is similar to that
of Theorem 1. The difference is that instead of working on normal random variables we
deal with the square of the norm of a random variable with the standard complex normal

distribution. Such a norm follows the exponential distribution with parameter one.

Proof of Theorem 2. By Lemma 2.1 and the independence assumption about the
W,.’s, we only need to prove the unitary group case.
As in the proof of Theorem 1, we only need to show that

V2 < liminf i W, < limsup , /éWn <V3 as. (2.19)

n—00 logn n—00

and

P(y/n/lognW, € (a,b) i.0.) =1 (2.20)
for any (a,b) C (v/2,/3). We claim that

P(y/n/lognW, < V2(1 — @) = O(e (8™ (2.21)

as n — oo for any a € (0,1), and

n? % < P(y/n/lognW, >b) < n?~Y% (2.22)

as n is sufficiently large for any b > /2 and 0 < b; < b < by. If the claims are true, the
lower bound in (2.19) follows from (2.21); the upper bound and (2.20) follow from (2.22).
Now let’s prove the claims.

Set b, = (1 — a)y/2logn for a € (0,1). Then, as in (2.9), we obtain that

P(Wn < bn/vn) < P(IYnmll < bn + €n(m)) (2.23)

for any 1 < m < n, where Y, is a matrix generated by the first m columns of the matrix
Y, = ((zpg+iypg)/V2), and the 2n? random variables {4, Ypg; 1 < p,q < n} arei.i.d. with
the standard normal distribution. Choosing m = m,, = [n/(logn)?], r = (logn)™!, s =

(logn)(logyn) /2 and t = /(logn)/log, n, we have by the same argument as in (2.10)
that

P(en(m) > 3v/(logn)/logyn) = O(e~(0g™*?)

11



as n — oo. It follows from (2.23) that
P(Wy < bu/v/n) < P(IY amll < ) + O(e™15™™) as n — oo, (2.24)

where b/, = (/2 — a)+/Togn. Observe that (z%, + v?,)/2 ~ Exp(1), the exponential distri-
bution with parameter 1. So P((z%, +4?,)/2 > t) = ¢ for t > 0. Using independence and
the fact that 1 4+ z < e® for all z € R, we have that

P([Ynmll < bp) = (1= P((z}, + y11)/2 > b2))™ < exp(—nme ") <e ™
for sufficiently large n. This together with (2.24) yields (2.21).

Now we prove the second inequality in (2.22). Recall T'), follows the normalized Haar
distribution on the unitary group, then each element of I';, has the same distribution as

(@11 +iy11) (1 <pen (@ +y2,))"1/2, where the z,’s and the y,,’s are as in (2.23). Therefore,

n

:1:2 + 2 b2 logn
P(y/n/lognW, >b) <n?P | 1 s g 2(551291 +yp1)
2 2n 1

Again, (22, + y?,)/2 ~ Exp(1), by using the same argument as in (2.11), we obtain the
second inequality in (2.22). The first inequality in (2.22) can be shown by using the same
spirit as deriving (2.18) and the fact that (2%, +%?;)/2 ~ Exp(1). We omit the details. B

To prove Theorem 3, we need the following lemma.

LEMMA 2.2 Suppose that a random matriz Ty follows the normalized Haar distribu-
tion on the orthogonal group O(n). Let T = (71,79, -+ ,¥n)- Define A; = {/n|v,ll >
Van, + 1z} forzx > —ap and j =1,2,--- ,n, where a, = 4logn —log(logn). For any integer
m > 1, we have that

lim ’erP(A1 NAsN---N Am) — (\/1/—27‘.6—30/2)711

n—oo

for any z € R

Proof. First, by Theorem 5, there exists an nxn random matrix Y = (y;;) = (y1,¥2,"** ,¥n)
such that {y;;; 1 <i,j <n} areii.d. standard Gaussian random variables and Theorem 5

holds. Choose 7 = n~'/4, s =n'/8 and ¢ = n~'/8 in Theorem 5. Then we have that

“1/4 n/2
P > 30 1/8) < 4 —nl/2/16 32 —nl/4/2 303 [ 1 n
(en(m) > 3n"7°) < 4ne + 3n%e + 3n +3(m+\/ﬁ)
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as n is sufficiently large, where we use the fact s=! < 1 and ¢t~ < n. It is easy to see that
the last term above is bounded by exp(—Cnl/ 4) for each n > 1 and some positive constant

C depending on m only. Therefore

1/8

Plea(m) > 3n/%) = o(e ") (2.25)

as n — oo. Now, set

df = Van + 7+ en(m), dy = Vg + 7 — en(m),
B ={ly;ll > d}} and B; = {lly;] > d;}

for j =1,2,--- ,m. It follows from (2.8) that [ly;| — en(m) < [v/nv;ll < lly;ll + en(m) for
j=12,--,m. Thus, {|ly;| > di} C 4; < {lyjll = d}, 7=1,2,-- ,m and

P(BfnBfN---nB}t) < PA1NAyN---NAp)
< P(B;NB;N---NB,). (2.26)

We next calculate P(B; N B, N---NB;). Set hy, = v/an + z —3n~'/8. Tt is easy to see that

By NB;N---NB,,
C (B; NBy; N---N B, N{ex(m) < 3n_1/8}> U {en(m) > 3n~1/8}
C {1?}i<nm Iyill > B} U {en(m) > 30715},
Therefore
P(Bf NB; N---NBy) < P(min |yl > hn) + Plen(m) > 30~ /%)

- 1<j<m

= P(max [ni| > hy)™ + P(en(m) > 30" '/%),  (2.27)
1<i<n

where {7;;1 < i < n} are i.i.d. random variables with the standard normal distribution.

We claim that

m

limsupn™P(By N B, N---NB

n—o0

) < ((2m) "V 2e72/2ym, (2.28)
By (2.25) and (2.27), to prove the claim, it suffices to show that
lim sup(nP(max 1] > ha))™ < ((2m)Y2e=2/2ym, (2.29)
n—00 1<i<n

Indeed, by Lemma 4.1, we have that

2 _ 1
n?P(|m| > hy) ~n”- me P2 \/T_we @/ (2.30)
n

13



asn — 0o. Given t € (0,1). By Taylor’s expansion, (1—%)" = 1—nt+(n(n—1)/2)t?(1-§)" 2
for some § such that 0 < § < t < 1. Therefore |(1 —¢)" — 1 + nt| < (nt)? for n > 2. Now
choose t = P(|m| > hy,). By (2.30)

1—ﬂ—PWMzhmw~%(%fﬂm>+OGJ

1
> _ . . > n N_—m/2
R ([ 2 ha) = nf1 — (1~ P(m] 2 ha)") ~ e

as n — 00. So

as n — 0o. Therefore (2.29) is validated since m is fixed, and the claim (2.28) then follows.
By the same arguments, we obtain

hmlnf{nmP BfnByN---n Bﬂ,’l)} > (4 /1/271'6756/2)7”

n—oo

This inequality together with (2.26) and (2.28) yields the desired result. [ |

Now we are ready to prove Theorem 3.
Proof of Theorem 3. As in the proof of Theorem 1, we only need to deal with the
orthogonal group case.

Let us continue the notation in Lemma 2.2. Recall (1.2) and T' = (y1,79,"-* ,75)- The

following equality is true:

W = max bl

So, to prove the theorem, we only need to show that

(max {vnv;l} >Van+z)—21-¢’, z€R, (2.31)

1<<

where J = 1/1/2x - ¢ %/2. Recall the definitions of A;’s in Lemma 2.2. Fix integer m > 1.
For any n > 2m, by the Bonferroni inequality (see, e.g., p. 22 from [15]), the probability in
(2.31) is bounded below and above respectively by

EP ZP "'(_1)2m+1 Z P(AjlmAjzm"'ﬂAhm)
1<j J1<j2<-<jam
(2.32)
and
n
ZP( ZPA ﬂA ( )2m+2 Z P(AjlmAhﬂ"'nAjzmH)-
j 1<J J1<g2<<jJoem+1
(2.33)

14



By assumption, I';; = (71,79, ,7,) satisfies the normalized Haar distribution. By right
multiplying I',, with permutation matrices (see, e.g., p.25 from [20] for the definition), we
know that the n random vectors «;,7s,- - ,7, are exchangeable. Thus the term in (2.32)

is equal to

n

nP(A;) — (2)P(A1 NAg) 4+ (_1)2m+1<

n

P(A; N Ay ---0 Agy).
Qm)(lﬂ 2NN Agp)

If i > 1 is fixed, we know that (})/n’ — 1/i! as n — co. Letting n — oo, by Lemma 2.2,

we obtain

2m i
. J*
S i+1
lim inf P(max {vallyl} = Van +2) > .E 1(—1) T
1=

1!

Applying the same argument to (2.33), we obtain

2m+1 ;

. i1 J’
lim sup P( max {v/n|lv,[I} > va, +2 ) < E (—1)”’1,—'. (2.34)

n—00 1<j<n im1 2:

Pass the limit m — 400 for the above two inequalities. Remember that the left hand sides
of the above two inequalities are irrelevant to m. Also, e/ = Y (—1)"J/i!. Then (2.31)

is concluded. [ |

Now we prove Theorem 4.
Proof of Theorem 4. Again, as in the proof of Theorem 2, it suffices to prove the theorem

for the unitary group case.
Let ap, = 2logn and A; = {v/n|v,|| > van +z }, j =1,2,--- ,n. We first claim that

lim n"P(A1NAaN---NAy) = (e ®)™ (2.35)

n—oo

for any integer m > 1. If (2.35) is true, by following the proof of Theorem 3 completely, the
proof of Theorem 4 is then terminated. Now we prove the claim.

Recall the proof of Lemma 2.2. Take a sequence of i.i.d. random variables {n,71,--- ,n,}
with 7 following the standard complez normal distribution. The corresponding of (2.25) is
still true by Theorem 6. Let h, = v/a, + = — 3n~1/8. Since |n1|? follows the exponential
distribution with parameter one we have n2P(|n1| > h,) = n2e™" ~ e™% as n — oo. Fol-

lowing the rest arguments in the proof of Lemma 2.2, we obtain (2.35). |

Now we prove Corollary 1.

Proof of Corollary 1. As usual, for a real number z, the notation [z] stands for the

15



largest integer less than or equal to . We next only focus on orthogonal case. The unitary
case can be done by the same arguments.
Now, choosing r = (logn) ', s = (logn)%*, ¢t = (logn) */* and m = m,, = [n/(logn)?]
in Theorem 5. Then by Theorem 5, we have that
P(en(my) > 3(logn)~/*)
< 4n-exp (—m) + 3n2(logn)~3/* - exp (—(log n)3/2/2)

—n/2
1 (logn) /2
2 1/4 2.
+3n*(logn) (1 + 3 Tnlogn) I+ vir

for sufficiently large n. The first two terms on the right hand side go to zero. The last term

is bounded by

(1og ny?/2) """
nd 1+ T < n? - exp(—(logn)>?/9)
n

as n is sufficiently large. So the third term also goes to zero. It follows that €, (m,) goes to

zero in probability. |

We prove Proposition 1 to end this section.

Proof of Proposition 1. By Lemma 2.1, it suffices to show (i) and (ii) for the orthog-
onal case and the unitary case, respectively. We only deal with the O(n) case. The U(n)
case is similar.

Let I';, have the normalized Haar measure on O(n). Then

P (\ %Wn —-2|> e) <P (nW2>(2+e€)logn)+ P (nW?2<(2-¢)?logn) (2.36)
\/ logn
for any € € (0,1). By Theorem 3,

lim sup P (an2 > (24 €)% log n) < limsup P(nW?2 — 4logn + log(logn) > )

n—0o0 n—00

= 1—exp(—Ke ?/?)

for any = > 0. Letting z T 400, we have that the middle probability in (2.36) goes to

zero as n — oco. By the same argument, the last probability also goes to zero. Therefore,
v/n/lognW, goes to 2 in probability. [ |
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3 Proofs of Theorems 5 and 6

There are a lot of methods to generate random matrices with the normalized Haar dis-
tribution on the orthogonal and the unitary groups. For example, let Y = (y;;) =
(y1,¥2," ,¥n) be an n x n random matrix whose n? elements are i.i.d. random vari-
ables with the standard normal distribution. Performing the Gram-Schmidt procedure on
the columns of Y, we then obtain an orthogonal random matrix with the normalized Haar
distribution on the orthogonal group O(n); see Proposition 7.2 (take p = n) on page 234-
235 from [16]. Also, the matrix Y(Y7Y) /2 follows the normalized Haar distribution on
O(n); see Proposition 7.1 in [17]. For the unitary counterparts of the above two procedures,
one only needs to replace Y by (Y +iZ)/v/2, where Z is an independent copy of Y. Then
Wy

change the operation “I” to “s”, where Y* = ( 73 )T In this section, we prove Theorems

5 and 6 via the Gram-Schmidt algorithm. Let us review it first.

For the sequence of n x 1 complex vectors {y1,y2, - ,¥n}, define w; =y, and
i—1 y*-‘w-
wZ:yz—ZWWﬁ 122,3’ , M, (337)
; J

where ||w;||?> = wiw,; (j =1,2,--- ,n). Then, {w;,1 <i < n} are orthogonal, i.e., wiw; =

J
0 for any 1 <i < j < n. Let v; = (1/||w;]|)wi, 2 = 1,2,--- ,n. We then obtain an unitary
matrix T'p, = (y1,7Y2,"** ,¥pn)- S0 (3.37) can be rewritten as follows:
i1
Wi =Y —Z(y;k’Yj)’Y]a 1=2,3,-,m, (338)
J=1
For further reference see e.g. p.15 from [20] and Section A.5 on page 603 from [2].
Define

i—1
Ay =0, A,—Zyz'y] cand L; =

1‘, i=1,2,-- ,n. (3.39)
j=1

‘ w2

We need some preparations to prove Theorems 5 and 6.

LEMMA 3.1 For any m such that 1 < m < n, we have that

calm): = max Vi~ il
< y -
< e DA+ (max L(_ max _ [ys]+ max [A)

Proof. Note that w; = y; — A;. We have that

n

[[will?

—vi=—Ai+ (yi — As)( —-1).

[w ||2
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Then, the desired inequality follows from the triangle inequality of || - ||. |

The following properties of I(z) will be used later. It is called a rate function in the
theory of large deviations. The proof is standard and is omitted. The reader is referred to
p. 35 from [9].

LEMMA 3.2 Let £ ~ N(0,1) and I(z) = supger{fz — log(E exp(0¢?))} for x € R. Then
(i) Eexp(0€?) = (1 —260)~/2 for 6 < 1/2;
(ii)

Ia) = (x—1—1logz)/2 if x> 0;

400 otherwise.
(#ii) Define J(z) = I(z)/x for x > 0. Then both I(z) and J(x) are increasing on (1,00)

and decreasing on (0, 1].
We collect the following elementary facts. The proof is omitted.

LEMMA 3.3 The following holds:

(i) z —1—1logz > (z —1)?/2 for z € (0,1];

(ii) 2z — log(1 + 2x) > 2 for z € (0,1/4];

(i) (1 —2)™2 > 142z and (1 +2)"2 <1 -z for z € (0,1/4].

The next lemma gives a probability bound about the tail of a product of a normal and

a random variable with F-distribution. The proof is based mainly on the property of the

standard normal distribution.

LEMMA 3.4 Let {,&,i = 1,2,--- ,n} be a sequence of i.i.d. random wvariables with
¢ ~ N(0,1). Define n? = (35, &2)/(Xp_1 &2) for some 1 < m < n. Then

] /2 —n/2
Pl 2t/ < = (1 + m>

for any t > 0.

Proof. Note that ¢ and 7 are independent and 1 < 1. By the upper bound from Lemma
4.1 we have that

P(lgl > t/n) = E{P(¢] > tn~"|n)}

2 2, -2 2 9 _9
E(—" ¢tm /2) <~ _Eetm /2. 3.40
(T Ve .

IA
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NOW, 77_2 =1 +( Z:m—f-l gg)(ka:l 61%)_1a and {€m+17§’m+25 T agn} and Zznzl 5]% are inde-
pendent. Thus Ee~t"1"/2 = ¢~#*/2 B(M"~™), where

t2£2
M=E{exp| ——72>+— A
{e P( 22'21:1513) “511‘52; 76 }
By (i) of Lemma 3.2, Eexp(—f3¢2) = (1 +28)"Y2 for § > —1/2. Then M = (1 +

tQ(Zanl 51%)_1)_1/2. In summary,

2e—t2/2 t2 —(n—m)/2
P(e|>t/n) <X —F <1+m7) . 3.41
(6 t/n) < 2 — =z (.41
By (i) of Lemma 4.2,

P (Z & > :1:) <2e ™M) £ >0, (3.42)

k=1
where I(z) is as in (ii) of Lemma 3.2 and A = [z/m, 00). By (iii) of Lemma 3.2, I(A) =
I(z/m) if x > m. Given t > 0. Choose zy = 2m+1t1/8(n — m). By (3.42) and (iii) of Lemma
3.2 on J(x),

m
P (Z 5]% Z -TO) S zefmI(:co/m) _ 267.:6(]](1‘0/771,) g 2675!:0(](2) S 267580/16
k=1

since zg/m > 2 and J(2) = I1(2)/2 = (1 — log2)/4 > 1/16. Considering Y ;' | &2 > z¢ or

not, we have from above that

2 —(n—m)/2 2\ (nmm)/2 /16
E<|(1+ T) < (1 + —) + 2e 7070,
( Zk:1 51% Zo

Since 14z < e* forany z € R, e /16 < (14(t2 /z0)) %6/(16) Also, 22 /(16t2) > (n—m)/2.
The above says that

t2 —(n—m)/2 t2 _(n_m)/2 t2/2 t2 _n/2
E{ 1+ = <3(1+— <3 14— :
( S 5,3) ( x> ¢ ( 3(m + tﬁ))

where we use the facts (1 + t2z,1)™? < exp(t?z, 'm/2) < e’/2 and ¢ < 3(m + ty/n) in
the last step. This and (3.41) yields the desired inequality. |
The following is a key result in analyzing the tail of €,(m) as stated in Theorem 5. Its

proof relies on Lemma, 3.4.

LEMMA 3.5 Let {y1,¥2, - ,¥n} be a sequence of i.i.d. R"-valued random vectors with
y1 ~ N(0,1,), where I, is the n X n identity matriz. Let also A; be as in (3.39). For any
t > 0 and m such that 1 < m < n, we have that

6mn 2 —n/2
P Al >t) < 1 .
(max 1Al = 1) < \/27?1:( +3(m+t\/ﬁ))
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Proof. Remember A; = (0. We only need to deal with the case m > 2. Review A; as
in (3.39). Using (yZT'yj)'yj = ('yj'yJT)yi, we obtain A; = (Z;;ll 'yj'yJT)yi. Observe that
(Z;;ll '7]-'7?)2 = 23;11 7j7f by orthogonality. Also, y; is a function of yi,y2,, " ,¥;.
Hence {1,792, ,7¥;—1} and y; are independent. Consequently, conditionallyonyi,y2,- -,

Yi-1,
2—1 i—1
A; ~ N(0,%;), where 3 = Y v;7] = (O WiVej)1<pa<n- (3.43)

By (3.43), the p-th element of A;, say, zp;, follows N (0, 23;11 fyzj) conditionally on {y1,y2,- -

vi—1}. Let {£,&,i=1,2,--- ,n} be a sequence of independent standard normals which are
also independent of {y1,y2, -+ ,¥n}. Then L(zp;) = L({ - (Z;_:ll ’ygj)l/Q).

Since T = (1,72, - ,7¥,) has the normalized Haar distribution on O(n), the p-th row

of I is uniformly distributed on the n-dimensional sphere S™"~!. Thus, the law of Z;;ll 'yzj

is the same as that of n? := (22;11 £2)/ (X k-1 &2). In summary, L(zp) = L(En;). Tt follows
that
P Al >1t) < . P(|z,i| > = . P >t/n;
(oax [|Aill 2 ) <mn-  max Pzl 2t) = mn max P(iE] 2 t/m)
< maP(g] > t/nmi).
The desired conclusion follows from Lemma 3.4. |

The next lemma, proved by large deviations, is also a key step as Lemma 3.5 to analyze

the tail of e, (m).

LEMMA 3.6 Let {y1,y2, " ,yn} be a sequence of i.i.d. R"-valued random vectors with
L(y1) = N(0,1,,). We have that

P(max L; >r) < Ame """ /16
1<i<m

for allr € (0,1/4) and m < nr/2, where L; is defined in (3.39).
Proof. Obviously, for any 1,
P(Li > r) < P(V/afWilE < 1— 1) + P(y/afTwilE > 1+ 7). (3.44)

By (3.38) and the orthogonality, ||w;||2 = ||yil|2 — Z;;ll(yqu)Z < |lyill?. Also, L(y;) =
L(y1). Then, by the first inequality of (iii) of Lemma 3.3 and (i) of Lemma 4.2,

2
max P(\/n/|[wi2<1-7) <P (M >1+ 27") < 2¢ ™ (3.45)
n

1<i<n
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for r € (0,1/4) where X := inf;>119, I(z) and I(x) is given in (ii) of Lemma 3.2. Since I(x)
is increasing on [1,00), A = I(1 + 2r) = (2r —log(1 + 2r))/2 > r?/2 for r € (0,1/4) by (ii)
of Lemma 3.3. So

max P(v/n/[wil? <1-r) <27/ (3.46)

for any r € (0,1/4).
Now we estimate the last term in (3.44). By the second inequality of (iii) of Lemma 3.3,
(1+7r)"2<1—rforr e (0,1/4). Tt follows that

P(y/n/|wil2>1+7r)<P (w <1- r) . (3.47)

Recall the definition of w; in (3.38), by the fact that (y/~;)v; = 'yj'yjryi, we can rewrite
w; = By;, where B = I, — 23;11 '7]-'7]-T. Observe that v; is a function of y1,y2,--- ,y;.
Thus, 71,73, ,7¥;_1 and y; are independent. By orthogonality, B? = B. It follows that

i—1
Wi~ N0, I, = > 7]
j=1

conditionally on yi,yo,---,yi_1. Since B2 = B, the rank of B is equal to tr(B) =
tr(I,) — Z;;ll tr(y/¥]) = n —i+ 1. By Lemma 4.3, there exists a sequence of indepen-
dent standard normals {¢,¢;,7 = 1,2,--- ,n} which are independent of {y1,¥y1, - ,¥n}
such that L£(||w;|?) = ﬁ(Z?j“ 5]2) conditionally on yi,y2, - ,y;—1. This implies that
L(|[w:l[?) = L(Z5={*" €2) unconditionally. Note that Y-/-{1 €2 > Y 17" ¢2 for 1 < i < m.
By using (i) of Lemma 4.2, we have that

112 T
max P (M <1- 7‘) <P Z 5]2 <a| < 2 (—m)I(4)
1<i<m n n—m

= 2¢~(n=mila) (3 48)
where a :==n(1 —r)/(n —m), A= (—o00,a] and I(z) is as in Lemma 3.2. We use the fact

that I(z) is decreasing on (0, 1) in the equality, and a < 1 since m < nr/2. By (i) of Lemma
3.3,

(1-a)? _ (nr—m)? _ nr?

—m)I(a) > (n— . —_— A4
(n—m)I(a) 2 (n —m)  — > M —m) > 16 (3-49)
as m < nr/2. Now, combining (3.47), (3.48) and (3.49), we obtain
max P(y/n/||wi||?>1+7) < 2¢~"7"/16, (3.50)

1<i<m
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This together with (3.44) and (3.46) implies that
P(lrgniz%};z Li>r)<m- 1I§nza§‘}7(n P(L;>r) < dme "7 /16 [ |

We now are ready to prove Theorems 5 and 6.
Proof of Theorem 5. Let {y1,y2, -+ ,¥n} be a sequence of real-valued i.i.d. n-dimensional
random vectors with L£(y1) = N(0,I,). Let also y;; be the i-th element of y;. We prove
the theorem by performing the Gram-Schmidt procedure on y;’s. If maxi<;<m ||As]] <
t, maxi<i<m Li < T and maxi<i<m,1<j<n |Vij| < s, then e,(m) <rs+ 2t for r € (0,1/4) by
Lemma 3.1. Then

P(en(m) > rs+ 2t)

< ; ; y :
< P(max Al > )+ P(max L >r) + P(_ max __ yij| > s)

By Lemma 4.1, it is easy to see that

mn 2
p > 8) < —8°/2
(1§i§r7nnixgjgn|y”| 2 8) < s
for any s > 0. This together with Lemmas 3.5 and 3.6 yields the desired inequality. [ |

Finally, we prove Theorem 6 by using the same argument as that of Theorem 5. The
major difference is that the squared norm of a standard complex normal follows the expo-

nential distribution with parameter one.

Proof of Theorem 6. For a complex vector p and a positive semidefinite com-
plex matrix H, denote by CN ,,(u, H) the n-dimensional complex normal distribution with
mean g and covariance matrix H. The complex normal distribution is uniquely determined
by its mean and covariance matrix, e.g., Theorem 2.7 from [1] or p.374 from [16]. Let
{¥1,¥2, - ,¥n} be a sequence of complex-valued i.i.d. n-dimensional random vectors with
L(y1) = CN,(0,1,). Then there exist two independent sequences of i.i.d. real-valued ran-
dom variables {¢,&;,j = 1,2,---} and {n,7n;,j = 1,2,--- } with the law N(0,1) such that
they are independent of {y1,y2, -+ ,¥n} and the distribution of y; is equal to that of
(1/V/2) (&1 + imy, & + ing,--- ,&n + iny)T. We prove the theorem next by performing the
Gram-Schmidt procedure for {yi,y2, - ,yn} as at the beginning of this section. Then
'y = (71,72, " ,7y) is an unitary invariant matrix.

By Lemma 3.1 and the same argument as in the proof of Theorem 5, we only need to
estimate the tail probabilities of maximum of random variables A;, L; and |y;;| over certain

indices, respectively, where y;; is the i-th element of y;.
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First, £(|y;;|*) = L((¢€2+n?)/2). Note that (¢2 4+ n?)/2 follows the exponential distribu-
tion Exp(1). We then have that

> < 2 2 > 2y _ 752. .
Pl oo Il > 9) S mnP(" +1%)/2 2 o) = mne (3.51)

Re-examining the proof of Lemma 3.5, in the current complex normal case, conditionally

onyi,ye, - ,Yi—1, we see that
A; ~ CN (0, UU}) and w; ~ CN o (0.1, — UUY), (3.52)

where U; = (71,72, ,Yi—1) = (pq)- Clearly, the p-th element of A;, say, zp;, has the same

distribution as L£(\;(€ +nv/—1)), where \; := (Z;;ll 17p312/2)1/2. By the Haar invariance of
2(i—1

Un, L((p1, 9925 5 7pm)) = £01) = Lo/ Iy l)- So, LO2) = LI €)@ 3 €2)).

Consequently,

A > < il >
P(1I§n%§n Al >t) < mn 151‘5%?1)%;;91 P(|sz‘ > 1)
< > ‘
< 2mn | max  P(l] > ¢/(23)
< 2mnP(|¢] > t/(2X,41)),

where A7, 1 = (337 68/ 072, €7)1/2 and the fact that |Ai(¢ +nv/=T)| < 24 max{[¢], [n[}
is used in the last inequality. By Lemma 3.4, we have that

12mn 2 -
P Al > < 1 ) 3.53
(@aéxm 2l =) < V2rt ( + 12(m+t\/ﬁ)> (3.53)

Recall the proof of Lemma 3.6, two key steps to estimate the tail probability of L; are
(3.45) and (3.50). In our current case, ||y has the same law as that of (1/2) 21221 2.
Thus, by following the proof of (3.46), we have

max P(v/n/[[wil2 <1-r) <27 (3.54)

for any r € (0,1/4).
Now we turn to the estimate of P(y/n/||w;||2 > 1+ 7). Note that
(I, -UU})* =1, - UU} and (I, - UU})? =1, - U U;.

By the spirit of the proof of Lemma 4.3, we obtain that L£(||w;||?) = £((1/2) Z?g‘f”l) 5]2)

Now repeating the corresponding calculations in the proof of Lemma 3.6, it follows that

max P(\/n/[wi]Z>1+71) < 2e /8, (3.55)

1<i<m
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From (3.54) and (3.55) we obtain that

P(max L; >r) < dme /8, (3.56)
1<i<m

The proof is completed by adding up the three probabilities respectively in (3.51), (3.53)
and (3.56). [ |

4 Appendix

In this section we list some known results used in the previous sections.

The following is Lemma 3 on page 49 from [6].

LEMMA 4.1 Suppose X ~ N(0,1). Then

1 x .2 2
T T SPE>) <= ce

e

8=

3~
3

for all x > 0.

For A C R, the notation A° and A stand for the interior and the closure of A in R,
respectively. The first part of next lemma gives sharp estimates of rare events induced by
partial sums of independent random variables (e.g., (c) of Remarks on page 27 from [9]).
Taking d = 1 and C = o2 from Theorem 3.7.1 on page 109 from [9], we obtain the second

part of next lemma, which is called moderate deviations.

LEMMA 4.2 Let {X, X;,i=1,2,---} be a sequence of i.i.d. random variables. Let S, =
S Xi,n > 1. Then
(i) For any ACR and n > 1,

P(S,/n € A) < 2¢ (A

where 1(z) = supycp{tr — log E(e!X)} and I(A) = infyca I(7).
(ii) Assume further that EX = 0, var(X) = 0? > 0 and Ee'*X < oo for some ty > 0.
Let {ap;n =1,2,---} be a sequence of positive numbers such that a,, — 0 and na,, — oo as

n — 0o. Then

for any subset A C R such that inf{|z|;z € A°} = inf{|z|;z € A}.
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The following is (ii) on p.186 from [34].

LEMMA 4.3 Suppose y is a R*-valued random vector with multi-normal distribution with

mean 0 and covariance matriz X of rank r. If 2 = X, then there exists a sequence of i.i.d.

random variables {;; j = 1,2,--- ,n} with the standard normal distribution such that |y]|?

has the same distribution as that of 3 7_, EJQ-, that is, ||y | ~ x2(r).
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