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Abstract. Let V = (vij)n×n be a circular orthogonal ensemble. In this paper, for 1 ≤ m ≤
o(
√

n/ log n), we give a bound for the tail probability of max1≤i,j≤m |vij − (1/n)y′iyj |, where Y =

(y1, · · · ,yn) is a certain n×n matrix whose entries are independent and identically distributed ran-

dom variables with the standard complex normal distribution CN(0, 1). In particular, this implies

that, for a sequence of such matrices {Vn = (v(n)
ij )n×n, n ≥ 1}, as n → ∞,

√
nv

(n)
ij converges in

distribution to CN(0, 1) for any i ≥ 1, j ≥ 1 with i 6= j, and
√

nv
(n)
ii converges in distribution to√

2 · CN(0, 1) for any i ≥ 1.

1 Introduction

The circular ensembles were first introduced by physicist Dyson [6, 7, 8] for the study of nuclear

scattering data. For the definition of the ensembles, the density of eigenvalues, cluster functions,

eigenvalue correlation functions, and eigenvalue nearest neighborhood spacing distributions as well

as their connection to thermodynamics, one can see, for example, [17, 19].

There are three circular ensembles: circular orthogonal ensembles (COE), circular unitary en-

sembles (CUE) and circular symplectic ensembles (CSE). According to Theorem 9.1.1 from [17], a

circular orthogonal ensemble is an n × n symmetric unitary random matrix V, whose probability

distribution is the same as that of O′VO for any unitary matrix O. This can be realized by taking

V = U′U, where U is an Haar-invariant unitary matrix. For the other two ensembles, we will make

some remarks at the end of this section.

The objective of this paper is to investigate the entries of the circular orthogonal ensembles. We

will study the joint distributions of a big block of the matrices. In fact, we obtain a probability

inequality on the difference between these entries and some simple functions of independent Gaussian

random variables.

The main theme of random matrix theory is the investigation of eigenvalues. Another venue of

this theory is the study of the dependency of entries of certain type of random matrices. For instance,

D’Aristotle, Diaconis, and Newman[4], Diaconis, Eaton and Lauritzen[5], and Jiang[11, 12, 13],

studied statistical testing problems and the image analysis based on the understanding of certain

types of random matrices; some subsequent work are given in Li and Rosalsky [14], Li, Liu and
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Rosalsky [15], Liu, Lin and Shao [16] and Zhou [20]. Through investigating the entries of Haar-

invariant unitary matrices, Jiang[10] recently proved that the limiting distribution of the largest

eigenvalues of the Jacobi ensembles is the Tracy-Widom law.

The Hermite ensembles, the Laguerre ensembles and the Jacobi ensembles are three of major

matrix models studied popularly in random matrix theory. Compared to them, the circular orthog-

onal ensembles are less known. In this paper, we investigate the entries of these ensembles. Before

stating the main results, let us review some terminologies.

(a) If X = (ξ+iη)/
√

2, where ξ and η are independent and N(0, 1)-distributed random variables,

then we say X is a standard complex Gaussian random variable, and is denoted by X ∼ CN(0, 1),

see, e.g., [1].

(b) For a sequence of random vectors {Xn; n = 0, 1, 2, · · · } defined on C or Rk, we say Xn

converges to X0 in probability if P (‖Xn −X0‖ ≥ ε) → 0 as n →∞ for any ε > 0, where ‖ · ‖ is the

Euclidean norm.

(c) Let {Xn; n = 0, 1, 2, · · · } be as in (b), we say Xn converges weakly or converges in distribution

to X0 if limn→∞Ef(Xn) → Ef(X0) for any bounded, continuous and real function f(x) defined on

C or Rk.

Of course, (b) implies (c). Our main result is as follows.

THEOREM 1 For each n ≥ 1, there exist an n×n circular orthogonal ensemble V = (vij) and an

n× n matrix Y = (y1, · · · ,yn) such that

(i) the entries of Y and V are defined on the same probability space;

(ii) the n2 entries of Y are i.i.d. random variables with the distribution of CN(0, 1);

(iii) for any positive integers m and n satisfying that n ≥ 12m2, we have

P ( max
1≤i,j≤m

|nvij − y′iyj | ≥ t) ≤ (K−1n2)e−Kt/m (1.1)

for any 0 < t ≤ 4n/m, where K is a constant not depending on n, m or t.

Through this probability inequality, we approximate some of the entries of a circular ensemble by

y′iyj/n for some (i, j)’s simultaneously. The following corollary tells us how large m = mn can be

to make the uniform approximation valid.

COROLLARY 1.1 For each n ≥ 1, let the n × n matrices Vn = V = (v(n)
ij ) and Yn = Y =

(yn,1, · · · ,yn,n) be constructed as in Theorem 1. If mn = o (
√

n/ log n) as n →∞, then

max
1≤i,j≤mn

∣∣∣∣
√

nv
(n)
ij − y′n,iyn,j√

n

∣∣∣∣ → 0

in probability as n →∞.

This corollary indicates that “n−1/2” is the correct order of vij ’s. In fact, we have a more refined

result as follows.
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COROLLARY 1.2 Let Vn = (v(n)
ij )n×n, n ≥ 1 be a sequence of circular orthogonal ensembles.

Then, as n → ∞,
√

nv
(n)
ij converges weakly to CN(0, 1) for any i ≥ 1 and j ≥ 1 with i 6= j, and√

nv
(n)
ii converges weakly to

√
2 · CN(0, 1) for any i ≥ 1.

Corollary 1.1 reveals that, in the asymptotic sense, the mn ×mn upper-left block of an n × n

circular orthogonal ensemble can be thought as (1/n)Ỹ′Ỹ, where Ỹ = (yij) is a n×mn matrix whose

entries are independent, CN(0, 1)-distributed random variables. Note that Ỹ′Ỹ is not a Wishart

matrix. A Wishart matrix, by using the current notation, is Ỹ∗Ỹ = (zij)mn×mn
, where the (i, j)-

entry of Ỹ∗ is ȳji. There is a big difference between the two matrices. In fact, Lemma 2.11 tells us

that the off-diagonal entries of the Wishart matrix and those of Ỹ′Ỹ = (wij)mn×mn
have the same

asymptotic behavior. However, for any i ≥ 1, the same lemma shows that n−1/2(zii − n) converges

weakly to N(0, 1), whereas for the case of Ỹ′Ỹ, n−1/2wii converges weakly to
√

2 ·CN(0, 1) for any

i ≥ 1.

The method of our proof of Theorem 1 is the Gram-Schmidt algorithm, which is also used in

[9, 11, 12] for studying Haar-invariant orthogonal, unitary and symplectic matrices. Although the

Gram-Schmidt algorithm for generating orthogonal or unitary matrices is not generally stable in

practice (see, e.g., [18]), it is quite efficient in investigating the coupling results as in Theorem 1.

This is because the algorithm is more explicit than others.

Remark 1. Through the Gram-Schmidt algorithm as used in this paper, some approximation

results on the classical compact groups O(n), U(n) and Sp(n) are derived in [9, 11, 12]. However,

all the proofs here do not depend on any of those.

Remark 2. In Corollary 1.1, the order
√

n in mn = o (
√

n/ log n) is almost the best possible

one obtained from Theorem 1. It might be improved to n/(log n)α for some α > 0. To do so, one

needs to examine more precisely the behavior of the three terms in (2.5), instead of the bounds used

in the proof of Lemma 2.1.

Remark 3. Theorem 1 considers the case of circular orthogonal ensembles. We know that a

circular unitary ensemble is actually an Haar-invariant unitary matrix, see, e.g., Theorem 9.3.1 from

[17]. A theorem in Jiang[12] shows that the entries of an n × n circular unitary ensemble can be

approximated by those of Y/
√

n in the same fashion as in Theorem 1, where the entries of Y are i.i.d.

standard complex normal random variables. A characterization of the circular symplectic ensembles

is given in Theorem 9.2.1 from [17], see also [6, 7, 8]. It basically says that such a matrix can be

constructed by UDU, where U is an Haar unitary matrix from U(2n), and UD = −Z2nUT Z2n with

Z2n =

(
0 In

−In 0

)
.

So a result similar to Theorem 1 should hold for the case of the circular symplectic ensembles: the

m×m upper-left block of a circular symplectic ensemble can be approximated by (1/n)YDY, where

Y is an n×m matrix whose entries are i.i.d. standard complex normals.

The main results stated above will be proved in the next section.
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2 Proofs of Main results

Let ξ1 and ξ2 be two independent N(0, 1)-distributed random variables. As mentioned in the In-

troduction, if Z = (ξ1 + iξ2)/
√

2, we then say Z follows the complex standard normal distribution,

and is denoted by Z ∼ CN(0, 1). Further, if X1, X2, · · · , Xn are i.i.d. random variables with the

distribution of CN(0, 1), we then write X := (X1, · · · , Xn)′ ∼ CNn(0, In). For two random vectors ξ

and η, the notation ξ ∼ η means that ξ and η have the same probability distribution. The following

facts are very useful:

|X1|2 ∼ Exp(1), ‖X‖2 ∼ 1
2
χ2(2n) and e′X ∼ CN(0, 1) (2.1)

for any unit vector e ∈ Cn, where Exp(1) is the exponential distribution with parameter one, and

χ2(k) is the chi-square distribution with degree of freedom k.

Throughout this section, we assume y1,y2, · · · ,yn are i.i.d. n × 1 random vectors, and y1 ∼
CNn(0, In). Define e1 = y1/‖y1‖, and

ek =
yk − xk

‖yk − xk‖ (2.2)

where x1 = 0 and xk =
∑k−1

i=1 (e∗i yk)ei for 2 ≤ k ≤ n. Then, U = (e1, e2, · · · , en) is an n× n Haar

unitary matrix, see, e.g., Jiang [9, 11, 12] or Mezzardi [18]. Therefore, V := U′U = (vij)n×n is an

n× n circular orthogonal ensemble (COE). Clearly, V is a symmetric matrix. It is easy to see that

nvkl = ne′kel =
n(yk − xk)′(yl − xl)
‖yk − xk‖ · ‖yl − xl‖

= y′kyl + (akal − 1)y′kyl − akal(x′kyl + y′kxl − x′kxl)

for 1 ≤ k ≤ l ≤ n, where

ak =
√

n

‖yk − xk‖ . (2.3)

Consequently,

|ne′kel − y′kyl| ≤ |akal − 1| · |y′kyl|+ |ak| · |al| · (|x′kyl|+ |y′kxl|+ |x′kxl|). (2.4)

From the expression x1 = 0, xk =
∑k−1

i=1 (e∗i yk)ei for 2 ≤ k ≤ n. Noticing y′kei = e′iyk, we see that

x′kyl =
k−1∑

i=1

(e∗i yk)(e′iyl), y′kxl =
l−1∑

i=1

(e∗i yl)(e′iyk), and

x′kxl =
l−1∑

j=1

k−1∑

i=1

(e∗i yk)(e∗jyl)e′iej (2.5)

for 1 ≤ k ≤ l ≤ n. When “
∑0

i=1 · · · ” appears here and later, the sum is understood to be zero.

Recalling ai in (2.3), given 1 ≤ l ≤ n, set

A1(l) =
√

n · max
1≤i,j≤l

|aiaj − 1|,
A2(1) = 0, A2(l) = max

1≤i<j≤l
{|e∗i yj |, |e′iyj |} for 2 ≤ l ≤ n and,

A3(l) =
√

n · max
1≤i≤j≤l

|e′iej |. (2.6)
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The restriction “i < j ” in the definition of A2(l) is important. This is because ei is a function of

y1, · · · ,yi by (2.2), hence is independent of yj for j > i, and we know from (2.1) that both e∗i yj

and e′iyj follow the distribution of CN(0, 1). This fact will be used repeatedly later in the proofs.

However, there are no such restrictions in the definition of A1(l) or A3(l).

LEMMA 2.1 Given 1 ≤ k ≤ l ≤ n and t > 0, set C(l, t, n) = (13l)t2 + 8n−1/2l2t3. Then

P (|ne′kel − y′kyl| ≥ C(l, n, t)) ≤
3∑

i=1

P (Ai(l) ≥ t) + P

(
max1≤i≤j≤l |y′iyj |√

n
≥ t

)

+ P

(
max
1≤i≤l

{ai} ≥ 2
)

+ P

(
min
1≤i≤l

{ai} ≤ 1
2

)
.

Proof. Remember x1 = 0. From (2.5), we have

|x′kyl| = |
k−1∑

i=1

(e∗i yk)(e′iyl)| ≤
k−1∑

i=1

|e∗i yk| · |e′iyl| ≤ kA2(l)2 (2.7)

for all 1 ≤ k ≤ l ≤ n by the triangle inequality. By the same argument,

|x′kxl| ≤ l2√
n
·A2(l)2A3(l) (2.8)

for all 1 ≤ k ≤ l ≤ n. Now we estimate |y′kxl|.
First, by (2.2) and (2.3), yk =

∑k−1
j=1 (e∗jyk)ej + (

√
n/ak) · ek for 1 ≤ k ≤ n. Multiply e′i from

the left for both sides to have e′iyk =
∑k−1

j=1 (e∗jyk)(e′iej) + (
√

n/ak) · (e′iek). It follows that

max
1≤i, k≤l

|e′iyk| ≤ l ·A2(l) · A3(l)√
n

+ max
1≤k≤l

{√
n

ak

}
· A3(l)√

n

≤ l√
n
·A2(l)A3(l) + 2A3(l)

if min1≤i≤l{ai} ≥ 1/2. Second, from the middle identity in (2.5), for any 1 ≤ k ≤ l ≤ n,

|y′kxl| ≤
l−1∑

i=1

A2(l) · |e′iyk| ≤ l ·A2(l)
(

l√
n
·A2(l)A3(l) + 2A3(l)

)

=
l2√
n

A2(l)2A3(l) + (2l)A2(l)A3(l) (2.9)

provided min1≤i≤l{ai} ≥ 1/2. Combining (2.7), (2.8) and (2.9) with (2.4), for any 1 ≤ k ≤ l ≤ n,

we obtain

|ne′kel − y′kyl|

≤ A1(l) · 1√
n

max
1≤i≤j≤l

|y′iyj |+ max
1≤i≤l

{a2
i } ·

{
k ·A2(l)2 +

l2√
n

A2(l)2A3(l)

+ (2l)A2(l)A3(l) +
l2√
n

A2(l)2A3(l)
}

< t2 + 4
(

kt2 +
l2t3√

n
+ (2l)t2 +

l2t3√
n

)
≤ (13l)t2 +

8l2t3√
n
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provided Ai(l) < t for i = 1, 2, 3, and max1≤i≤j≤l |y′iyj |/
√

n < t, and 1/2 < min1≤i≤l{ai} ≤
max1≤i≤l{ai} < 2. Then the conclusion is yielded by considering the complement events. ¥

With this lemma, to prove Theorem 1, it is enough to bound the six probabilities on the right

hand side of the inequality in Lemma 2.1.

The following inequalities are elementary, which will be simply stated without proof. Throughout

this paper, the symbol “log” stands for the natural logarithm.

LEMMA 2.2 The following inequalities hold.

(i)
1

(1− x)2
≥ 1 + 2x and

1
(1 + x)2

≤ 1− x for x ∈ (0,
1
4
);

(ii)
x2

3
≤ x− log(1 + x) ≤ x2

2
for x ∈ (0,

1
2
];

(iii) log(1 + x)− log(1− x) > 2x for x ∈ (0, 1).

LEMMA 2.3 Suppose n ≥ 1, x ≥ 0 and r ∈ (0, 1/4) satisfying that nr ≥ 2 and |(x/n) − 1| ≥ r.

Then |x/(n− i + 1)− 1| ≥ r/2 for all 1 ≤ i ≤ nr/2.

Proof. From |(x/n) − 1| ≥ r, we have that |x − n| ≥ rn, then, by the triangle inequality, |x −
(n − i + 1)| ≥ rn − i + 1, which implies |x/(n − i + 1) − 1| ≥ (rn − i + 1)/(n − i + 1). Now,

(rn− i + 1)/(n− i + 1) ≥ r/2 if and only if 2nr − 2i + 2 ≥ nr − ir + r, which is again equivalent to

that nr ≥ 2i− (ir + 2− r), which holds since 2i ≤ nr and ir + 2− r > 0. ¥

LEMMA 2.4 Let ξ1, ξ2, · · · , ξn be i.i.d. random variables with ξ1 ∼ N(0, 1). Then

(i) P

(
1
n

n∑

i=1

ξ2
i > a

)
≤ 2e−nI(a)/2 and P

(
1
n

n∑

i=1

ξ2
i < b

)
≤ 2e−nI(b)/2 and

(ii) P

( |∑n
i=1(ξ

2
i − 1)|√
n

≥ c

)
≤ 2e−c2/6

for any n ≥ 1, a > 1, b ∈ (0, 1) and c ∈ (0,
√

n/2) where I(x) = x− 1− log x for x > 0.

Proof. By the Chernoff bound, see, e.g., Remark (c) on p.27 from [3],

P

(
1
n

n∑

i=1

ξ2
i ∈ A

)
≤ 2e−nJ(A) (2.10)

for any Borel set A ⊂ R, where J(A) = infx∈A J(x) and J(x) = supθ∈R{θx − log E exp(θξ2
1)}. It is

shown on p.35 from [3] that J(x) = (1/2)(x− 1− log x) for x > 0, and J(x) = +∞, otherwise. It is

easy to see that J(x) is increasing on [1, +∞) and decreasing on (0, 1]. Take A = [a,+∞) in (2.10),

then the first inequality in (i) follows. Similarly, the second holds.

Now we prove (ii). By (2.10),

P

( |∑n
i=1 ξ2

i − n|√
n

≥ c

)
= P

(
| 1
n

n∑

i=1

ξ2
i − 1| ≥ c√

n

)
≤ 2e−nJ(A)
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where A = {x : |x−1| ≥ cn−1/2}. By the monotone property of J(x), since 0 < cn−1/2 < 1 we know

that J(A) = min{J(1 + cn−1/2), J(1− cn−1/2)}. Now

2(J(1 + cn−1/2)− J(1− cn−1/2))

= 2cn−1/2 − log(1 + cn−1/2) + log(1− cn−1/2) < 0

by (iii) of Lemma 2.2. Now, with (ii) of Lemma 2.2,

2J(A) = 2J(1 + cn−1/2) = cn−1/2 − log(1 + cn−1/2) ≥ c2

3n

by the given condition cn−1/2 < 1/2, that is, c ≤ √
n/2. So (ii) holds. ¥

LEMMA 2.5 Let wi = yi − xi for 1 ≤ i ≤ n, where xi and yi are as in (2.2). Then

‖wi‖2 ∼ 1
2
· χ2(2n− 2i + 2) (2.11)

for all 1 ≤ i ≤ n.

Proof. First, if i = 1, then w1 = y1. The assertion (2.11) follows from (2.1). Now assume 2 ≤ i ≤ n.

Recall x1 = 0 and xi =
∑i−1

j=1(e
∗
jyi)ej for 2 ≤ i ≤ n. By the orthogonality, it is easy to verify that

‖wi‖2 = ‖yi‖2 −
∑i−1

j=1 |(e∗jyi)|2. Write |(e∗jyi)|2 = y∗i eje∗jyi. Then

‖wi‖2 = y∗i (I−
i−1∑

j=1

eje∗j )yi = y∗i Σyi,

where Σ := In − (e1, · · · , ei−1) · (e1, · · · , ei−1)∗. Now, since ej is a function of y1, · · · ,yj for any

1 ≤ j ≤ n, we know that yi and e1, · · · , ei−1 are independent, so Σ and yi are independent. By the

orthogonality again, it is easy to check that Σ∗ = Σ and Σ2 = Σ. Thus Σ = U∗ diag (Ir,0)U for

some unitary matrix U, which is independent of yi, and

r := rank (Σ) = tr(Σ) = n− tr((e1, · · · , ei−1)(e1, · · · , ei−1)∗) = n− i + 1

by the orthogonality of ei’s. Finally, noting that Uyi and yi have the same distribution by (2.1),

and using the expression that Σ = U∗ diag (In−i+1,0)U, we see that y∗i Σyi and y∗i (In−i+1,0)yi ∼
(1/2)χ2(2n− 2i + 2) have the same distribution. The desired result follows. ¥

LEMMA 2.6 Recall ai as in (2.3). Then

P

(
min
1≤i≤l

ai ≤ 1
2

)
≤ (2l) · e−n/12 and P

(
max
1≤i≤l

ai ≥ 2
)
≤ (2l) · e−n/12

for any 1 ≤ l ≤ n/2.

Proof. By Lemma 2.5, a−2
i ∼ χ2(2n− 2i + 2)/(2n) for i = 1, 2, · · · , n. Then, by Lemma 2.4,

P

(
min
1≤i≤l

ai ≤ 1
2

)
≤ l · max

1≤i≤l
P

(
χ2(2n− 2i + 2)

2n
≥ 4

)

≤ l · P
(

χ2(2n)
2n

≥ 4
)
≤ (2l)e−nI(4)
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where I(4) = 4− 1− log 4 > 1. So the last term above is dominated by (2l)e−n. This gives the first

inequality in the lemma. By the same argument,

P

(
max
1≤i≤l

ai ≥ 2
)

≤ l · max
1≤i≤l

P

(
χ2(2n− 2i + 2)

2n
≤ 1

4

)

≤ l · P
(

χ2(2n− 2l)
2n

≤ 1
4

)
≤ l · P

(
χ2(2n− 2l)

2n− 2l
≤ 1

2

)

for any 1 ≤ l ≤ n/2. By Lemma 2.4 again, the last term above is bounded by (2l)e−(n−l)I(1/2) ≤
(2l)e−(1/2)I(1/2)n. Trivially, (1/2)I(1/2) = (1/2)((1/2) − 1 − log(1/2)) = 0.09657 · · · > 1/12. The

second inequality in the lemma follows. ¥

LEMMA 2.7 For any 1 ≤ l ≤ n, we have that P (A2(l) ≥ t) ≤ l2e−t2 for any t > 0.

Proof. By notation, A2(1) = 0, so without loss of generality, we assume l ≥ 2. Since ei is a unit

complex vector, e′i and e∗i are also unit vectors. Also, yj and {ei, 1 ≤ i ≤ j − 1} are independent.

Then, e∗i yj and e′iyj are standard complex Gaussian random variables for any 1 ≤ i ≤ j−1 by (2.1).

This says that both |e∗i yj | and |e′iyj | have the same distribution as that of
√

Exp(1). Therefore

P (A2(l) ≥ t) ≤ l2 · P (
√

Exp(1) ≥ t) ≤ l2e−t2

for any t > 0. ¥

LEMMA 2.8 Let ai’s be as in (2.3) and A1(l) as in (2.6). Then

P (A1(l) > t) ≤ (2l)e−t2/216

for 0 < t ≤ 3
√

n/5 and 1 ≤ l ≤ √
n t/6.

Proof. Let wi = yi − xi and Li = |(√n/‖wi‖)− 1| for 1 ≤ i ≤ n, where xi and yi are as in (2.2).

We first claim that

P (Li ≥ r) ≤ 2e−nr2/24 (2.12)

for all r ∈ (0, 1/4) and 1 ≤ i ≤ nr/2. Assuming this holds, we prove the desired inequality.

Write aiaj − 1 = (ai − 1)(aj − 1) + (ai − 1) + (aj − 1). Since Li = |ai − 1|, we have

A1(l) ≤
√

n · max
1≤i≤l

{L2
i }+ 2

√
n · max

1≤i≤l
{Li} < 3

√
ns

if max1≤i≤l{Li} < s ≤ 1. Take s = t/3
√

n ≤ 1, and use (2.12) to obtain

P (A1(l) ≥ t) ≤ P

(
max
1≤i≤l

{Li} ≥ t

3
√

n

)
≤ l · max

1≤i≤l
P

(
Li ≥ t

3
√

n

)

≤ (2l)e−t2/216

since t/3
√

n ≤ 1/5 by assumption, and 1 ≤ l ≤ √
n t/6 = n · (t/3√n)/2 = nr/2 for r := t/(3

√
n) as

required in (2.12). We get the inequality.
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Now we turn to prove (2.12). If |x − 1| < r, then by the Median-value Theorem, there exists

ξx ∈ (1− r, 1 + r) such that |(1/
√

x)− 1| = |x− 1|/(2ξ
3/2
x ). Now 2ξ

3/2
x ≥ 2(1− (1/4))3/2 > 1, we get

|(1/
√

x)− 1| < r. Therefore,

P (Li ≥ r) ≤ P

(∣∣∣∣
‖wi‖2

n
− 1

∣∣∣∣ ≥ r

)
≤ P

(∣∣∣∣
‖wi‖2

(n− i + 1)
− 1

∣∣∣∣ ≥
r

2

)
(2.13)

for all 1 ≤ i ≤ nr/2 by Lemma 2.3. From Lemma 2.5, ‖wi‖2 ∼ (1/2)
∑2(n−i+1)

i=1 ξ2
i where ξi’s are

i.i.d. N(0, 1)-distributed random variables. Thus, the last term in (2.13) is equal to

P

(
|∑2(n−i+1)

i=1 (ξ2
i − 1)|√

2(n− i + 1)
≥ r

2

√
2(n− i + 1)

)
,

which, from Lemma 2.4, is bounded by 2 exp(−(n−i+1)r2/12) ≤ 2 exp(−nr2/24) since 1 ≤ i ≤ nr/2.

¥

LEMMA 2.9 For any 1 ≤ l ≤ n, we have that

P

(
1√
n

max
1≤i,j≤l

|y′iyj | ≥ t

)
≤ (10l2)e−t2/54

for 0 < t ≤ 3
√

n/2.

Proof. Note that

P

(
1√
n

max
1≤i,j≤l

|y′iyj | ≥ t

)
≤ l · P

( |y′1y1|√
n

≥ t

)
+ l2P

( |y′1y2|√
n

≥ t

)
. (2.14)

First, since y1/‖y1‖ is a unit vector and is independent of y2, y′1y2/‖y1‖ ∼ CN(0, 1) by (2.1), it

follows that |y′1y2| ∼ ‖y1‖ · |η|, where ‖y1‖ ∼ {(1/2)χ2(2n)}1/2 and |η| ∼
√

Exp(1) by (2.1) again.

Therefore,

P

( |y′1y2|√
n

≥ t

)
= P

(‖y1‖ · |η|√
n

≥ t

)
(2.15)

≤ P

(‖y1‖√
n
≥
√

2
)

+ P

(
|η| ≥ t√

2

)
.

The last probability is equal to P (Exp(1) ≥ t2/2) = e−t2/2. By (i) of Lemma 2.4,

P

(‖y1‖√
n
≥
√

2
)

= P

(
χ2(2n)

2n
≥ 2

)
≤ 2e−(2n)I(2)/2 ≤ 2e−n/5 (2.16)

where I(x) = (x− 1− log x) for x > 0, and hence I(2) = 2− 1− log 2 > 1/5. In summary,

P

( |y′1y2|√
n

≥ t

)
≤ 2e−n/5 + e−t2/2 (2.17)

for any n ≥ 1 and t > 0.

Now y′1 ∼ (1/
√

2)(ξ1 + iη1, · · · , ξn + iηn), where {ξj , ηj , 1 ≤ j ≤ n} are i.i.d. random variables

with ξ1 ∼ N(0, 1). Thus,

y′1y1 =
1
2

n∑

j=1

(ξj + iηj)2 =
1
2

n∑

j=1

(ξ2
j − η2

j ) + i

n∑

j=1

ξjηj . (2.18)

9



It follows that

|y′1y1| ≤ 1
2
|

n∑

j=1

(ξ2
j − η2

j )|+ |
n∑

j=1

ξjηj |

≤ |
n∑

j=1

(ξ2
j − 1)|+ |

n∑

j=1

(η2
j − 1)|+ |

n∑

j=1

ξjηj |. (2.19)

Then

P

( |y′1y1|√
n

≥ t

)
≤ 2P

(
|∑n

j=1(ξ
2
j − 1)|√
n

≥ t

3

)
+ P


 1√

n
|

n∑

j=1

ξjηj | ≥ t

3


 . (2.20)

The middle term above is bounded by 4e−t2/54 for 0 < t ≤ 3
√

n/2 by (ii) of Lemma 2.4. Apply the

same argument between (2.14) and (2.15) to the real case, we get that
∑n

j=1 ξjηj/
√

n ∼
√

χ2(n)/n ·
N(0, 1). This leads to

P


 1√

n
|

n∑

j=1

ξjηj | ≥ t

3


 ≤ P

(
χ2(n)

n
≥ 2

)
+ P

(
|N(0, 1)| ≥ t

3
√

2

)
. (2.21)

Similar to (2.16), the middle probability above is bounded by 2e−n/10. Using the inequality P (|N(0, 1)| ≥
x) ≤ 2(

√
2πx)−1e−x2/2 for x > 0, we have that

P

(
|N(0, 1)| ≥ t

3
√

2

)
≤ 6

√
2√

2π
· 1

t
· e−t2/36 ≤ e−t2/36

as t ≥ 4 since 6
√

2/(4
√

2π) ≤ 1. Combining (2.20) with (2.21), and noting that e−n/10 ≤ e−2t2/45

for 0 < t < 3
√

n/2, we have that

P

( |y′1y1|√
n

≥ t

)
≤ 4e−t2/54 + 2e−n/10 + e−t2/36 ≤ 7 · e−t2/54 (2.22)

as 4 ≤ t ≤ 3
√

n/2. Now, if t ∈ (0, 4), then 7 · e−t2/54 ≥ 7 · e−16/54 ≥ 7/e > 1. Thus, (2.22) holds for

any 0 < t < 3
√

n/2. Reviewing (2.17),

P

( |y′1y2|√
n

≥ t

)
≤ 2e−n/5 + e−t2/2 ≤ 3e−t2/12

provided 0 < t ≤ 3
√

n/2. This together with (2.14) and (2.22) yields

P

(
1√
n

max
1≤i,j≤l

|y′iyj | ≥ t

)
≤ (7l)e−t2/54 + (3l2)e−t2/12 ≤ (10l2)e−t2/54

for any n ≥ l ≥ 1 and 0 < t ≤ 3
√

n/2. ¥

LEMMA 2.10 Let n ≥ 3, 1 ≤ l ≤ n, and A3(l) be as in (2.6). Then

P (A3(l) ≥ t) ≤ (47l2)e−t2/4050

for 0 < t ≤ 15
√

n/2.
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Proof. Recalling the statement immediately below (2.2), (e1, · · · , en) is an Haar-invariant uni-

tary matrix, hence ei and e1 have the same distribution, and (ei, ej) and (e1, e2) have the same

distribution for any 1 ≤ i 6= j ≤ n. It follows that

P (A3(l) ≥ s) ≤ l2 · max
1≤i≤j≤2

P (
√

n · |e′iej | ≥ s) (2.23)

for any s > 0. Recall (2.2) to have that

e1 =
y1

‖y1‖ ;

e2 =
y2 − (e∗1y2)e1

‖y2 − (e∗1y2)e1‖ =
y2 − (e∗1y2) y1

‖y1‖
‖y2 − (e∗1y2)e1‖ . (2.24)

Hence,
√

n|e′1e1| =
√

n |y′1y1|/‖y1‖2 < 2s, provided ‖y1‖2/n > 1/2 and |y′1y1|/
√

n < s. Therefore

P
(√

n|e′1e1| ≥ 2s
) ≤ P

(
χ2(2n)

2n
≤ 1

2

)
+ P

( |y′1y1|√
n

≥ s

)
, (2.25)

where the fact that ‖y1‖2 ∼ (1/2) · χ2(2n) in (2.1) is used. Also, noting that |y′1y1| ≤ ‖y1‖2 by the

Cauchy-Schwartz inequality, from (2.24),

√
n|e′1e2| =

n

‖y1‖ · ‖y2 − (e∗1y2)e1‖ ·
∣∣∣∣
y′1y2√

n
− y′1y1√

n ‖y1‖ (e∗1y2)
∣∣∣∣

≤
√

n

‖y1‖ ·
√

n

‖y2 − (e∗1y2)e1‖ ·
( |y′1y2|√

n
+
‖y1‖√

n
|e∗1y2|

)

<
√

2 ·
√

2 · (s +
√

2 s) < 5s

if 1/
√

2 < ‖y1‖/
√

n <
√

2, ‖y2 − (e∗1y2)e1‖/
√

n > 1/
√

2, |y′1y2|/
√

n < s, and |e∗1y2| < s. Thus

P (
√

n|e′1e2| ≥ 5s) ≤ P

(‖y1‖√
n
≥
√

2
)

+ P

(‖y1‖√
n
≤ 1√

2

)
+ P

(‖y2 − (e∗1y2)e1‖√
n

≤ 1√
2

)

+ P

( |y′1y2|√
n

≥ s

)
+ P (|e∗1y2| ≥ s). (2.26)

Now, ‖y1‖2 ∼ (1/2) · χ2(2n) by (2.1), and ‖y2 − (e∗1y2)e1‖2 ∼ (1/2) · χ2(2n − 2) by Lemma 2.5

(taking i = 2), and |e∗1y2|2 ∼ Exp(1) by independence and (2.1). These together with (2.25) and

(2.26) conclude that

max
1≤i≤j≤2

P (
√

n|e′iej | ≥ 5s)

≤ P

(
χ2(2n)

2n
≥ 2

)
+ 2P

(
χ2(2n− 2)

2n
≤ 1

2

)
+ max

1≤i≤j≤2
P

( |y′iyj |√
n

≥ s

)
+ e−s2

(2.27)

for all n ≥ 2 and s > 0. By (2.16) and Lemma 2.9, we obtain

P

(
χ2(2n)

2n
≥ 2

)
≤ 2e−n/5 ≤ 2e−4s2/45 and (2.28)

max
1≤i≤j≤2

P

( |y′iyj |√
n

≥ s

)
≤ 40 · e−s2/54 (2.29)
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as 0 < s ≤ 3
√

n/2. Now, n/(n− 1) ≤ 3/2 for all n ≥ 3, then

P

(
χ2(2n− 2)

2n
≤ 1

2

)
≤ P

(
χ2(2n− 2)

2n− 2
≤ 3

4

)
≤ 2 · e−(n−1)I(3/4)

by (i) of Lemma 2.4. Now I(3/4) = log(1 + (1/3)) − 1/4 ≥ (1/3) − (1/(2 · 32)) − (1/4) = 1/36 by

(ii) of Lemma 2.2. Moreover, n− 1 ≥ n/2 for all n ≥ 2. We then have

P

(
χ2(2n− 2)

2n
≤ 1

2

)
≤ 2 · e−n/72 ≤ 2 · e−s2/162 (2.30)

as n ≥ 3 and 0 < s ≤ 3
√

n/2. Now, combine (2.23), and (2.27) to (2.30), we obtain that

P (A3(l) ≥ 5s) ≤ (47l2)e−s2/162

for all n ≥ 3 and 0 < s ≤ 3
√

n/2. The desired conclusion follows by setting t = 5s. ¥

Proof of Theorem 1. First, the condition that n ≥ 12m2 implies that n ≥ 12. Recall C(l, t, n) =

(13l)t2 + 8n−1/2l2t3. By Lemma 2.1 and Lemmas 2.6 to 2.10, for any 1 ≤ k ≤ l ≤ n,

P (|ne′kel − y′kyl| ≥ C(l, n, t))

≤ (2l)e−t2/216 + l2e−t2 + (47l2)e−t2/4050 + (10l2)e−t2/54 + (4l)e−n/12

≤ (64l2)e−t2/4050

for t, l and n satisfying that 0 < t ≤ 3
√

n/5 and 1 ≤ k ≤ l ≤ √
n t/6, and 0 < t ≤ 15

√
n/2, and

0 < t ≤ 3
√

n/2, and 1 ≤ l ≤ n/2, where the inequality (4l)e−n/12 ≤ (4l2)e−25t2/108 as 0 < t ≤ 3
√

n/5

is used in the last step. Optimize these conditions to have

P (|ne′kel − y′kyl| ≥ C(l, n, t)) ≤ (64l2)e−t2/4050

as 0 < t ≤ 3
√

n/5 and 1 ≤ k ≤ l ≤ √
n t/6. For convenience, changing indices k to i and l to j

respectively, the above becomes

P (|ne′iej − y′iyj | ≥ C(j, n, t)) ≤ (64j2)e−t2/4050 (2.31)

for 0 < t ≤ 3
√

n/5 and 1 ≤ i ≤ j ≤ √
n t/6. We will sharpen this result next in three steps.

Step 1. If 0 < jt/
√

n ≤ 1/2, then

C(j, t, n) = (13j)t2 + 8n−1/2j2t3 ≤ 17jt2.

It follows from (2.31) that

P ( max
1≤i,j≤m

|ne′iej − y′iyj | ≥ 17mt2)

≤ m2 · max
1≤i≤j≤m

P (|ne′iej − y′iyj | ≥ 17jt2) ≤ (64m4)e−t2/4050 (2.32)

as 0 < t ≤ 3
√

n/5, 1 ≤ m ≤ √
n t/6, and mt/

√
n ≤ 1/2.
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Step 2. Since the condition mt/
√

n ≤ 1/2 implies that 0 < t ≤ 3
√

n/5, we then know that

(2.32) holds only if 6m/
√

n ≤ t ≤ (1/2)
√

n/m, which is valid by condition that n ≥ 12m2. Now,

since 12m2 ≤ n, then m ≤
√

n/12. Hence, if 0 < t < 6m/
√

n, we have 0 < t ≤ 6/
√

12 ≤ 3. Notice

(64m4)e−t2/4050 ≥ 64e−9/4050 > 64/e > 1 for t ∈ [0, 3], thus (2.32) holds only if 0 < t ≤ (1/2)
√

n/m.

Step 3. Now, set s = 17t2. Using condition that m ≤
√

n/12, we have from (2.32)

P ( max
1≤i,j≤m

|ne′iej − y′iyj | ≥ ms) ≤ 64n2

144
· exp

{
− s

4050 · 17

}
(2.33)

as 0 < s = 17t2 ≤ (17/4)(n/m2). Now, take vij = e′iej and K = (4050 · 17)−1 to have

P ( max
1≤i,j≤m

|nvij − y′iyj | ≥ ms) ≤ K−1n2 · exp {−Ks} (2.34)

for any 0 < s ≤ 4n/m2. Denote t = ms and plug it into the above inequality, then

P ( max
1≤i,j≤m

|nvij − y′iyj | ≥ t) ≤ K−1n2 · e−Kt/m

for 0 < t ≤ 4n/m. ¥

Proof of Corollary 1.1. Theorem 1 says that

P

(
max

1≤i,j≤mn

|√nv
(n)
ij − 1√

n
y′n,iyn,j | ≥ t√

n

)
≤ (K−1n2)e−Kt/mn (2.35)

for any 0 < t ≤ 4n/mn. Let 0 < δn → 0 be such that mn = (
√

n/ log n) · δn and tn =
√

nδn for

n ≥ ee. Evidently, n ≥ 12m2
n as n is large. Further, one can see that

tn
mn

=
log n√

δn

À log n,
tn√
n

=
√

δn → 0 and

0 < tn =
√

nδn <
4
√

n log n

δn
=

4n

mn
(2.36)

as n →∞. Plugging t = tn and m = mn into (2.35), we see that the right hand side of (2.35) goes

to 0 from the first assertion in (2.36). The conclusion follows. ¥

LEMMA 2.11 The following hold:

(i) As n →∞, both y′iyj/
√

n and y∗i yj/
√

n converge weakly to CN(0, 1) for any i 6= j.

(ii) As n →∞, for fixed i ≥ 1, y′iyi/
√

n converges weakly to
√

2 ·CN(0, 1), and (y∗i yi − n)/
√

n

converges weakly to N(0, 1).

Proof. For each n ≥ 1, by assumption, the random vectors y1, · · · ,yn are i.i.d., thus it suffices to

prove (i) and (ii) with i = 1 and j = 2.

(i) From the argument between (2.14) and (2.15), one see that y′1y2/‖y1‖ ∼ CN(0, 1). Write

‖y1‖2 = (1/2)
∑2n

i=1 ξ2
i for some i.i.d. random variables {ξi; i ≥ 1} with ξ1 ∼ N(0, 1). By the law

of large numbers, ‖y1‖/
√

n =
√∑2n

i=1 ξ2
i /2n converges to one in probability. Then y′1y2/

√
n =

(‖y1‖/
√

n) · (y′1y2/‖y1‖) goes to CN(0, 1) weakly as n → ∞ by using the Slusky lemma. Observe
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that the probability distributions of
√

ny∗1y2 and
√

ny′1y2 are the same, thus the second statement

in (i) also follows.

(ii) By (2.18),

y∗1y1 − n√
n

=
∑n

i=1(ξ
2
i + η2

i )− 2n√
4n

and (2.37)

y′1y1√
n

=
√

2 ·
(

1√
2
,

i√
2

)
· 1√

n

n∑

i=1

(
(ξ2

i − η2
i )/2

ξiηi

)
(2.38)

where {ξi; i ≥ 1} and {ηi; i ≥ 1} are two independent sequences of i.i.d. random variables with

ξ1 ∼ N(0, 1) and η1 ∼ N(0, 1).

Note that E(ξ2
1 + η2

1) = 2, Var(ξ2
1 + η2

1) = 2 · Var(ξ2
1) = 2(E(ξ4

1) − 1) = 2(3 − 1) = 4. By the

standard central limit theorems for i.i.d. random variables, we have from (2.37) that (y∗1y1−n)/
√

n

converges weakly to N(0, 1) as n →∞. So the second conclusion of (ii) follows.

Easily, E(ξ1η1) = E(ξ2
1 − η2

1)/2 = 0. Now, by independence, Var(ξ1η1) = E(ξ1η1)2 = 1, and

Var((ξ2
1 − η2

1)/2) = Var(ξ2
1)/2 = 1 since Var(ξ2

1) = 2. Lastly, Cov(ξ1η1, (ξ2
1 − η2

1)/2) = E{ξ1η1(ξ2
1 −

η2
1)}/2 = 0. By the standard central limit theorem again,

1√
n

n∑

i=1

(
(ξ2

i − η2
i )/2

ξiηi

)
converges weakly to N2 (0, I2) .

By (2.38) and the Slusky lemma, we obtain the first conclusion of (ii). ¥

Proof of Corollary 1.2. Obviously, for each n ≥ 1, Vn = (v(n)
ij ) and V in Theorem 1 have the same

distribution. Thus, to prove the corollary, without loss of generality, we assume Vn = (v(n)
ij ) = V.

By Corollary 1.1, there exist i.i.d. random vectors yn,1, · · · ,yn,n with yn,1 ∼ CNn(0, In) such that

max
1≤i,j≤[log n]

∣∣∣∣
√

nv
(n)
ij − y′n,iyn,j√

n

∣∣∣∣ → 0

in probability as n →∞, where the notation [log n] is the integer part of log n. The desired conclu-

sions follow by using Lemma 2.11 and the Slusky lemma. ¥
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