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Abstract

By using the independence structure of points following a determinantal point process,
we study the radii of the spherical ensemble, the truncation of the circular unitary en-
semble and the product ensemble with parameter n and k. The limiting distributions of
the three radii are obtained. They are not the Tracy-Widom distribution. In particular,
for the product ensemble, we show that the limiting distribution has a transition phe-
nomenon: when k/n — 0, k/n — o € (0,00) and k/n — oo, the liming distribution is
the Gumbel distribution, a new distribution p and the logarithmic normal distribution,
respectively. The cumulative distribution function (cdf) of p is the infinite product of
some normal distribution functions. Another new distribution v is also obtained for
the spherical ensemble such that the cdf of v is the infinite product of the cdfs of some
Poisson-distributed random variables.
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1 Introduction

The largest eigenvalues of the three Hermitian matrices (Gaussian orthogonal ensemble,
Gaussian unitary ensemble and Gaussian symplectic ensemble) are proved to converge to
the Tracy-Widom laws by Tracy and Widom (1994, 1996). Since then there have been
very active research in this direction. For example, Baik et al. (1999) establish a con-
nection between the longest increasing subsequence problem and the Tracy-Widom law.
The relationships among the largest eigenvalues, combinatorics, growth processes, random
tilings and the determinantal point processes are found [see, e.g., Tracy-Widom (2002) and
Johansson (2007) and the literature therein|. In the studies of the high-dimensional statis-
tics, Johnstone (2001, 2008) and Jiang (2009) prove that the largest eigenvalues of Wishart
and Jacobi matrices converge to the Tracy-Widom law. Ramirez et al. (2011) obtain the
asymptotic distribution of the largest eigenvalues of beta-Hermite ensemble. Recently, a
research interest is the universality of the largest eigenvalues of matrices with non-Gaussian
entries; see, for example, Tao and Vu (2011), Erdds et al. (2012) and the references therein.

In this paper we will study the largest absolute values of the eigenvalues of some non-
Hermitian matrices. Initiated by Ginibre (1965) for the study of Gaussian random matrices
(real, complex and symplectic), the interest has continued and theoretical results are found
to have many applications in quantum chromodynamics, chaotic quantum systems and
growth processes; see more descriptions from the paper by Akemann, Baik and Francesco
(2001). The applications also include dissipative quantum maps [Haake (2010)] and frac-
tional quantum-Hall effect [Di Francesco et al. (1994)]. We refer the readers to Khoruzhenko
and Sommers (2001) for more details.

For a matrix M with eigenvalues z1,- -, z,, the quantity maxi<j<y |2;| is refereed to
as the spectral radius of M. In the pioneer work by Rider (2003, 2004) and Rider and
Sinclair (2014), the spectral radii of the real, complex and symplectic Ginibre ensembles are
studied. For the complex Ginibre ensemble, it is shown that the spectral radius converges
to the Gumbel distribution. This phenomenon is very different from the Tracy-Widom
distribution. The key observation is that the absolute values of the eigenvalues of the
complex Ginibre ensemble are independent random variables with the Gamma distributions;
see Kostlan (1992). Later it is found that the independence phenomenon is true not only
for the complex Ginibre ensemble, but also true for other complex-valued determinantal
point processes; see, for example, Hough et al. (2009) for further details.

In this paper, we will study the largest radii of three rotation-invariant and non-
Hermitian random matrices: the spherical ensemble A~!B where A and B are independent
complex Ginibre ensembles, the truncation of circular unitary ensemble, and the product
ensemble H§:1 X; where X1,---, X}, are independent n x n complex Ginibre ensembles.
The spectral radius of the first one converges to a new distribution v, that of the second
one converges to the Gumbel distribution, and that of the third one, depending on the ratio



a = lim,,_,o0 kn /0, converges to the Gumbel distribution when o = 0, a new distribution
p when « € (0,00) and the logarithmic normal distribution when o = oco.

Our analysis of the spectral radius is based on the following result. It is a special case
of Theorem 1.2 from Chafal and Péché (2014) which is another version of Theorem 4.7.1
from Hough et al. (2009).

LEMMA 1.1 (Independence of radius) Assume the density function of (Z1,--- ,Zy,) € C"
is proportional to [[1<;p<pn 12 — 2]? - ;=1 ¢(|2]), where p(x) > 0 for all x > 0. Let
Y, , Y, be independent r.v.’s such that the density of Y; is proportional to y* 1 p(y)I(y >
0) for each 1 < j <mn. Then, g(|Z1|, - ,|Zn|) and g(Y1,---,Y,,) have the same distribution
for any symmetric function g(y1, - ,Yn)-

In this paper, we will study the limiting distributions of maxi<;<y |2;| for three specific ¢’s.
In addition to Lemma 1.1, Chafal and Péché (2014) also prove that the limiting distribution
of maxi<j<p |2;| is the Gumbel distribution under certain assumptions on ¢(x). However,
their results do not apply to our three ensembles because their assumptions are not satisfied.
See further elaborations in the section “strategy of the proofs”.

Now we present our results on the three ensembles in Subsections 1.1, 1.2 and 1.3,
respectively. After this the strategy of the proofs and some comments are given. We

compare the limiting curves appearing in this paper in Figure 1.

1.1 Spherical Ensemble

Let A and B be two n x n matrices and all of the 2n? entries of the matrices are i.i.d.
CN(0, 1)-distributed random variables. Then A~'B is called a spherical ensemble [Hough
et al. (2009)]. It has a connection to the matrix F' distribution in statistics literature; see,
for instance, p. 331 from Eaton (2007). Let z1,--- , 2, be the eigenvalues of A~!B. Then
their joint probability density function is given by

n

1
C'H‘Zj—zk‘Q‘HW (1.1)

j<k k=1

where C' is a normalizing constant; see, for example, Krishnapur (2009). The joint density
of z1,- -+ , zp of the real analogue of the spherical ensemble A~!B, where A and B are i.i.d.
real Ginibre ensembles, is given by Forrester and Nagao (2008) and Forrester and Mays
(2011).

The empirical distribution of the eigenvalues has an asymptotic distribution p with den-
sity W (Bordenave, 2011). When mapping the eigenvalues on the complex plane to
the Riemann sphere through the stereographic projection, the induced (pushforward) mea-
sure of u is the uniform distribution on the sphere.The spectral distribution of the singular
values of A~!B, which is the same as the eigenvalues of the F-matrix (AA*)~}(BB*),



converges weakly to a non-random distribution; see, for instance, Wachter (1980) and Bai
et al. (1987).
In this paper, we say

X, converges weakly to the cdf F'(x) or a random variable X

if the probability distribution of X,, converges weakly to that generated by the cumulative
distribution function (cdf) F(x) or X. Now we study the spectral radius.

THEOREM 1 Let 21, - , 2z, have the density as in (1.1). Define Hy(x) = e™* Z;:é ?—f
for k > 1. Then ﬁmaxlgjgn |zj| converges weakly to probability distribution function

H(z) =TI, Hi(x™2) for x > 0 and H(z) =0 for z <O0.

Observe that Hy(x) is the cdf P(Poi(z) < k—1) for each k > 1, where Poi(x) is a Poisson
random variable with parameter x > 0. So H(x) is the product of those cdfs evaluated at

272, Moreover, we have

1
1—H(z)~ o (1.2)
as r — +o00. So H(z) is heavy-tailed. This property will be verified in Section 2.4. Tt
will be very helpful to provide some other descriptions of H(z) in terms of, say, its Taylor
expansion or a differential equation.
Johnstone (2008) proves that, under a trivial transformation, the largest singular value
of the F-matrix (AA*)~!(BB*) asymptotically follows a Tracy-Widom distribution. Here,

the spectral radius converges weakly to the new distribution H (z).

1.2 Truncation of Circular Unitary Ensemble

Now we consider the truncation of the circular unitary ensemble. Let U be an n x n Haar-
invariant unitary matrix [see, e.g., Diaconis and Evans (2001) and Jiang (2009, 2010)]. For

U:(A c)
B D

where A, as a truncation of U, is a p x p submatrix. Let z1,--- , 2, be the eigenvalues of

n>p > 1, write

A. Tt is known from Zyczkowski and Sommers (2000) that their density function is

P

o I lm-allla-lzmPHrr! (1.3)
1<j<k<p J=1

where C is a normalizing constant. Assuming ¢ = lim £, Zyczkowski and Sommers (2000)

show that the empirical distribution of z;’s converges to the distribution with density pro-

portional to W for |z| < cif ¢ € (0,1). Dong et al. (2012) prove that the empirical

distribution goes to the circular law and the arc law as ¢ = 0 and ¢ = 1, respectively.



Collins (2005) proves that A*A forms a Jacobi ensemble. Johansson (2000) and Jiang
(2009) show that a transform of the largest eigenvalue of A*A converges weakly to the
Tracy-Widom distribution. For the spectral radius maxi<;<, |2;| of A itself, we obtain the
following result.

THEOREM 2 Assume that z1,--- ,2zp have density as in (1.3) and there exist constants
hi,ha € (0,1) such that hy < B < hy for alln > 2. Then (maxi<j<p |2;|—An) /By, converges
weakly to the cdf A(z) = exp(—e™®), z € R, where A, = ¢, + (1 — 2)/%(n — 1)7Y2a,,
By = 3(1=2)Y2(n —1)"12,,

2
_(p—1)1/2 b —b( nc ) B ( nc2 )
“=\n-1) > " 1—c2/’ n =4 1—¢c2
with
a(y) = (logy)'/? — (logy)~/*log(V2rlogy) and b(y) = (logy) />
fory > 3.

Trivially, in the above theorem, { A,,; n > 3} is bounded and B, has the scale of (nlogn)~'/2.

1.3 Product Ensemble

Given integer k > 1. Assume Xi,---,X} are i.i.d. n x n random matrices and the n?
entries of X; are i.i.d. with distribution CN(0,1). Let 21, --- , 2, be the eigenvalues of the
product H§:1 X;. It is known that their joint density function is

¢ II lz—al w2 (1.4)
j=1

1<j<i<n

where C' is a normalizing constant and wy(z) has a recursive formula given by wi(z) =
exp(—|z|?) and

z

wi(z) = 2w /OOO wk_1<;) exp(-ﬁ)ﬁ

r

for all integer k > 2; see, e.g., Akemann and Burda (2012). The function wy(z) also has a
representation in terms of the so-called Meijer G-function; see the previous reference.
Gotze and Tikhomirov (2010) prove that the mean of the empirical distribution of
{zj/n*/2,1 < j < n} converges to a distribution with density ﬁ]z\%_Q for |z| < 1. Later,
Bordenave (2011), O’Rourke and Soshnikov (2011) and O’Rourke et al. (2014) further
generalize this result to the almost sure convergence. The Gaussian case was first considered
by Burda et al. (2010) and Burda (2013) through investigating the limit of the kernel of
a determinantal point process. Second, the empirical distribution of the singular values of



X1X32/n converges weakly to a non-random distribution, see, for instance, Theorem 2.10
from Bai (1999).

Now we consider the largest radius and the result is given below. We allow k changes
with n in this paper. First, we need some notation. Let ® denote the cumulative distribution
function of N(0,1). For a € (0,00), define

O, (z) = ﬁ <I><x —I—ja1/2>,

J=0

and @ (x) = ®(z). The digamma function 1) is defined by

¥(z) = - logI(z) = =) (15)

where I'(z) is the Gamma function.

THEOREM 3 Let k =k, be a sequence of positive integers. The following holds.
(a). If lim, o0 kn/n = 0, particularly for k, = k, then «a, (n_k"/2 maxi<;<n |2j| — 1) — By

converges weakly to the cdf exp(—e™"), where

n n\1/2 n n 1
= (E log E) and f3, =log P log log % 3 log(2m).

(b). If limy o0 kn/n = a € (0,00), then

%W converges weakly to the cdf @a(§a1/2 + 20712 log x), x> 0.
n n
(c). If limy, o0 kpn/n = 00, then

maxi<j<n 10g|zj| — knp(n)/2

Vkn/n/2

Taking & = 1 in (a) of Theorem 3, the corresponding limiting result is obtained by Rider

converges weakly to N(0,1).

(2003). Here we not only get the result for finite k, but for all possible range of k,, which
leads to the three transition zones: k,/n — a with @ =0, a € (0,00) and a = oc.

It is not known to the authors if Theorem 3 still holds if the entries of matrices X;’s
are not Gaussian. In fact, it is not clear even for the largest radius of Xj.

Theorem 3 gives the asymptotic distribution of the largest radius of the product of
independent (non-Hermitian) Ginibre ensembles. A natural question is what if the Ginibre
ensembles X;’s are replaced by (Hermitian) Wigner matrices Y; = (X; + X7)/2? As
stated in the Introduction, the largest eigenvalue of each Y; asymptotically follows the
Tracy-Widom law.

Second, let Mmax(X;) be the largest singular value of X; for each 4. It is proved that
Nmax(X1)/+/n — 2 in probability (see, e.g., Bai, 1999). Let A1(X;), -+, A\ (X;) be the



eigenvalues of X; for each i. Obviously, maxi<j<n |Aj(X;)| < Nmax(X;) for each i. From
Rider (2003) or (a) of Theorem 3, we know maxi<j<n |A\;(X;)|/v/n — 1 in probability for
each i. It is interesting to see the first limit is 2 and the second is 1. Now, the assertion
(b) of Theorem 3 says that, though maxi<j<n |A;(X;)|/v/n — 1 for each i, the radius of
Hle(Xz/\/ﬁ) goes to a distribution with support [0, co).

Finally, let us look at the tail behavior of the distribution in (b) of Theorem 3. In fact
we have

. 11/2 -1/2 ¢ —2(log x)?/a
1 ‘Da(204 + 2c logy) azlogxe (1.6)

as r — +o0o, where C' = \/gf/;/g. It is different from that of eN(©1 the standard loga-

rithmic normal distribution: P(eN©O1 > z) ~ \/ﬂllogme_(log:”y/2 as x — +oo. This will be

verified in Section 2.4.

Plots of the density curves of the limiting spectral radii. To visually compare the
limiting distributions of the spectral radii, we plot the density curves in Fig. 1 for the follow-
ing distributions: distribution H(x) in Theorem 1, Gumbel distribution A(z) = exp(—e™7)

in Theorems 2 and 3, and distributions ®,(z) := @, (%011/2 + 2072 1og x) in Theorem 3.

Strategy of the proofs. By using Lemma 1.1, the absolute values of eigenvalues |z;|’s are
“independent”. So we are dealing with the maxima of independent random variables with
different distributions. The first step is to identify these distributions. In fact, we show that
the largest radii in Theorems 1, 2 and 3 are essentially the maximum of independent random
variables of density 52 ~1(1+4?)~*D for 1 < j < n in (2.2), the maximum of independent
random variables with beta distributions in (2.18), and the maximum of products of i.i.d.
Gamma-distributed random variables in Lemma 2.4, respectively. The next step is the
analysis of their tail probabilities through moderate deviations. This procedure costs the
major efforts.

Assuming the function ¢(t) in Lemma 1.1 has the form of eV ®) (V(¢) not depending
on n) with V(¢) = t* for some o« > 1 or V() being a special type of convex functions,
Chafai and Péché (2014) shows that the limiting distribution of max;<;<y |2;| is always the
Gumbel distribution. In our Theorems 1, 2 and 3, V(¢) either depends on n or not the
type of special convex functions required in their theorems. In particular, we see different
limiting distributions in Theorems 1 and 3.

Comments:

1. Tt is noteworthy to mention that, though the main idea is analyzing the maxima of in-
dependent random variables, the proofs are not trivial. In the classical study of the maxima
of i.i.d. random variables, the limiting distributions are only of three types: Fréchet dis-



tribution, Gumbel distribution and Weibull distribution; see, for example, Resnick (2007).
However, the limiting distributions appeared in Theorems 1 and (b) of Theorem 3 are new.

2. The eigenvalues of the three random matrices investigated in this paper are rotation-
invariant. This special property gives us the advantage of independence by Lemma 1.1.
When the eigenvalues are not of the invariant property, it seems there have no good under-
standing on the largest radii. For example, there is no invariance property for z1,--- , z, if
they have the joint density

fe ) =C- I 1z —zk]2-exp{ _ni ((Rer)2+(Imzj)2)}

1+71 1—171
1<j<k<n T

where 7 € (—1,1) is a parameter and C' is a normalizing constant [Lemma 4 from Petz
and Hiai (1998)]. See also similar examples on page 3403 from Rider (2003) and (1.1) from
Kuijlaars and Loépez (2015).

3. In this paper, we work on matrices with complex Gaussian entries. A similar study
may be done for matrices with real and symplectic Gaussian random variables. For example,
we know from Ginibre (1965), Lehmann and Sommers (1991) and Edelman (1997) that the
densities of the eigenvalues of real and symplectic Ginibre ensembles are also explicit. Rider
(2003) and Rider and Sinclair (2014) obtain the limiting distributions of the largest radii
for the real and symplectic cases. It is possible that our current work can be carried out to
the three real and symplectic analogues: the spherical ensemble A~'B where A and B are
real or symplectic Ginibre ensembles [further information can be seen from Forrester and
Nagao (2008) and Forrester and Mays (2011)], the truncation of Haar-invariant orthogonal
or symplectic matrices [see, e.g., Jiang (2010)] and Hle X; where Xy, .-, X}, are ii.d.
real or symplectic Ginibre ensembles.

4. Tracy and Widom (1994, 1996) prove that the largest eigenvalues of the Gaussian
orthogonal, unitary and symplectic ensembles converge to the Tracy-Widom laws. Recently
there have been an active research on the universality of the eigenvalues of non-Gaussian
matrices; see, for example, Tao and Vu (2011), Erdés et al. (2012) and the references
therein. In particular, Erdos et al. generalize the results by Tracy-Widom to the matrices
with non-Gaussian entries. Our Theorems 1, 2 and 3 consider the eigenvalues of matrices
with Gaussian entries. It will be interesting to study the universality of the three results
for the matrices with non-Gaussian entries.

Finally, the organization of the rest of paper is as follows. We will prove Theorems 1,
2 and 3 in Sections 2.1, 2.2 and 2.3, respectively. The verifications of (1.2) and (1.6) are

given in Section 2.4.



Plots of density curves for limiting spectral radii
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Figure 1: Distribution H(x) is given in Theorem 1, Gumbel distribution A(z) = exp(—e™7)
is given in Theorems 2 and 3, and distributions ®q(z) := @a(%alﬂ + 20712 log z) for
a=0.1,1,5,10 are given in Theorem 3.



2 Proofs

In this section, we will prove Theorems 1, 2 and 3 in each subsection.

2.1 The Proof of Theorem 1

We start with a lemma.

LEMMA 2.1 Let an; € [0,1) be constants for i > 1,n > 1 and sup, >y ;>1 ani < 1. For
each i > 1, a; := limy, o0 ani. Assume ¢, = 221 Qn; < 00 for each m > 1 and ¢ :=

o2 ai < oo, and limy, o ¢y = c. Then

o0 o0

Tim JJ(1 - ani) = [T = a).
=1 =1

Proof. Note that [[;2,(1 — an;) and [[;2,(1 — a;) are well defined, and [[;2;(1 — an;) > 0
for each n > 1 and []72,(1 — a;) > 0. It suffices to show that

[e.9]

lim Zlog(l — Q) = Zlog(l —a;). (2.1)
i=1

n—00 4
=1

Note that for each fixed & > 1

%s) k 0o
lim sup g |an; —a;| < limsup E |an; — a;| + lim sup E |an; — a;
n—oo T n—oo T n—o00 i—ht 1
[o.¢]
= limsup E lani — ail
n—oo ikt 1
[o.¢] (o]

IA
=
wn

=

”-M
=)

_l’_

™

IS

OO ikl i=k+1
k k
= limsup(c, — Z ani) + ¢ — Z a;
n—oo .
=1 i=1
k
= 2(c— Z a;),
i=1
which goes to zero as k — oco. Therefore, we have
[ee]
lim Z |an; — a;| = 0.
n—00 4 7
1=

10



Set a = sup,,>1 ;>1 @ni- Then 0 < a < 1. It follows that

o oo o0
1> log(l = am) = > log(l—ai)] < > [log(1l— ani) —log(1 — a;)|
i=1 i=1 i=1
oo Qi
ni 1
= 21
i=1 %
1 o0
< 1_aZ’am—ai|—>0
=1
as n — oo, proving (2.1). O

Proof of Theorem 1. By Lemma 1.1 and (1.1), maxi<j<p |2 and maxi<j<p Yy; have the
same distribution, where Y,1,---,Y,, are independent such that Y,,; has the probability
density function (pdf) proportional to ¢ ~1(1+4?)~("*DI(y > 0) for 1 < j < n. Thus, to
prove the theorem, it suffices to show

nh—{goP(\/lﬁ lrgjagxn Y, < x) = H(z) (2.2)
for each x > 0.

Let X;, ¢ > 1 be a sequence of i.i.d. random variables with cumulative distribution
function (cdf) F. Let Xi., < X9, < -+ < X, be the order statistics of X7, Xo, -+, X,
for each n > 1. Then from page 14 on the book by Balakrishnan and Cohen (1991), we
know that the cdf of X;., is given by

n!

r (i — D)l(n—d)!

" n F(z) .
Fin(z) =Y ( )F(m)’"(l ~ F(z))"" = /0 F11 - o idt (2.3)

r=i
for each 1 < i < n. If F' has a probability density function f, then the pdf of X;., is given
by

n =11 _ T n—i T
G-t @ A= F@) f (@), (2.4)

The monotonicity of the order statistics implies that Fj.,(x) is non-increasing in ¢ for

each x, that is,

Let {u,, n > 1} be a sequence of constants such that lim, oo n(l — F(u,)) =: 7 €
(0,00). Write 7,, = n(1 — F(uy)). Then it follows from the first equality in equation (2.3)

11



that

Foivtn(un) = Zn: <n>F(un)T(1—F(un))”T

‘ T
r=n—i+1
i—1
- ()e-nTEy
par V) n n
i—1 7j—1
1 l n—j
S (0 HIR
7=0 J =1 n n
i—1 i
— -7 Z F = HrL(T)
7=0

as n — oo for each fixed integer ¢ > 1.

Now, we take F(y) = 2 for y > 0. Fix x > 0, set u, = up(x) = /na.

1+y2
limy, 00 7(1 — F(uy)) = 272, Then from (2.6)

lim Fn7i+1:n(un) = Hi(m_Q)

n—oo

for each fixed integer ¢ > 1. For each n > 1, define

- Fn—i—f—l:n(”n)y if 1 <i< n;
Anj = p -
0, if 1 > n.

Then

(2.7)

Then it follows from (2.5) that sup,,>1 ;>1 @ni = Sup,>; an1. By the first identity in (2.3),

2 2

nx n 2\ —n
()
nl 1+ na? + n

is increasing in n. Hence,

SUp  Gpi = lim an =1 —exp(—z~2) € (0,1).
n>1,>1 n—o0

From (2.7) we have lim,, o0 an; = 1 — H;(x~2) =: a; for each i > 1. Moreover, we have

i“m‘ _ E[Zn:I(Xn_iHm > un)]
=1 =1

- E[i[(}g > un)}
i=1

= n(l—F(uy)) = 2>

and
o o 0 O (p—2Vk
Zaz = Z(l — Hy(z7?)) = exp(—2?) ZZ ( kl)
=1 i—1 =1 k=i



oo(:p

By exchangmg the ordering of the sums, we know ) 72, > /%, 0 = > 772 Zl 1 !

ppay (k 1), = 2 2exp{z?}. It follows that > >0, a; = 272 By Lemma 2.1, we have

o o
JgrolOHEn (Vna) = lim [10 - an) = HlHi@-?) = H(z) forz>0.
1=

i=1

From (2.4) we obtain the pdf of Xj., given by
2n!

(G = Dln—J)!

which is also the pdf of Y;,;. Therefore, we have

fjin(y) =

YT Lyt >0,

1 n
i — < = i - <
Jim P75 mas Yoy <) = tim J] PO < Vi)

J:

n

= lim H Fjn(V/nz) = H(x)
]:
for x > 0. This completes the proof of Theorem 1. |

2.2 The Proof of Theorem 2

In the rest of the paper, we will need the following notation. The symbol C),, ~ D, as
n — oo means that limn_wo % = 1. Similarly, C,(t) ~ D,(t) uniformly over t € T,
if limy, o0 SUPser, |Dn — 1] = 0. Also, Cpn(t) = O(Dy(t)) uniformly over t € T, if
SUPyer, ]Dn(t) | is bounded. We write Cy,(t) = o(Dy(t)) uniformly over ¢t € T}, if supep, |gZ—((?)|
converges to zero as n — 0o.

For random variables {X,,; n > 1} and constants {a,; n > 1}, we write X,, = Op(an)
if limg 400 limy, 00 (|X"| > x) = 0. In particular, if X,, = Op(a,) and {by; n > 1} is a
sequence of constants with lim,,_, -, b,, = 0o, then Xg — 0 in probability as n — oo.

Recall ¢(x) = ﬁe_z /2 and ®(z) = \ﬁf e~ /24t for z € R. Let also a(z) and
b(x) be as in Theorem 2.

LEMMA 2.2 Let {jn,n > 1} and {z,,n > 1} be positive numbers with lim,_oc T, = 00
and limn%oojnarﬁlﬂ(logx Y2 = 0o. For fized y € R, if {¢nj;1 < J < jn,n > 1} are real
numbers such that lim, . maxi<;<j, |cn];vn/ — 1| =0, then

Jn
. . . ) — o7 Y.
lim Z} (1= @((j — Deny + alzn) + blzn)y) =Y, (2.8)
j:
j’IL 1

nlggo; (J — Deny + alzn) + b(mn)yd)((j ~ Deny + al@n) + blan)y) = 7. (2.9)
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Proof. From the definition, it is easy to see that lim,,_, a(x,) = 400 and lim,,_,~ b(xy,)
0 and minj<j<j, ¢p; > 0 as n is large enough. Thus, mini<;j<;.[(j — 1)en; + a(zn) +

2

b(xn)y] — +00 as n — oco. By using the integration by parts we see that 1 — ®(x)
Mm)( + O(z7%)) as & — oo. Therefore, (2.8) follows from (2.9). Now let us prove (2.9).
It is easy to verify that for y € R

1 9 V2rlogx, _
exp ( — §(a(mn) + b(xn)y) ) ~ Te Yy (2.10)
as n — oo. For large n, define
1/2 1/4 1/2
. . In Tn Tn
l, = the integer part of min { (log 2) /1" (log ) 1/ }
Then, as n — oo,
g > by = 00, Ly, % (logz,)/? = 0o and Lz, /% — 0. (2.11)
Fix y € R and set
= (] - 1>Cn,j + a(xn) + b(xn)ya 1 <7< jn.
Then we conclude the following facts:
Fact 1: Uniformly over 1 < j </,
Un; = (log z,)2(1 + o(1)) (2.12)
by using the third assertion in (2.11) and
. log x,, 1/2
2y = (alea) + b)) 420 - VEEIZ (o) +o); (219)

Fact 2: Uniformly over [,, < j < jp, which is different from the assumption on (2.12) and
(2.13),

Up; > (log 2n)2(1 4 0(1)) (2.14)
and (log 2,2
Ung > (a(n) + b(xn)y)? +2(j — D=1+ o(1)) +o(1). (2.15)
It then follows from (2.12), (2.13) and (2.10) that
In ex Lla(z,) + b(z,)y log x,,)1/2
;u—mqﬁ Upj) p(= (2;1(02%3: 7 Zexp )(;gvnl/l(1+o(1)))
exp (— & (a(zn) + b(zn)y)?) 1
(27 log z,)!/2 1—exp (— 122 (14 0(1))) 210
exp (= g(a(zn) +0(za)y)?)  wn'/? _
Grlogz)? (ogm) i "¢ 217
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where the middle limit in (2.11) is used in the second step. Similarly, it follows from (2.14),
(2.15) and (2.10) that

j=lp+1 Y
exp (— % (a(zy )y)?) & . og x,) /2
B 't (225rl(oga):j;3(2 W) > e (-0 1)(1 i 1/2 (1+0(1)))
n j=ln+1 n
exp (= g(a(wn) + b(za)y)?) 1
< (27 log z,,)1/2 1 —exp (- (1<>i:71n/)21/2(1 +o(1)))

og x,)?
X exp ( -~ ln%(l n 0(1)))

- O(exp ( - anu +o(1)))) =0

by using (2.16) and (2.17) in the equality and the middle assertion in (2.11) in the last step.
By adding up the above equation and (2.17), we obtain (2.9). |

Let {U;; i > 1} be a sequence of i.i.d. random variables uniformly distributed over
(0,1), and let Uy, < Ugipy < -+ < Up:py be the order statistics of Uy, Us, - , U, for each
n > 1. Recall B is the collection of all Borel sets on R. The following lemma is a special

case of Proposition 2.10 from Reiss (1981).

LEMMA 2.3 There exists a constant C > 0 such that for allr >k > 1,

r3/2 r—k
Elé% P<M€(Urk+1:r - T) € B) — /B(l + 1(t) + 12(2))p(t)dt

¢ (W)w

where for i = 1,2, 1;(t) is a polynomial m t of degree < 3i, depending on r and k, and all
of its coefficients are of order O(((T_Tk)k)lﬂ).

Proof of Theorem 2. Review the density formula in (1.3). Set m, = n — p. For ease
of notation, we sometimes write m for m,,. By assumption, hy < @= < b} for all n > 2
where b, = 1 —h; € (0,1) for i = 1,2. Then we need to prove (maxi<j<p|2;j| — An)/Bn
converges weakly to the cdf exp(—e~®), where A, = ¢, + (1 — A2 (n—1)"2q,, B, =
L(1— )2 (n — 1120,

p—1\1/2 nc? nc?
c":<n—1> ’ b":b(1—z2>’ a”:a<1—1;2>

n n

with
a(z) = (logz)/? — (log z) "% log(v/2r logz) and b(z) = (logz)~/?

15



for x > 3. We proceed this through several steps.

Step 1: Reducing the problem to the maximum of independent random variables with beta
distributions. Let U;, i > 1 be a sequence of i.i.d. random variables uniformly distributed
over (0,1), and Uy., < Uy, < -+ < Uy be the order statistics of Uy, Us, - - -, U, for each
n > 1. From (2.4), the density function of Uj.,,4j—1 is

(mn+j -1 4 -1
. i = 1—2x)™mn € (0,1).
Denote the corresponding cdf as Fj.p,,,+j—1(x). Notice the pdf of (l/'j;mnﬂ'_l)l/2 is propor-

tional to 2 ~1(1 — 2%)™»~1. For each n > 2, let {Y;,;; 1 < j < p} be independent random
variables such that Y,,; and (Uj;mnﬂ-,l)l/ 2 have the same distribution. By Lemma 1.1 and
(1.1), maxi<j<p || and maxi<;<p Yn; have the same distribution. We claim that, to prove
the theorem, it suffices to show
: 2 < ) — o —X .

nh_}ngo P(llgjaécpym < Bn(x) exp(—e ") (2.18)
for every z € R, where B,(z) = 2 + cn(1 — 2)Y2(n —1)"2(a,, + byz). In fact, (2.18)
implies that

1 “1gq 2\=1/2(  13\1/2 2 2y d
Wi o (0= ) 2 - 0 (e V3 - ) -0 ) B4 (219

where A is a probability distribution with cdf exp(—e™), = € R. From Taylor’s expansion
1/2

o 2 2N1/2/ 0 1\—1/2
max Y,y (cn+cn(1 A2 - 1) (an+ann))

- an + bWy \ V2
= ¢y <1+cn1(1—ci)1/2(n_1)1/2)

B 1y o100 + b0 Wy A
= Cn<1+20n (1—cn) (n—1)1/2 +0P(n—1>

= cp+ %(1 — )2 —1)" Y2, + %(1 — A2 - 1)V, W,

+ OP(lngLn>

1

_ An+Ban+Op( Og"),

where we use the facts a,, — oo, b, — 0 and ¢, € (0,1) in the above. Since B, has the
scale of (nlogn)~2, by (2.19),

(logn)®/?

maXlgjgp Ynj — An — W —|—0p< ) . A
n nl/2

By,

weakly, which leads to the desired conclusion. Now we proceed to show (2.18).
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Step 2: A preparation. We claim that
1= Frm,(2) 1= Faum,1(2) < < 1= Fpumygp-1(2) (2.20)

for x € (0,1). In fact, since for each 1 < j < p,

Ui 411 = Uj—timn+j—2 if Unptj—1 S Uj—timp+j—2;
jimp+j—1 = . .
" min(Ujm,+i-2, Unpti—1)s i Unpti—1 > Uj—1im, -2,

which implies that Uj_1.m,+j—2 < Ujin,+j—1 for 1 < j < p. This yields (2.20).
For each n > 2, set anj = 1 — Fppi—jimutp—i(Bn(x)) = 1 — Fppi—jin—j(Bn(x)) for
1 < j <p. From (2.20), for each n, ay; is non-increasing in i. Since Yn2j and Uj.p,,4j—1 are

identically distributed, we have

1<j<p

P< max V2 < 5n(;c)) = [ P(¥2 < Bula) = [](1 - any)- (2.21)
j=1 j=1

It is easy to check the following holds: suppose {l,,; n > 1} is sequence of positive
integers. Let z,; € [0,1) be constants for all 1 < i < [, with max;<;<;, zni — 0 and
S 2pi — 2 € 0,00). Then

ln

[[0—z)=e (2.22)

lim
n—oo
=1

Next we will use (2.21) and (2.22) to prove (2.18). In fact, we only need to verify that
P
D an; e (2.23)
j=1

and

max ap; = ap1 — 0.
i<j<p "

Step 3: The analysis of dominated terms in the mazimum from (2.18). Fix § € (%, %)
Let j, = [n%], the integer part of n’. For 1 < j < j,, define

o (n—j)P? p—j
= G (M) 125).

Meanwhile, we rewrite

p—1  ((p- l)mn)1/2

n—1 (n —1)3/2 (an + bn).

Bn(z) =

17



Then we see that uniformly over 1 < j < j,,

o _. _.3/2
Ung = (5_1 N i-?‘) ' ((ﬁj)ﬁn)w
+ (Z:{)fi/?. <Z:;>1/2(an+bnx)

R I e ) R O B G

G )

n—p 1
> p—1 2 n n—1

Now. "=P — l=ci Also, given T € R, trivially (g%{)ﬂ- =140(%) and <M>T =1 +O(%)

uniformly for all 1 < j < j,. Since a, ~ (logn)¥/? and b, = o(1), we have

1—c)2 jlogn
Upj = (nl/%)(j—1)(1—1—0(1))—&-an—i—bnac—i-0<‘7 ng )

(1 _ 02)1/2

_ W(j— 1)(1+0(1)) + an + bz (2.24)

uniformly for all 1 < j < j,.

In Lemma 2.3, take r =n — j and kK =n — p to have

sup |P(Vp—jy1m—j € B) — / (14 1o(t) + lz(t))qb(t)dt‘ = 0(n=3/?)
BeB B

uniformly over 1 < j < j,, as n — 0o, where

(n —j)*?
n—j)n—p

P—J
Vp—jtim—j = {q IRE (Up—j-i-l:n—j - E)

and where, for i = 1,2, [;(¢) is a polynomial in ¢ of degree < 3i, depending on n, and all of
its coefficients are of order O(n_i/z) by the assumption hy < £ < hy for all n > 2. Now, by
taking B = (un;, 00) we obtain
oo
anj = P(Vp—j41m—j > tnj) = / (14U (t) + () () dt + O(n=?/?)

Unj

uniformly for 1 < j < j, as n — oco. From L’Hospital’s rule, we have that for any r» > 0
(o9}
/ " o(t)dt ~ x" L p(x) as r — 00. (2.25)
x

Since minj<j<;, un; — 00 as n — oo by (2.24), it follows from (2.25) that

o . M if r = 0:
ESE)dt ~ (tng)  Blung) = § "0 wng) e
/unj ! ’ O((maxi<j<j, tnj)") %:f)v ifr>0
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holds uniformly over 1 < j < j,. Furthermore, since the coefficients of /;(¢) are uniformly
bounded by O(n~%2) for i = 1,2, we have

/Oo(l +1(t) + 12(2))p(t)dt

nj

= [t o s ¢ o sl #hu)
3

= (14 o(ln) )

n?’’ upj

unj

uniformly over 1 < j < j,, and thus obtain that

oy = (1+0(2h) 222) 1 o (2:26)

unj

uniformly over 1 < j < j,,. Therefore, we have

In Lemma 2.2, by taking x,, = nc2/(1 — ¢2) and cpj = a?,:l/z(l + 0(1)) where “o(1)” is as

indicated in (2.24), we then get
lim Ejn Htng) _ a (2.27)
n—oo j:1 un] . .

Step 4: Some terms in the mazimum from (2.18) are negligible. From (2.24) again, we

see
1
n’ —2
w2, > 2 (1 — )Y (a, + bnaz)w(l +0(1)) > 6logn

njn =

for all large n. Hence,

1 1
¢(nj,) < —==exp(—3logn) =

Vo V2mn3

for all large n. Then it follows from (2.26) that a,;, = O(n~>/2), and hence

P
Sty < (1 ), = Ol 2),
j=in+1
This together with (2.27) yields (2.23). The proof is then completed. [
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2.3 The Proof of Theorem 3

We begin with some preparation. The notation k = k,, appears in the statement of Theorem
3. In the proof next we will write “k,,” if there is a danger of confusion, for example, a
limit is taken for “n — c0”. We write “k” in other occasions for clarity of formulas.

The following result characterizes the structure of the radius of the eigenvalues from

the product ensemble.

LEMMA 2.4 Let k and z1,--- , 2, be as in (1.4). Let {sj,, 1 <r <k,j> 1} be indepen-
dent random variables and sj, have the Gamma density y'~te YI(y > 0)/(j — 1)! for each
j and r. Then maxi<j<n |2;|? and maxi<j<, [17_, sj» have the same distribution.

Proof. Let {sj,; 1 < r < k,j > 1} be independent random variables and s;, follow a
Gamma(j) distribution with density function y/~te=¥I(y > 0)/T'(j) for all 1 < r < k and
j > 1. Define v (y) = exp(—y), y > 0, and set for j > 2

e—S

ds. (2.28)

S

vi(y) = /0 " vpa(y/s)

One can easily verify that for each j > 1, vj(y) is proportional to w; (y'/?), i.e., for some
constants d; > 0,
wi(y'?) = djui(y), ¥ >0. (2.29)

Let z be any complex number with Re(z) > 0, and define for j > 1
o
7i(2) :/ Y= i (y)dy.
0
Note that y1(z) = I'(2) = [, y* e ¥dy. For j > 2, by using (2.28),

7(2) = /OOO egs{Amyz_lvj—l(Z)dy} ds
= /OOO s e [/OOO y* oj1(y) dy} ds =T (2)vj-1(2).

Thus, we have
v(z) =T(z)),  j>1. (2.30)

Assume Yy,;, 1 < j < n are independent random variables, and for each 1 < j < n, the
density of Y,,; is proportional to y*~twy(y). By Lemma 1.1 and (1.1), maxi<;j<n |2j|> and
maxi<;<n Yn2j are identically distributed. Furthermore, since the density function of ij,
denoted by f;(y), is proportional to y?~Ywy(y'/?), and thus proportional to 47~ 1vy(y) from
(2.29), we have from (2.30) that

j-1 j-
youly) v ey) )

Ty ulydy - TG

fi(y)
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for 1 < j < n. Let the characteristic function of log Yn2j be denoted by g;(t). Then we have

from (2.30). Since I'(j + it)/I'(j) is the characteristic function of logs; ., it follows that
log Ynzj has the same distribution as that of fo:l log s; -, or equivalently, Yn2j has the same

distribution as that of Hle sjr for j > 1. This implies the desired conclusion. |

LEMMA 2.5 Let k be as in (1.4) and {s;,, 1 <r < k,j > 1} be independent r.v.’s such
that s;, has density y'~te YI(y > 0)/(j — 1)! for all j,r. Set n(z) =z —1—logz and

k
) = Sj”)—E (@)) 1<i< 2.31
My (i) =~ max 2(17( ; (7)) 1<is<n (2.31)
Set Y(x) = 1;,((;)) forx > 0. Then for1 <i<n
k 1k
o 1 . Y| < N
n—ir—lr-llanggn logrl_Il Sy n—ir—{lﬁg)(jgn (] g<8]’r j) + k"(/J(]))‘ B Mn(Z)
Proof. Set Y; = Hle sjr for j > 1. Then,
k
log; = Zlog Sjr
r=1
for j > 1. The moment generating functions of log s;,. is
‘ I'(j+1)
mai(t) = E e“(’gsmr = 2.32
for t > —j. Therefore,
d I'(j) .
E(logs;jr) = amj(tﬂt:o “TG) ¥(j)

by (1.5). Note that n(z) = z — 1 —logz for « > 0. Since n(z) = [; *tds, it is easy to

S

verify that

0<nx)< (-~ 1)°

— 0. 2.33
~ 2min(z,1)’ v (2:33)
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By using the expression logz = x — 1 — n(x) we can rewrite logY; as

k
logy; = Zlog%ﬂLklogJ’
Tkls PR
) Zn( ") + klog
r=1 r=1
k
— 72 Zn( )—I—k:logJ
r=1
k
_ ,Zsﬂ_ )+ koo (j Zn( 5) + k(log j = (7).
r=1

Since E(logYj) = ki(j), we see that

ZE( 1) = k(logj — ¥())
and thus

oY, = 1S 0k - 30 (1(2) ~ n(22)). e

r=1 r= J J

Note that for any two sequences of reals numbers {z, } and {y,},

< il-
e o~ e vl < max o —

Then it follows from (2.34) that

k
1
n—ZT%Sn log}/] n—ililf—lf%nggn (] =1 S]T kw( ))‘ - MN(Z) .

We estimate M,,(-) next.

LEMMA 2.6 Let k be as in (1.4) and My(i) be deﬁned as in Lemma 2.5. Assume {jn; n >

1} is a sequence of numbers satisfying 1 < gn < 2n for all n. Then, for any sequence of

positive integers {kn}, My (jn) = Op(]” ) Further, if limy, o0 kn/n = 0, then M, (j,) =

Op (fulosn),
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Proof. By using the Minkowski inequality and (2.33) we get

son < % ES () -e()
n—jn+1<j<n  r=1
- ,~Z . [E(Z’Ucy) —En(s;}’“)‘)Z]lm
n—jn+t1<j<n
< 7.2. [ZE‘ ( ) (s?r)rr/g
n—jn+1<j<n  r=1
< krl/Z Z (E77<%> >1/2

n—jn+1<j<n

< S () () )

n—jn+1<j<n

Since s;1 has density y/~le™¥I(y > 0)/(j — 1)!, we see that E(s]_f) = F(Fj(;;l). By the

Marcinkiewicz-Zygmund inequality (see, for example, Corollary 2 from Chow and Teicher,

2003), we obtain E(s;; —j)® < Kj? for any j > 1 where K is a constant not depending on
j. Then, it follows from Holder’s inequality that

B((72) (i (*2.0) )

< [ <mm< DRk
< -E(sj’lj_j)B.E 1 :|1/2
L 3]
_ -3 Si1—
= _((j—l)(jj—Q)(J—B )/<E< - ]> }1/2
< Cj

for any j > 4 where C is a constant. Combining the last two assertions, we get E(My,(jn)) <

) <
O(J”]:L ). This implies the first conclusion.

Now we prove the second one. Recall ¢(z) = % for x > 0 as in (1.5). By Formulas
6.3.18 and 6.4.12 from Abramowitz and Stegun (1972),

1 1 ) 11 1
w(:v)Zlogx—%JrO(?) and w(x):;+2—x2+0(ﬁ) (2.35)

as * — 4o00. It is easy to check Elogs;i = ﬁ Jo - Qogy)y’~te ¥ dy = ¢(j). Thus, from
the first expression, we have

En(%) =logj —¥(j) = 0(;)
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as j — oo. Hence, by (2.31),

k
NS k
in) < ”) (l> .
M (jn) < n_qugjgn;n( ) +o(5, (2.36)
By Theorem 1 on page 217 from Petrov (1975), we have that
P(sj1 >+ 7Y%) = (1 +0(1))(1 — (x)) (2.37)

uniformly for z € (0,a,) and n/2 < j < n as n — oo, where {a,; n > 1} is an arbitrarily
given sequence of positive numbers with a, = o(nl/ﬁ). By taking » = 0 in (2.25), we see
that 1 — ®(z) ~ ﬁe*xzm as x — +oo. Now select = = 2(logn)'/? in (2.37) to have

P(sj,l >+ 2j1/2(logn)1/2) =(1+ 0(1))(1 — ®(2(log n)1/2) = O(i)

n2

uniformly for n/2 < j < n as n — oo. Similarly we have
1
P31 < j = 2j"(logn)!/?) = (1+0(1))(1 — ®(2(logn)"/?) = O( )

uniformly for n/2 < j <n as n — oo. This implies

SN S Pllsge— 115 272 0em) ) = o(25m) = o(*2) = o),

r=1j=n—jn+1

and thus we get

max max
1<r<kn n—jn+1<j<n

J
Consequently,
min min m :l—l—Op(M
1<r<kn n—jn+1<j<n j
By (2.36) and then (2.33), we obtain

. S k
M, (jn) < k,- max max 7(—2") 4+ O(—)
n—jn+1<j<n1<r<kn ' J n
Sj,r 2
kn MaXp_j,+1<j<n MaX1<r<t, |5 — 1] N O<kn)
~ - . . . Sj,r o
2 min{l, min,_j, 4+1<j<p, Minj<,<p, JT} n
ky logn
= 0r(235).
n
proving the second conclusion. ]

Review the notation we use before: i(z) = 1;,((5)) for > 0 as in (1.5) and

k
= H Sjr (2.38)
r=1

for j > 1, where {s;,, 1 <r < k,j > 1} are independent random variables such that s;,
has density v/~ te ¥I(y > 0)/(j — 1)! for all j,r.
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LEMMA 2.7 Let {jn; n > 1} and {kn; n > 1} be positive integers satisfying limy, o0 % =

0 and limn_mo(%)lﬂ (log]:)l/g = oo. Then for any r € R,

e e\ 1/2
ng&;;f(bgm>kwmw+(n> x):& (2.39)
Proof. Fix z € R. It follows from (2.32) that for cach 1 < j < n — j, and any ¢ > 0,
<1og)f > kato(n) + ( )1/%x>
B(e5)
exp {t(knth(n) + (22)1/22)}
. {k: 080G + 1) ~1og (7)) — ¢ (kuto() + (22)2)}

= exp /wj—i-sds—t( w(n) + (Z)l/zx)}

= ek [ 100G+~ vlds —tlutwin) v + (2) 4]}

n

IN

From (2.35), there exist an integer jo such that for all jo < j <n—j,

1
log ? Jte <YP(+s) - L/¢j+ﬂdv<57szg
J j
By the first inequality above, for all large n,
, n n in 0.9997,, , , )
¥(n) —9(j) > log & > log —— = —log(1 — 2*) > In < i<m—jn.
J n—=7Jn n n

Hence, by assumption (£2)1/2 = (2 k”) we see that

an
n

. kp\1/2 noo_ ,
bn(bn) =)+ (5) " w > 099kalog % o < j <

for all large n. Therefore we have for jo < j <n —j,

P(long > kpip(n) + <@>1/2x)

n

t
< exp {1.1kn/ f,ds — 0.99tk,, (logn — logj)}
0

1.1#2
= exp{k ( 2] —099t(logn—log]))}

for all ¢ > 0 and large n which does not depend on ¢. By selecting ¢t = 0.995(logn — log j)

we have

kpy\1/2
P(long > kpip(n) + (?) x)
< exp{ — 0.44ky,,j(logn — logj)Q}, jo <7 <n—jp, (2.40)
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for all large n. Note that
in  j(logn —logj)? > i logn — log s)?
joég'%lgll—jn jllogn = log j) joﬁgggll—jn s(logn —log:s)

= min s(logn — 2log s)?
Go 2 <s<(n—jn)1/?

= ( min s(logn — 210g3))2,
Go/* <s<(n—jn)1/2

where the last three minima are taken over all real numbers satisfying the corresponding

constraints. It is easily seen that the minimum of s(logn —2log s) for jé/2 <5< (n—jn)/?

is achieved at the two end points of the interval, t = jé/Q or s=(n— jn)l/Q. Thus, for all

large n,

min  j(logn — logj)2 > min {jg(logn — logjo)Q, (n — jn)(logn — log(n — jn))Q}

Jo<j<n—jn
1 152
> min - (logn)? f—”}.
> m1n{2( ogn)”, 5
From the given condition (%”)1/ 2 (1ogj§)1 73 = 00, we obtain

k, min j(logn —logj)* > 10logn
Jo<j<n—jn

for all large n. Therefore, combining all of the inequalities from (2.40) to the above, we

have
kn\1/2 4.4
: o < exp(—4. =n
o nax P(logY] > kpip(n) + ( - ) m) <exp(—4.4logn) =n""",
and hence A
n—Iin
ko172
> P(log¥; > kat(n) + <?) z) = O(n~*4) 0,
J=jo

Finally, observe that, for each 1 < j < jo, logYj is a sum of k;,’s many ii.d. random
variables with Ee?1°8Yi < oo for all [¢| < 5. Then, by the Chernoff bound (see, for instance,
p. 27 from Dembo and Zeitouni, 1998),

P(long > kpip(n) + (ﬁ:)lﬂx) —0

The last two assertions imply the desired result. |

Recall A(z) = exp(—e™?) for all z € R. We first prove the following proposition from
which Theorem 3 will be obtained.

PROPOSITION 2.1 Let ¢(x) be as in (1.5), a(x) and b(x) be as in Theorem 2.1, and z;’s
and k, be as in Theorem 3. Define ®o(y) = Aly), an, = a(n/k,), b, = b(n/k,) if a« =0,
and ap =0, b, =1 if a € (0,00]. Then

lim P(maxlgjgn log |zj| — kntp(n)/2

<an+buy) = Puly), yeR. 2.41
o (/) 722 < @t buy) = 2alt), v € (241)
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Proof. For each of the three cases: « =0, a € (0,00), and o = 0o we will show that there

exists a sequence of positive integers {j,} with 1 < j,, < n/2 such that

n_.jn
‘ Ep\ 1/2
Jim 1 P(long > knth(n) + (;) (an + bny)) —0, yeR  (242)
J:
My (jn . s
(kn/n()]l/;bn converges in probability to zero (2.43)

where M, () is defined as in Lemma 2.5, and

o (ngéjgn(j b (i = 9) + k() e )
n—o00 (kn/n)1/2 > Un nY

= Qa(y) (2.44)

for y € R, where {s;,, 1 <r < k,j > 1} are independent random variables such that s;,
has density y/~te ¥I(y > 0)/(j — 1)! for all j and 7. In fact, (2.44) implies

max (% Zfil(sg‘,r —J) + katp(4)) — kntp(n)

n—jn+1<j<n an d

—— = Q.
(kn/n)/2b, by, “
Review the definition of Y; in (2.38). The above result together with (2.43), Lemmas 2.4

and 2.5 implies that

max _ logY; — kyth(n)

n—jn+1<j<n an d

(kp/n)/2b,, b,

Since (2.42) implies

s Yy —kab(n)

(kn/n)1/2b,, b,

the two limits above imply (2.41) due to the fact that maxi <<, log |2;| and % maxi<;<n logY;
are identically distributed by Lemma 2.4.
Now we start to verify equations (2.42)-(2.44) with a choice of j, given by

1/2
jn = the integer part of <k‘£> n/® 4+ 1 (2.45)
n
for all large n.
Proof of (2.42). It is easy to verify that the conditions in Lemma 2.7 are satisfied, and
thus (2.39) holds. In case a € (0,00], a, = 0 and b, = 1, and (2.42) holds in this case.

When a =0, a, + b,y > 0 for all large n, by applying (2.39) with 2 = 0 we have

HIL%O ”i]:" P(long > kp(n) + (%) 1/2(% + bny))
j=1
n—jn

IN

lim Z; P(logY; > knib(n)) = 0,
]:
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that is, (2.42) holds. This completes the proof of (2.42) for all three cases.

Proof of (2.43). To prove (2.43), it suffices to show M, (j,) = Op((2)/2(logn)~?)
since b, > (logn)~Y/? for all large n. We use Lemma 2.6 this time. When a € (0, o],
jn = Op(n'/®) from (2.45), and then we have from the first conclusion in Lemma 2.6 that

M) = 0 () = 0 ((12) 05 = 0n((52) o))

n n

When a = 0, we have from the two conclusions in Lemma 2.6 that

M) = Op(min{jnk}lﬂ’knlogn})

n n
= (8" oo 2 () s}
= (2)"oelr)

n

= on((%) "tosn)

. 1/8 . 1/2 .
since %/ < n V8 if k, >n'/? and k"nl# < n U8 ifk, < nl/2

k2
Proof of (2.44). Set Ty (jn) = Lmax (3328 (85 — ) + kntb(4)). Then
Fep\ 1/2
P(Tu(Gn) < k() + (22) 7 (an + buy)) (2.46)

n kn k
n

= I P < akatetm — w0 + 5 () ). 247)

Jj=n—jn+1 r=1

Notice ngl s;r is a sum of jk, ii.d. random variables with distribution Exp(1), that is,
it has density e *I(x > 0). Since the mean and the variance of Exp(1) are both equal to 1,

we normalize the sum by

kn,
W; = \/JlTn((,lejr) _jkn)-

By Theorem 1 on page 217 from Petrov (1975), for any sequence of positive numbers 6,
such that 6, = o((nk,)9),

P(W; > z) = (1+ o(1))(1 — O()) (2.48)

uniformly over z € [0, 6,] and n/2 < j < n as n — co. Now reorganize the index in (2.47)

28



to obtain

PTG < k() + (22) (0 45

i=1
(n—;—l— 1)1/2( . ny))
= ﬁ(l = ani), (2.49)
i=1

where a,; = P(Wn_i_i,_l > :Um) and

1—1
n

t = (0= i+ D) 20(m) — v — i+ 1)+ (1= =8 ey 09 (@250)

Recalling (2.45), we know j, = o(n). From the second expression in (2.35) we have

. i—1 i
b(n) —d(n—i+1) = <1+0(f)>
n n
uniformly over 1 < ¢ < j, as n — oco. It follows that

((

<
-
<

— i+ Dka) 2 (@(n) —(n —i+1)
) - (- (reo()
)”21—1 (1+0(;))

) (i1 (1+0(m™"))

uniformly over 1 < i < j, as n — oo. Since a, + b,y = O((logn)Y/?),

3

3\§z\§:\§

1/2

(- =" )@t bay = -1 025

n

= (56 o( "B

uniformly over 1 < ¢ < j,. Therefore, by combining the above two expansions we get
knp\1/2
wni = (140 %)) () 76 = 1)+ ap + by (2.51)
n

uniformly over 1 < ¢ < j,. We emphasize the above is true when ¢ = j, = 1, which can be
seen directly from (2.50). This fact will be used later.
Finally, we prove (2.44) by considering the three cases: a =0, a € (0,00) and o = 0.
Case 1: o = 0. Since

an = a(n/kn) ~ (log(n/k,))*? and b, = b(n/ky) = (log(n/kn))"/* = 0,
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we have

L2

n Jn 1/2) _ 1/8
1Lrlurilazm—mxaand 1122)3{71:6”2_0( 12 + (logn) =0(n'/?).

It follows from (2.48) that
ani = (1+0(1))(1 — ®(zn,))

uniformly over 1 < ¢ < Jn- In Lemma 2.2, choose x,, = n/ky, jn as in (2.45) and ¢,; =
(14 O(n=3/%) (k ) as in (2.51) to obtain

Jn Jn

D ani=(1+0(1)> (1= ®(wns)) e Y.

i=1 i=1
Further, it is easily seen that maxi<j<j, an; — 0. Applying (2.22) to (2.49), we arrive at

Tn( n) - kmﬁ(”)
P

<ap+ bny) —e ¢ =(y), yER,

that is, we get (2.44) for o = 0.
Case 2: We see that j, ~ o 1/2n!/8 from (2.45). By definition, a,, = 0 and b, = 1.
Then it follows from (2.51) that

Tni = (1+0(1))a?(i —1) +y
holds uniformly over 1 <i < j, as n — co. We claim that
= (1 +0(1)(1 = ®(zn,)) (2.52)

uniformly over 1 < i < j,. In fact, review that (2.48) holds if 0 < z = o(n!/3). Evidently,
Maxi<i<j, |Tn,| = O(nl/g). But there is a possibility that x,,; < 0 for small values of i. Let
jo > 1 be an integer such that minj <;<;, n; > 0. Then we have from (2.48) that (2.52)
holds uniformly over jo < i < j,. By using the standard central limit theorem, we know
(2.48) holds as well for each i = 1,- -, jo — 1. Therefore, for each i > 1,

lim ap; =1—®(a'?(i—1)+y) and » (1 a2(i—1)+y)) <oo  (2.53)

n—00
>1

by the fact 1 — ®(x) ~ \/21—7”[6_12/2 as * — +oo. We now apply Lemma 2.1 to show (2.44).

By defining a,; = 0 for all i > j,, with (2.53), we only need to verify the following two

conditions: SUPp >0 1<i<jn Oni < 1 for some integer ng and lim, s Zﬁl Api = Z;’il(l —
®(a~1/2(i — 1) + y)). The first one follows from (2.52) and the fact that x,,; > 2a/2(i —
1)+y>yfor1l<i<j, for all large n. The second condition can be easily verified by the
dominated convergence theorem since a,; < 2(1 — @(%alﬂ(i —1)4vy)) forall 1l <i<j,as
n is sufficiently large and ) ;2 2(1 — CIJ(%al/Q(i —1) 4y < .
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Case 3: a = co. From (2.45), 0 < (%2)(j, — 1) < n'/® and thus z,; = O(n'/®) by
(2.51). In particular, we have x,; = y, and for all large n, z,; > 0if 2 < i < j, and
jn > 2. Therefore,

ani = (14+0(1))(1 — (zp4))

uniformly over 1 < i < j, from (2.48). From (2.51), ap1 — 1 — ®(y) as n — oco. Obviously,

Tni > %(%")1/2 if 2 <i < j, and j, > 2. Thus, use the fact 1 — ®(x) ~ ﬁe*xzﬂ as

r — +00 to see that, for large n,

[e.o] .

293w < 23 (1-0(5()")
=2 =2
gexp{ — %22}
< [Tow{ - - (E)

o 18n

IN

1/2

since exp{ — 1’%’;1 '2} < f;_l exp{ — 1%%332} dx for all ¢ > 2. Thus, I(j, > 2) 2522 Gn; — 0.

This and the fact I(j, > 2)-maxa<i<j, ani — 0 imply that I(j, > 2)(1-][/"5(1—an;)) — 0
as n — 0o. So we have from (2.49) that

P(Tu() < o) + () P 0+ b))
= ﬁ(l — py)
i=1

jTL
— (1—am)- [1 +IGa=2)( -1+ - am))} — B(y) = Doo(y)
i=2
as n — o0o. Reviewing the notation of T,,(j,) defined above (2.46), we get (2.44) for the
case a = 0o. The proof of the proposition is then completed. |

Proof of Theorem 3. We use the same notation as in Proposition 2.1. We first show the
following;:
(1) If limy, 00 kpn/n = 0, particularly for k, = k, then

2(n/kn)""? rmaxi<j<n || n e
b ( on )2 - 1) 5 converges weakly to cdf exp(—e ).  (2.54)
(i) If limy, o0 kn/n = a € (0, 00), then

maxi<j<n | %]

1
"2 converges weakly to cdf @, (5(11/2 + 20~ Y2 10g a:), x>0. (2.55)
n n
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To do so, for a € [0,00), define

V. — maxi<;<n log |Zj| — k,ﬂﬁ(n)/? - al
! (kjn/”)l/%n/2 bn
Then V,, converges in distribution to ©, by Proposition 2.1, where ©, is a random variable

with cdf ®,(y). Trivially,

a5

exp {lknzp(n) n %(%) Y2+ ann)}

{3 s+ () ) om (3(12) ). o0

If o = 0, then %" — 0, a, = a(kn) (log - )1/2 — 00, by = b(3-) = (log ﬁ)*lﬂ — 0,
and (%”)1/2@” ~ (%”)1/%;1 — 0 asn — oo. Usmg (2.35) and expanding (2.56) we get

max |z] = eXp{;anOgn—i—O(lj:)—i—;(k:)lﬂan}(l—i-;(n)lmbV Op(k b2>>
= b2 (14 5 () Fan s 0(2) (145 (5) Phav+ 0 ()

- (i3 (8) e 38 s on(),

which yields that

2(n/::)1/2 (max;;ifgn 2] 1) B % s Op((%)1/2<log I:;)s/Q)

converges in distribution to A by the Slutsky lemma. We obtain (2.54).
Now assume « € (0,00). In this case, a,, = 0 and b,, = 1. Then from (2.56),

max |z;| —exp{ Ent(n )}exp{é(k%)lmvn}.

1<j<n n

Using expansion (n) = logn — 5= + O(-z) from (2.35) we have

maxi<i<n |2; 1 1
55215 g s} ()i}

which converges weakly to the distribution of e=®/4 eXp( al/?2e ) given by ® ( al/? 4
2a~121ogy), y > 0. We get (2.55).

From (2.54) it is easy to see
2(n/kn)'/? B (n

n\1/2 an
b . log E) =a, and b = log k— — loglog k— ~3 log(27r) Bn-

Thus we obtain (a) of Theorem 3. The part (b) follows from (2.55) and the part (c) is
yielded from Proposition 2.1 with ® () = ®(x). This completes the proof of the theorem.
|
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2.4 The Verifications of (1.2) and (1.6)

Verification of (1.2). First, by the Taylor expansion,

B ) B Y
Hi(y) =e yZF = l-e yZF
j=0 j=k
k_,—y e j—k—1
y'e ( Yy
Dy
| .
k! Parnd (k+1)---j
for all y € R and k > 1. Notice that the absolute value of the above sum is bounded by
Dkt W <1432 1 5z < oo uniformly for all k> 1 and ly| < 1. This says
Y v
Hyy) =1- Lev(1+0@) =1 - L (1+0()

as y — 0 uniformly for all £ > 1. Hence

log [ [ Hi(y) Z log Hy,(y)
k=1
k

= —(1+0(y ii‘ (1+0(y)

k=1

since Y poy @,’c—]: =eY — 1~y asy— 0. Therefore,
o0
1 — H Hy(y) =1 — e v0H0W)

as y — 0. Taking y = 72 and letting z — oo, we get (1.2). |

Verification of (1.6). Given parameter > 0, set

:Jlj)@(x—i—ﬁj)

for x € R. From integration by parts, we know 1 — ®(z) = \/21—7”06_“2/2(1 + O(x7?)) as
x — 400. Use log(1 —t) = —t(1 4+ O(t)) as t — 0 to have
1 2 1 2
log®(z) = ——— e 2(14 0@ 2)(1+0(Ze /2
ogd(r) = ——s—e (1406 )(1+0(Le )
1 2
R N (a
Norr ( (@)
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as ¢ — +o00, where a(z) is defined over [1,00) and |a(z)] < Cx~2 for all z > 1 and C is a

constant not depending on x. Thus,

log Fg(z) = Z log@(w + Bj)
§=0

1 & 1 N2
= — —(z+B35)°/2 1+ + B4
F iy el +0)
= (o) = S a2 (2.57)
Vo par + Bj
as x — +00. Observe
x +1
_ L wrsGrre o / UL gy o L e
T+ B +1) z+Bj t r+ B

for all x > 0 and j7 > 0. Sum the above over all j > 1 to obtain

S N 1 H2/2 1 2/9 1 2
/ Ze /2 gt < Z .6—($+BJ) / < = @B/ _|_/ Ze 2 gt
e+p b Py T+ 48

for all x >2 0. Write f;_iﬁ %e*tQ/j dt = — fq;oi,e t%(e*tQ/Q)’ dt. From the integration by parts,
Jovs te=t/2dt ~ (xﬁﬁ)Q e~ (@+B)/2 as & — 4o00. Since B > 0, we have (xjﬁ)ge*(”ﬁ)Q/Q =
o(%e‘xz/Q) and ﬁe_(”ﬁﬁﬂ = 0(%6‘752/2) as * — +oo. It follows from (2.57) that

11
log Fz(x) ~ e/

Va2rx

as * — +o0o. In other words, the first term in the sum appeared in (2.57) dominates the

sum. Thus,

1 1
1—Fg(z)=1- elosfs(@) —log Fg(x) ~ 2

V2rx

as ¢ — 4o0o. Observe that the above approximation is free of the choice of 5. Since
F (z) = ®4(x) for x > 0. Replacing “z” by “%al/Z +2a~12logx”, we arrive at

1
1-— @a(§a1/2 + 2a71/2 log:z)

1 _
= 1—F\/5(§a1/2+2a 1/2logﬂv)

1 1 - 1
~ E(ial/z + 20712 log x) ! exp{ — (§a1/2 + 20712 log x)2/2}
~ \/ae—a/S 1 e—2(10gw)2/a

2V2r xlogx
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as x — +o0o. At last

1
V2m log x

P(eNOY > 5) = P(N(0,1) > logz) ~ ¢~ (log)?/2

as ¢ — +oo. This verifies (1.6) and the statement below. [ |
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