On Jiang's asymptotic distribution of the largest entry of a sample correlation matrix

Deli Li
(joint with Professors Yongcheng Qi and Andrew Rosalsky)

Department of Mathematical Sciences
Lakehead University, Canada
dli@lakeheadu.ca

Abstract: Let \(\{X, X_{k,i}; i \geq 1, k \geq 1\} \) be a double array of nondegenerate i.i.d. random variables and let \(\{p_n; n \geq 1\} \) be a sequence of positive integers such that \(n/p_n \) is bounded away from 0 and \(\infty \). This work is devoted to the solution to an open problem posed in Li, Liu, and Rosalsky (2010) on the asymptotic distribution of the largest entry \(L_n = \max_{1 \leq i < j \leq p_n} \left| \hat{\rho}_{i,j}^{(n)} \right| \) of the sample correlation matrix \(\Gamma_n = \left(\hat{\rho}_{i,j}^{(n)} \right)_{1 \leq i,j \leq p_n} \) where \(\hat{\rho}_{i,j}^{(n)} \) denotes the Pearson correlation coefficient between \((X_{1,i}, \cdots, X_{n,i})' \) and \((X_{1,j}, \cdots, X_{n,j})' \). We show under the assumption \(\mathbb{E}X^2 < \infty \) that the following three statements are equivalent:

1. \(\lim_{n \to \infty} n^2 \int_{(n \log n)^{1/4}}^{\infty} \left(\left(\frac{n \log n}{x} \right)^{-1} - \left(\frac{\sqrt{n \log n}}{x} \right)^{-1} \right) dF(x) = 0, \)

2. \(\left(\frac{n \log n}{\log n} \right)^{1/2} L_n \overset{p}{\to} 2, \)

3. \(\lim_{n \to \infty} \mathbb{P} \left(nL_n^2 - a_n \leq t \right) = \exp \left\{ -\frac{1}{\sqrt{8\pi}} e^{-t^2/2} \right\}, \quad -\infty < t < \infty \)

where \(F(x) = \mathbb{P}(|X| \leq x), x \geq 0 \) and \(a_n = 4 \log p_n - \log \log p_n, n \geq 2 \). To establish this result, we present six interesting new lemmas which may be beneficial to the further study of the sample correlation matrix.