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Abstract. Distributions of the largest eigenvalues of Wishart covariance ma-
trices corresponding to the large size data matrices are studied in this paper
by reviewing the most recent results on this topic. Special attention is paid
to the corresponding asymptotic laws – Tracy-Widom distributions, and their
realizations in S-Plus. A further look at the practical aspects of the results
studied in the paper is taken by considering some examples and discussing
appearing difficulties and open problems.

1. Introduction

1.1. Preliminary notes. This paper is devoted to the study of the recent develop-
ments in the theory of random matrices, – a topic of importance in mathematical
physics, engineering, multivariate statistical analysis, – developments, related to
distributions of largest eigenvalues of sample covariance matrices.

From the statistical point of view this particular choice in the class of random
matrices may be explained by the importance of the Principal Component Analysis
(PCA), where covariance matrices act as principal objects, and behaviour of their
eigenvalues accounts for the final result of the technique’s use.

Nowadays statistical work deals with data sets of hugeous sizes. In these cir-
cumstances it becomes more difficult to use classical, often exact, results from the
fluctuation theory of the extreme eigenvalues. Thus, in some cases, asymptotic
results stated in more simple forms are preferable.

The recent asymptotic results on the extreme eigenvalues of the real Wishart ma-
trices are studied here. Johnstone (2001) has established that it is the Tracy-Widom
law of order one that appears as a limiting distribution of the largest eigenvalue of
a Wishart matrix with identity covariance in the case when the ratio of the data
matrix’ dimensions tends to a constant. The Tracy-Widom distribution which ap-
pears here is stated in terms of the solution to the Painlevé II differential equation
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– one of the six exceptional nonlinear second-order ordinary differential equations
discovered by Painlevé a century ago.

The known exact distribution of the largest eigenvalue in the null case follows
from a more general result of Constantine (1963) and is expressed in terms of hyper-
geometric function of a matrix argument. This hypergeometric function represents
a zonal polynomial series. Until recently such representation was believed to be
inapplicable for the efficient numeric evaluation. However, the most recent results
of Koev and Edelman (2005) deliver new algorithms that allow to approximate
efficiently the exact distribution. The present work is mostly devoted to the study
of the asymptotic results.

In this section a general introduction into the topic is given. It also contains a
literature review, historical aspects of the problem and some arguments in favour
of its importance.

Section 2 represents a summarized, and necessarily selective account on the topic
from the theoretical point of view: the exact and limiting distributions of the largest
eigenvalue in the white Wishart case are particularly discussed. The limiting results
are viewed in connection with similar results for the Gaussian Orthogonal, Gaussian
Unitary, and Symplectic Ensembles. The content of the section also serves as a
preparative tool for the subsequent exposition and developments.

Application aspects of the discussed results in statistics are deferred to Section 4.
We discuss on applications in functional data analysis, PCA, sphericity tests.

Large computational work has been done for the asymptotic case and some novel
programming routines for the common statistical use in the S-Plus package are
presented. This work required a whole bag of tricks, mostly related to peculiarities
of the forms in which the discussed distributions are usually presented. Section 3
contains the corresponding treatment to assure the efficient computations. Special
effort was put to provide statistical tools for using in S-Plus. The codes are publicly
downloadable from www.vitrum.md/andrew/MScWrwck/codes.txt. Refer further
to this document as Listing.

The computational work allowed to tabulate the Tracy-Widom distributions (of
order 1, 2, and 4). Particularly, a table containing standard tail p-values for the
Tracy-Widom distribution is given. It is ready for the usual statistical look-up use.

The final section concludes the paper with a discussion on some open problems
and suggestions on the further work seeming to be worth of doing.

Acknowledgement. Professor D. Firth and my colleague Charalambos Char-
alambous have kindly shared a data set containing lizards’ spectral reflectance mea-
surements. This contribution is appreciated. The data set serves as an example of
a studied technique.

I am deeply grateful to the Department of Statistics, The University of Warwick
for providing comfortable study and research facilities.

The support provided by OSI/Chevening/Warwick Scholarship 2004-2005 is also
acknowledged.

1.2. Sample covariance matrices and their eigenvalues in statistical ap-
plications. Multivariate statistical analysis has been one of the most productive
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areas of large theoretical and practical developments during the past eighty years.
Nowadays its consumers are from very diverse fields of scientific knowledge. Many
techniques of the multivariate analysis make use of sample covariance matrices,
which are, in some extent, to give an idea about the statistical interdependence
structure of the data.

Theoretically, covariance matrices are the objects which represent the true sta-
tistical interdependence structure of the underlying population units. At the same
time, sample (or empirical) covariance matrices based on experimental measure-
ments only give some picture of that interdependence structure. One of the very
important questions is the following: in what extent this picture, drawn from a
sample covariance matrix, gives a right representation about the juncture?

As mathematical objects covariance matrices originate many other scions which
can be well considered as functions of a matrix argument: trace, determinant, eigen-
values, eigenvectors, etc. Not surprisingly, the study of these is of great importance
in multivariate statistical analysis.

There is a special interest in behaviour of eigenvalues of the sample covariance
matrices.

Thus, in the Principal Component Analysis (PCA), which is, perhaps, one of
the most employed multivariate statistical techniques, reduction of the data dimen-
sionality is heavily based on the behaviour of the largest eigenvalues of the sample
covariance matrix. The reduction can be achieved by finding the (orthogonal) vari-
ance maximizing directions in the space containing the data. The formalism of the
technique is introduced here briefly.

In Principal Component Analysis, known also as the Karhunen-Loève transform
[e.g. see Johnstone (2001)], one looks for the successively orthogonal directions that
maximally cover the variation in the data. Explicitly, in the PCA the following
problem is set to be solved

var(γ′iX) → max, i = 1, . . . , p ,(1.1)

γk ⊥ γk−r, r = 1, . . . , (k − 1) ∀k = 2, . . . , p ,

where X is the p-variate population vector and {γi}p
1 are the orthonormal vectors

to be found. The solution of this problem is nearly related to the spectral decom-
position of the population covariance matrix Σ. Vectors {γi}p

1 satisfy the equation

Σ =
(

γ1 γ2 . . . γp

)
Λ

(
γ1 γ2 . . . γp

)′
,

where Λ ≡ diag(λi) is the diagonal matrix containing eigenvalues of Σ. Moreover,
these are equal to the variances of the linear combinations from (1.1).

Thus, the orthogonal directions of the maximal variation in the data are given
by the eigenvectors of a population covariance matrix and are called to be the
principal component directions, and the variation in each direction is numerically
characterized by the corresponding eigenvalue of Σ. In the context of the PCA
assume that the diagonal entries of Λ are ordered, that is

λ1 ≥ . . . λp ≥ 0.
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If X is a random vector with mean µ and covariance matrix Σ then the principal
component transformation is the transformation

X 7→ Y =
(

γ1 γ2 . . . γp

)′ (X− µ).

The ith component of Y is said to be the ith principal component of X.

Often it may not be desirable to use all original p variables – a smaller set of linear
combinations of the p variables may capture most of the information. Naturally, the
object of study becomes then a bunch of largest eigenvalues. Dependently on the
proportion of variation explained by first few principal components, only a number
of new variables can be retained. There are different measures of the proportions
of variation and different rules of the decision: how many of the components to
retain?

However, all such criterions are based on the behaviour of the largest eigen-
values of the covariance matrix. In practice, one works with estimators of the
sample covariance matrix and its eigenvalues rather than with the true objects.
Thus, the study of eigenvalue distribution, and particularly of the distributions of
extreme eigenvalues, becomes a very important task with the practical consequences
in the technique of the PCA. This is especially true in the age of high-dimensional
data. See the thoughtful discussion on this in Donoho (2000).

Yet another motivating, although very general example can be given. Suppose we
are interested in the question whether a given data matrix has a certain covariance
structure. In line with the standard statistical methodology we could think as
follows: for a certain adopted type of population distribution find the distribution
of some statistics which is a function of the sample covariance matrix; then construct
a test based on this distribution and use it whenever the data satisfies the conditions
in which the test has been derived. There are tests following such a methodology,
e.g. a test of sphericity in investigations of covariance structure of the data; see
Kendall and Stuart (1968), Mauchly (1940) and Korin (1968) for references. Of
course, this is a very general set up. However, in virtue of the recent results in
the field of our interest, which are to be discussed where appropriate in further
sections, one may hope that such a statistics for a covariance structure’s testing
may be based on the largest sample eigenvalue. Indeed, such tests have seen the
development and are referred in literature to as the largest root tests of Σ = I, see
Roy (1953).

1.3. Research question. As we saw, covariance matrices and their spectral be-
haviour play the crucial role in many techniques of the statistical analysis of high-
dimensional data.

Suppose X is a data matrix, which we view as a realization of a random matrix
X ∼ Nn×p(µ, Σ). Here, by Nn×p(µ, Σ) denote the distribution of n × p random
matrices comprising n independent p-variate multivariate normal random rows with
the mean µ and covariance matrix Σ.

Both for theoretical and practical needs it suffices to restrict ourselves by the
zero mean case with the diagonal population covariance matrix Σ. This can be
justified by the simple facts: the covariance structure is invariant under linear
transformations and any linear transformation of a normal vector has the normal
distribution.
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Consider therefore a data matrix X as a realization of a random matrix X ∼
Nn×p(0, diag λi). Let S = (n−1)−1X ′X be the sample covariance matrix’ estimator
obtained from the fixed data matrix X. Let

l̂1 ≥ l̂2 ≥ . . . ≥ l̂p ≥ 0

be the eigenvalues of S. This estimator S may be viewed as a realization of the
sample covariance matrix S = (n− 1)−1X ′X with the eigenvalues

l1 ≥ l2 ≥ . . . ≥ lp ≥ 0

for which l̂1, l̂2, . . . , l̂p are also estimators.

In these settings the following problems are posed to be considered in this paper:

• To study the distribution of the largest eigenvalues of the sample
covariance matrix S by reviewing the recent results on this topic
as well as those preceding that led to these results. A special
emphasis should be put on the study of the (marginal univariate)
distribution of l1 in the case of large data matrices’ size.

• To take a further look at the practical aspects of these results by
considering examples where the theory can be applied.

• To provide publicly available effective S-Plus routines implement-
ing studied results and thus providing their use in statistical ap-
plications.

1.4. Literature and historical review. Perhaps, the earliest papers devoted to
the study of the behaviour of random eigenvalues and eigenvectors were those of
Girshick (1939) and Hsu (1939). However, these followed the pioneering works in
random matrix theory emerged in the late 1920’s, largerly due to Wishart (1928).
Since then the random matrix theory has seen an impetuous development with
applications in many fields of mathematics and natural science knowledge. One
can mention (selectively) developments in:

(1) nuclear physics – e.g. works of Wigner (1951, 1957), Gurevich et al.
(1956), Dyson (1962), Liou et al. (1973), Brody et al. (1981), Bohigas et
al. (1984a,b);

(2) multivariate statistical analysis – e.g. works of Constantine (1963),
James(1960, 1964), Muirhead (1982);

(3) combinatorics – e.g. works of Schensted (1961), Fulton (1997), Tracy
and Widom (1999), Aldous and Diaconis (1999), Deift (2000), Okounkov
(2000);

(4) theory of algorithms – e.g. work of Smale (1985);
(5) random graph theory – e.g. works of Erdős and Rényi in late 1950’s,

Bollobás (1985), McKay (1981), Farkas et al. (2001);
(6) numerical analysis – e.g. works of Andrew (1990), Demmel (1988), Edel-

man (1992);
(7) engineering: wireless communications and signal detection, infor-

mation theory – e.g. works of Silverstein and Combettes (1992), Telatar
(1999), Tse (1999), Vismanath et al. (2001), Zheng and Tse (2002), Khan
(2005);

(8) computational biology and genomics – e.g. work of Eisen et al. (1998).
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Spectrum properties (and thus distributions of eigenvalues) of sample covariance
matrices are studied in this paper in the framework of Wishart ensembles (see
§ 2.1.4). Wishart (1928) proposed a matrix model which is known nowadays as
the Wishart real model. He was also the first who computed the joint element
distribution of this model.

Being introduced earlier than Gaussian ensembles (see §§ 2.1.2, 2.1.3), the
Wishart models have seen the intensive study in the second half of the last cen-
tury. The papers of Wigner (1955, 1958), Marčenko and Pastur (1967) were a great
breakthrough in the study of the empirical distribution of eigenvalues and became
classical. The limiting distributions which were found in these works became to
be known as the Wigner semicircle law and the Marčenko–Pastur distribution,
correspondingly.

The study of eigenvalue statistics took more clear forms after the works of James
(1960), and Constantine (1963). The former defined and described zonal polynomi-
als, and thus started the study of eigenvalue statistics in terms of special functions,
the latter generalized the univariate hypergeometric functions in terms of zonal
polynomial series and obtained a general result which permitted to derive the ex-
act distribution of the largest eigenvalue [Muirhead (1982), p.420]. The work of
Anderson (1963) is also among standard references on the topic.

Surveys of Pillai (1976, 1977) contain discussions on difficulties related to obtain-
ing the marginal distributions of eigenvalues in Wishart ensembles. To extract the
marginal distribution of an eigenvalue from the joint density was a cumbersome
problem since it involved complicated integrations. On the other hand, the as-
ymptotic behaviour of data matrices’ eigenvalues as principal component variances
under the condition of normality (and in the sense of distributional convergence)
when p is fixed were known [see Anderson (2003), Flury (1988)].

However, modern applications require efficient methods for the large size matri-
ces’ processing. As Debashis (2004) notices, in fixed dimension scenario much of
the study of the eigenstructure of a sample covariance matrix utilizes the fact that
it is a good approximation of the population covariance matrix when sample size
is large (comparatively to the number of variates). This is no longer the case when
n
p → γ ∈ (0,∞).

It was known that when the true covariance matrix is an identity matrix, the
largest and the smallest eigenvalues in the corresponding Wishart matrix converges
almost surely to the respective boundaries of the support of the Marčenko-Pastur
distribution. However, no results regarding the variability information for this con-
vergence were known until the work of Johnstone (2001), in which the asymptotic
distribution for largest sample eigenvalue has been derived. Johnstone showed that
the asymptotic distribution of the properly rescaled largest eigenvalue of the white
Wishart population covariance matrix 1 when n

p → γ ∈ (0,∞) is the Tracy-Widom
distribution Fβ , where β = 1. This was not a surprise for specialists in random ma-
trix theory – the Tracy-Widom law Fβ appeared as the limiting distribution of the
first, second, etc. rescaled eigenvalues for Gaussian Orthogonal (β = 1, real case),
Gaussian Unitary (β = 2, complex case) and Gaussian Simplectic Ensemble (β = 4,

1White Wishart distribution corresponds to the case of n i.i.d. standard Gaussian p-variate
vectors (see Definition 1).
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qauternion case), correspondingly. The distribution was discovered by Tracy and
Widom (1994, 1996). Dumitriu (2003) mentions that general β-ensembles were
considered and studied as theoretical distributions with applications in lattice gas
theory and statistical mechanics: see works of Baker and Forrester (1997), Jo-
hannson (1997, 1998). General β-ensembles were studied by a tridiagonal matrix
constructions in the papers of Dumitriu and Edelman (2002) and Dumitriu (2003).

It should be noted here that the work of Johnstone followed the work of Johansson (2000) in

which a limit theorem for the largest eigenvalue of a complex Wishart matrix has been proved. The

limiting distribution was found to be the Tracy-Widom distribution Fβ , where β = 2. However,

particularly because of the principal difference in the construction of the real and complex models,

these two different models require independent approach in investigation.

Soshnikov (2002) extended the results of Johnstone and Johansson by showing
that the same limiting laws remain true for the covariance matrices of subgaussian
real (complex) populations in the following mode of convergence: n− p = O(n1/3).

Bilodeau (2002) studies the asymptotic distribution (n → ∞, p is fixed) of the
largest eigenvalue of a sample covariance matrix when the distribution for the popu-
lation is elliptical with a finite kurtosis. The main feature of the results of Bilodeau’s
paper is that they are true regardless the multiplicity of the population’s largest
eigenvalue. Note that the class of elliptical distributions contains the multivariate
normal law as a subclass. Definition of the elliptical distribution see in Muirhead
(1982, p.34).

The limiting distributions of eigenvalues of sample correlation matrices in the
setting of ”large sample data matrices” are studied in the work of Jiang (2004).
Although, the empirical distribution of eigenvalues is only considered in the last
mentioned paper. Under two conditions on the ratio n/p, it is shown that the
limiting laws are the Marčenko-Pastur distribution and the semicircular law, re-
spectively.

Diaconis (2003) provides a discussion on fascinating connections between study
of the distribution of the eigenvalues of large unitary and Wishart matrices and
many problems and topics of statistics, physics and number theory: PCA, telephone
encryption, the zeros of Riemann’s zeta function; a variety of physical problems;
selective topics from the theory of Toeplitz operators.

Finally, refer to a paper of Bai (1999) as a review of the methodologies and math-
ematical tools existing in spectral analysis of large dimensional random matrices.

2. The largest eigenvalues in sample covariance matrices

In this section review of the results regarding the distribution of the largest
eigenvalues (in bulk and individually) in sample covariance matrices is given. The
Wishart ensemble is positioned as a family which will mostly attract our attention.
However, an analogy with other Gaussian ensembles such as Gaussian Orthogonal
Ensemble (GOE) – On, Gaussian Unitary Ensemble (GUE) – Un and Gaussian
Symplectic Ensemble (GSE) – Sn is discussed. These lead to the Tracy-Widom laws
with parameter’s values β = 1, 2, 4 as limiting distributions of the largest eigenvalue
in GOE, GUE and GSE, correspondingly. The case where β = 1 corresponds also
to the Wishart ensemble.
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2.1. Random matrix models and ensembles. Depending on the type of studied
random matrices, different families called ensembles can be distinguished.

2.1.1. General methodology: basic notions. In the spirit of the classical approach of
the probability theory a random matrix model can be defined as a probability triple
object (Ω,P,F) where Ω is a set of matrices of interest, P is a measure defined
on this set, and F is a σ-algebra on Ω, i.e. a family of measurable subsets of Ω,
F ⊆ 2Ω.

An ensemble of random matrices of interest usually forms a group (in algebraic
sense). This permits to introduce a measure with the help of which the ensemble’s
”typical elements” are studied. The Haar measure is common in this context when
the group is compact or locally compact, and then it is a probability measure PH

on a group Ω which is translation invariant: for any measurable set B ∈ F and any
element M∈ Ω

PH(MB) = PH(B).

Here, by MB the following set is meant

MB
∂ef
= {MN | N ∈ B}.

See Conway (1990) and Eaton (1983) for more information on Haar measure and
Diaconis and Shahshahani (1994) for a survey of constructions of Haar measures.

2.1.2. Wigner matrices. Wigner matrices were introduced in mathematical physics
by Eugene Wigner (1955) to study the statistics of the excited energy levels of
heavy nuclei.

A complex Wigner random matrix is defined as a square n×n Hermitian matrix
A = (Alm) with i.i.d. entries above the diagonal:

Alm = Aml, 1 ≤ l ≤ m ≤ n, {Alm}l<m – i.i.d. complex random variables,

and the diagonal elements {All}n
l=1 are i.i.d. real random variables.

A Hermitian matrix whose elements are real is just a symmetric matrix, and,
by analogy, a real Wigner random matrix is defined as a square n × n symmetric
matrix A = (Alm) with i.i.d. entries above the diagonal:

Alm = Aml, 1 ≤ l ≤ m ≤ n, {Alm}l≤m – i.i.d. real random variables.

By specifying the type of the elements’ randomness, one can extract different
sub-ensembles from the ensemble of Wigner matrices.

2.1.3. Gaussian Unitary, Orthogonal and Symplectic Ensembles. Assumption of
normality in Wigner matrices leads to a couple of important ensembles: Gauss-
ian Unitary (GUE) and Gaussian Orthogonal (GOE) ensembles.

The GUE is defined as the ensemble of complex n×n Wigner matrices with the
Gaussian entries

<Alm, =Alm ∼ i.i.d. N

(
0,

1
2

)
, 1 ≤ l < m ≤ n,

Akk ∼ N(0, 1), 1 ≤ k ≤ n.
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The GOE is defined as the ensemble of real n × n Wigner matrices with the
Gaussian entries

Alm ∼ i.i.d. N

(
0,

1 + δlm

2

)
, 1 ≤ l ≤ m ≤ n,

where, as before, δlm is the Kronecker symbol.
For completeness we introduce a Gaussian Symplectic Ensemble (GSE).

The GSE is defined as the ensemble of Wigner-like random matrices with the quaternion
Gaussian entries

Alm = Xlm + iYlm + jZlm + kWlm,

where Xlm, Ylm, Zlm, Wlm ∼ i.i.d N

„
0,

1

2

«
, 1 ≤ l ≤ m ≤ n,

Akk ∼ N(0, 1), 1 ≤ k ≤ n.

Note that all eigenvalues of a hermitian (symmetric) matrix are real.

For references on the relationship of GOE, GUE and GSE to quantum physics
and their relevance to this field of science see Forrester (2005).

2.1.4. Wishart ensemble. As we saw, many of the random matrix models have
(standard) normal entries. For an obvious reason, in statistics the symmetrization
of such a matrix, say X , by multiplying by the transpose X ′ leads to the ensemble
of positive definite matrices X ′X , which coincides up to a constant with a family
of sample covariance matrices. This ensemble was named after Wishart who first
computed the joint element density of X ′X .

Let X = (Xij) be a n × p real rectangular random matrix with independent
identically distributed entries. The case where

Xij ∼ N(0, 1), 1 ≤ i ≤ n, 1 ≤ j ≤ p,

leads to a family {X ′X} of positive definite matrices, which is known in the litera-
ture as the Wishart ensemble of real sample covariance matrices.

The following general definition is accepted.

Definition 1. A p×p random matrix M is said to have a Wishart distribution
with scale matrix Σ and n degrees of freedom if M = X ′X where X ∼
Nn×p(µ,Σ).

This is denoted by
M∼ Wp(n,Σ).

The case when Σ ≡ I is referred to as the ”null” case, and then the distribution
of M is called a white Wishart distribution.

Analogously, the Wishart ensemble of complex sample covariance matrices can be defined. The

spectral properties of such matrices are of a long-standing interest in nuclear physics. We restrict

ourselves to the real case only.

The rest of this paragraph aims to demonstrate the difficulties arrising with
(i) representation of the joint density function and (ii) extraction of the marginal
density of the Wishart matrices’ largest eigenvalue.
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To obtain an explicit form for the joint density of the eigenvalues is not, generally,
an easy task. The following theorem can be found in Muirhead (1982, Th.3.2.17).

Theorem 1. If A is a p× p positive definite random matrix with density function
f(A) then the joint density function of the eigenvalues l1 > l2 > . . . > lp > 0 of A
is

πp2/2

Γp(p/2)

∏

1≤i≤j≤p

(li − lj)
∫

Op

f(HLH ′)(dH).

Here dH stands for the Haar invariant probability measure on the orthogonal
group Op, normalized so that ∫

Op

(dH) = 1.

For an explicit expression of dH as a differential form expressed in terms of exterior
products see Muirhead (1982, p.72).

This general theorem applies to the Wishart case in the following way.

Theorem 2. If A ∼ Wp(n,Σ) with n > p − 1, the joint density function of the
eigenvalues l1 > l2 > . . . > lp > 0 of A is

πp2/22−np/2(detΣ)−n/2

Γp(n
2 )Γp(p

2 )

p∏

i=1

l
(n−p−1)/2
i

p∏

j=i+1

(li − lj)
∫

Op

etr(−1
2
Σ−1HLH ′)(dH).

The latter theorem can be proven by substituting f(A) in the Theorem 1 by the
Wishart density function

(2.1)
2−np/2

Γp(n
2 )(detΣ)n/2

etr(−1
2
Σ−1A)(detA)(n−p−1)/2,

and noticing that detA =
p∏

i=1

li. Here etr stands for the exponential of the trace of

a matrix. The function Γp is a multivariate gamma function:

Γp(z) = πp(p−1)/4

p∏

k=1

Γ(z − 1
2
(k − 1)), <z >

1
2
(p− 1).

Generally, it is not easy to simplify the form of the integral appearing in the
expression for the joint density of the eigenvalues or to evaluate that integral.

In the null case when Σ = λI, using that∫

Op

etr(−1
2
Σ−1HLH ′)(dH) =

∫

Op

etr(− 1
2λ

HLH ′)(dH)

= etr
(
− 1

2λ
L

) ∫

Op

(dH)

= exp

(
− 1

2λ

p∑

i=1

li

)
,
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one gets that the joint density distribution of the eigenvalues of the null Wishart
matrix A ∼ Wp(n, λIp) is

πp2/2

(2λ)np/2Γp(n
2 )Γp(p

2 )
exp

(
− 1

2λ

p∑

i=1

li

)
p∏

i=1

l
(n−p−1)/2
i

p∏

j=i+1

(li − lj).

The case when Σ = diag(λi) does not lead longer to such an easy evaluation.

2.2. Distribution of the largest eigenvalue: sample covariance matrices. If
X ∼ Nn×p(µ, Σ), then the sample covariance matrix S = 1

nX ′HX has the Wishart
distribution Wp(n − 1, 1

nΣ). Hence, any general result regarding the eigenvalue(s)
of matrices in Wp(n,Σ) can be easily applied to the sample covariance matrices’
eigenvalue(s). Notice that the eigenvalues of A = nS ∼ Wp(n − 1, Σ) are n times
greater than those of S.

Start with an example, concerning, again, the joint distribution of the eigen-
values. As a consequence of the observations made above, the Theorem 2 can be
formulated in the following special form for sample covariance matrices.

Proposition 1. The joint density function of the eigenvalues l1 > l2 > . . . > lp > 0
of a sample covariance matrix S ∼ Wp(n,Σ) (n > p) is of the following form

πp2/2(detΣ)−ñ/2

Γp( ñ
2 )Γp(p

2 )
ñ

2

−ñp/2 p∏

i=1

l
(ñ−p−1)/2
i

p∏

j=i+1

(li − lj)
∫

Op

etr(−1
2
nΣ−1HLH ′)(dH),

where ñ = n− 1.

We have simply made a correction for n and substituted all li by ñli.

The participating integral can be expressed in terms of the multivariate hyper-
geometric function due to James (1960). The fact is that

etr
(
−1

2
ñΣ−1HLH ′

)
= 0F0

(
−1

2
ñΣ−1HLH ′

)

averaging over the group Op,

see Muirhead (1982, Th. 7.2.12, p.256)

= 0F0(−1
2
ñL,Σ−1),

where 0F0(·) (0F0(·, ·)) is the (two-matrix) multivariate hypergeometric function –
the function of a matrix argument(s) expressible in the form of zonal polynomial
series.

Thus, the joint density function of the eigenvalues of S is

πp2/2(detΣ)−ñ/2

Γp( ñ
2 )Γp(p

2 )
ñ

2

−ñp/2 p∏

i=1

l
(ñ−p−1)/2
i

p∏

j=i+1

(li − lj) 0F0(−1
2
ñL, Σ−1).

The distribution of the largest eigenvalue can also be expressed in terms of the
hypergeometric function of a matrix argument. The following theorem is formulated
in Muirhead (1982) as a corollary of a more general result regarding the positive
definite matrices.
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Theorem 3. If l1 is the largest eigenvalue of S, then the cumulative distribution
function of l1 can be expressed in the form

(2.2) P(l1 < x) =
Γp(p+1

2 )
Γp(n+p

2 )
det(

ñ

2
Σ−1)ñ/2

1F1(
ñ

2
;
n + p

2
;−n

2
xΣ−1),

where, as before, ñ = n− 1.

The hypergeometric function 1F1 in (2.2) represents the alternating series, which
converges very slowly, even for small ñ and p. Sugiyama (1972) gives explicit
evaluations for p = 2, 3. There is a stable interest in the methods of efficient
evaluation of the hypergeometric function.

2.3. Convergence of eigenvalues. Being interested mostly in the behaviour of
the largest eigenvalue of sample covariance matrix, we formulate the Johnstone’s
asymptotic result in the large sample case. The empirical distribution function of
eigenvalues is also studied. A parallel between the Marčenko-Pastur distribution
and the Wigner ”semicircle”-type law is drawn.

2.3.1. Introduction. There are different modes of eigenvalues’ convergence in sam-
ple covariance matrices. These depend not only on the convergence’ type (weak
convergence, almost surely convergence, convergence in probability), but also of
the conditions imposed on the dimensions of the data matrix.

One of the classical results regarding the asymptotic distribution of eigenvalues
of a covariance matrix in the case of a multinormal population is given by the
following theorem [see Anderson (2003)].

Theorem 4. Suppose S is a p × p sample covariance matrix corresponding to a
data matrix drawn from Nn×p(µ,Σ) Asymptotically, the eigenvalues l1, . . . , lp of S
are distributed as follows:

√
n(li − λi)

dist−→ N(0, 2λ2
i ), for i = 1, ..., p,

where {λi} are the (distinct) eigenvalues of the population covariance matrix Σ.

Notice that here p is fixed. The convergence is meant in the weak sense, i.e., the

pointwise convergence of c.d.f.’s of r.v.’s
√

n(li − λi) to 1
2
√

πλi
e
− x2

4λi takes place.

Next, introduce the following notation. Let χ(C) be the event indicator function,
i.e.

χ(C) =
{

1 if C is true,
0 if C is not true .

Definition 2. Let A be a p× p matrix with eigenvalues l1, . . . , lp. The empirical
distribution function for the eigenvalues of A is the distribution

lp(x)
∂ef
=

1
p

p∑

i=1

χ(li ≤ x).

The p.d.f. of the empirical distribution function can be represented in the terms
of the Dirac delta function δ(x) (which is the derivative of the Heaviside step
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function)

l ′p(x) =
1
p

p∑

i=1

δ(x− li).

Dependently on the type of random matrix, the empirical distribution function
can converge to a certain non-random law: semicircle law, full circle law, quarter
circle law, deformed quarter law and others [see Müller (2000)].

For example, the celebrated Wigner semicircle law can be formulated in the
following way. Let Ap = (A(p)

ij ) be a p × p Wigner matrix (either complex or

real) satisfying the following conditions: (i) the laws of r.v.’s {A(p)
ij }1≤i≤j≤p are

symmetric, (ii) E[(A(p)
ij )2k] ≤ (const ·k)k, k ∈ N, (iii) E[(

√
pA

(p)
ij )2] = 1

4 , 1 ≤ i <

j ≤ p, E[
√

pA
(p)
ii ] ≤ const. Then, the empirical eigenvalue density function l ′p(x)

converges in probability to

(2.3) p(x) =
{

2
π

√
1− x2 |x| ≤ 1
0 |x| > 1

.

Convergence in probability means here that if {Lp}∞p=1 are r.v.’s having the p.d.f.’s
l′p(x), corresp., then

∀ε > 0 lim
p→∞

P (|Lp − L| ≥ ε) = 0,

where L is a r.v. with p.d.f. given by (2.3).

There is a kind of analog to the Wigner semicircle law for sample covariance in
the case of Gaussian samples – Marčenko-Pastur distribution.

2.3.2. Marčenko-Pastur distribution: the ”semicircle”-type law. The Marčenko-Pastur
(1967) theorem states that the empirical distribution function lp(x) of the eigen-
values l

(p)
1 ≥ l

(p)
2 ≥ . . . ≥ l

(p)
p of a p× p sample covariance matrix S of n normalized

i.i.d. Gaussian samples satisfies the following statement:

lp(x) → G(x), as n = n(p) →∞, s.t.
n

p
→ γ,

almost surely where

(2.4) G′(x) =
γ

2πx

√
(b− x)(x− a), a ≤ x ≤ b,

and a = (1− γ−1/2)2 when γ ≥ 1. When γ < 1, there is an additional mass point
at x = 0 of weight (1− γ).

Figure 1 shows how the density curves of the Marčenko-Pastur distribution vary
dependently on the value of the parameter γ.

For the purpose of illustration of the Marčenko-Pastur theorem, place two plots
in the same figure: the plot of a realization of the empirical eigenvalue distribution 2

for large n and p and the plot of the ”limiting” Marčenko-Pastur distribution (for
γ = n/p). Figure 2 represents such a comparison for n = 80, p = 30, γ = 8/3.

2Note that the empirical eigenvalue distribution function as a function of random variables
(sample eigenvalues) is a random function!
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Figure 1. Densities of the Marčenko-Pastur distribution, corre-
sponding to the different values of the parameter γ.
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Figure 2. Realization of the empirical eigenvalue distribution
(n = 80, p = 30) and the Marčenko-Pastur cdf with γ = 8/3.

The top and the bottom eigenvalues l
(p)
1 and l

(p)
min{n,p} converge almost surely to

the edges of the support 3 [a, b] of G [see Geman (1980) and Silverstein (1985)]:

l
(p)
1 → (1 + γ−1/2)2, a.s.,(2.5)

l
(p)
min{n,p} → (1− γ−1/2)2, a.s.

Note that if n < p, then l
(p)
n+1, . . . , l

(p)
p are zero. The almost sure convergence means

here, that, for instance, the following holds for the largest eigenvalue:

P
(

lim
n/p→γ

l
(p)
1 = (1 + γ−1/2)2

)
= 1.

Furthermore, the results of Bai et al. (1988) and Yin et al. (1988) state that
(almost surely) lmax(nS) = (

√
n +

√
p)2 + o(n + p), where lmax(nS) is the largest

eigenvalues of the matrix nS. Notice, that from this, the result given by (2.5)
follows immediately.

However, the rate of convergence was unknown until the appearance of the papers
of Johansson (2000) and Johnstone (2001). The former treated the complex case,

3By the support of a distribution it is meant the set closure of the set of arguments of the
distribution’s density function for which this density function is distinct from zero.
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whereas the latter considered the asymptotic distribution of the largest eigenvalue
of real sample covariance matrice – the case of our interest.

2.3.3. Asymptotic distribution function for the largest eigenvalue. The asymptotic
distribution for the largest eigenvalue in Wishart sample covariance matrices was
found by Johstone (2001). He also reported that the approximation is satisfactory
for n and p as small as 10. The main result from his work can be formulated as
follows.

Theorem 5. Let W be a white Wishart matrix and l1 be its largest eigenvalue.
Then

l1 − µnp

σnp

dist−→ F1,

where the center and scaling constants are

µnp = (
√

n− 1 +
√

p)2, σnp = µnp

(
(n− 1)−

1
2 + p−

1
2

)1/3

,

and F1 stands for the distribution function of the Tracy-Widom law of order 1.

The limiting distribution function F1 is a particular distribution from a family of
distributions Fβ . For β = 1, 2, 4 functions Fβ appear as the limiting distributions
for the largest eigenvalues in the ensembles GOE, GUE and GSE, correspondingly.
It was shown by Tracy and Widom (1993, 1994, 1996). Their results state that
for the largest eigenvalue lmax(A) of the random matrix A (whenever this comes
from GOE (β = 1), GUE (β = 2) or GSE (β = 4)) its distribution function

FN,β(s)
∂ef
= P(lmax(A) < s), β = 1, 2, 4 satisfies the following limit law:

Fβ(s) = lim
N→∞

FN,β(2σ
√

N + σN−1/6s),

where Fβ are given explicitly by

F2(s) = exp


−

∞∫

s

(x− s)q2(x)dx


 ,(2.6)

F1(s) = exp


−1

2

∞∫

s

q(x)dx


 [F2(s)]

1/2
,(2.7)

F4(2−2/3s) = cosh


−1

2

∞∫

s

q(x)dx


 [F2(s)]

1/2
.(2.8)

Here q(s) is the unique solution to the Painléve II equation 4

(2.9) q′′ = sq + 2q3 + α with α = 0,

satisfying the boundary condition

(2.10) q(s) ∼ Ai(s), s → +∞,

where Ai(s) denotes the Airy special function – a participant of one of the pairs of
linearly independent solutions to the following differential equation:

ω′′ − zw = 0.

4referred further to simply as the Painlevé II.
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The boundary condition (2.10) means that

(2.11) lim
s→∞

q(s)
Ai(s)

= 1.

The Painlev’e II (2.9) is one of the six exceptional second-order ordinary differential equations
of the form

(2.12)
d2w

dz2
= F (z, w, dw/dz),

where F is locally analytic in z, algebraic in w, and rational in dw/dz. Painlevé (1902a,b) and
Gambier (1909) studied the equations of the form (2.12) and identified all solutions to such
equations which have no movable points, i.e. the branch points or singularities whose locations
do not depend on the constant of integration of (2.12). From the fifty canonical types of such
solutions, forty four are either integrable in terms of previously known functions, or can be reduced
to one of the rest six new nonlinear ordinary differential equations known nowadays as the Painlevé
equations, whose solutions became to be called the Painlevé transcendents. The Painlevé II is
irreducible – it cannot be reduced to a simpler ordinary differential equation or combinations
thereof, see Ablowitz and Segur (1977).

Hastings and McLeod (1980) proved that there is a unique solution to (2.9) satisfying the
boundary conditions:

q(s) ∼
(

Ai(s), s → +∞q
− 1

2
s, s → −∞ .

Moreover, these conditions are independent of each other and correspond to the same solution.

For the mathematics beyond the connection between the Tracy-Widom laws and
the Painlevé II see the work of Tracy and Widom (2000).

3. Tracy-Widom and Painlevé II: computational aspects of
realization in S-Plus

A description of the numerical work on the Tracy-Widom distributions and
Painlevé II equation is given in this section.

3.1. Painlevé II and Tracy-Widom laws. An approach of the representation
of the Painlevé II equation (2.9) by a system of ODE’s is discussed. We describe
an approximation algorithm of its solving in S-Plus, supporting it by all analytical
and algebraic manipulations needed for this purpose. The motivation is to evaluate
numerically the Tracy-Widom distribution and to provide appropriate statistical
tools for using in S-Plus.

3.1.1. From ordinary differential equation to a system of equations. To solve nu-
merically the Painlevé II and evaluate the Tracy-Widom distributions we exploit
heavily the idea of Per-Olof Persson (2002) [see also Edelman and Per-Olof Persson
(2005)]. His approach for implementation in MATLAB is adapted for a numerical
work in S-Plus.

Since the Tracy–Widom distributions Fβ (β = 1, 2, 4) are expressible in terms of
the Painlev’e II whose solutions are transcendent, consider the problem of numerical
evaluation of the particular solution to the Painleve II satisfying (2.10):

q′′ = sq + 2q3(3.1)

q(s) ∼ Ai(s), s →∞.(3.2)
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To obtain a numeric solution to this problem in S-Plus, first rewrite (3.1) as a
system of the first order differential equations (in the vector form):

(3.3)
d

ds

(
q
q′

)
=

(
q′

sq + 2q3

)
,

and by virtue of (2.11) substitute the condition (3.2) by the condition q(s0) =
Ai(s0), where s0 is a sufficiently large positive number. This conditions, being
added to the system (3.3), have the form

(3.4)
(

q(s)
q′(s)

)∣∣∣∣
s=s0

=
(

Ai(s0)
Ai′(s0)

)
.

Now, the problem (3.3)+(3.4) can be solved in S-Plus as initial-value problem
using the function ivp.ab – the initial value solver for systems of ODE’s, which
finds the solution of a system of ordinary differential equations by an adaptive
Adams-Bashforth predictor-corrector method at a point, given solution values at
another point. However, before applying this, notice that for the evaluation of the
Tracy-Widom functions F1(s), F2(s) and F4(s) some integrals of q(s) should be
found, in our situation – numerically estimated. This can be done using the tools
for numerical integration, but this would lead to very slow calculations since such
numerical integration would require a huge number of calls of the function ivp.ab,
which is inadmissible for efficient calculations. Instead, represent F1, F2 and F4 in
the following form

F2(s) = e−I(s; q(s)),(3.5)

F1(s) = e−
1
2 J(s; q(s))[F2(s)]1/2,(3.6)

F4(2−2/3s) = cosh(−1
2
J(s))[F2(s)]1/2,(3.7)

by introducing the following notation

(3.8) I(s; h(s))
∂ef
=

∞∫

s

(x− s)h(s)2dx,

(3.9) J(s; h(s))
∂ef
=

∞∫

s

h(x)dx,

for some function h(s).

Proposition 2. The following holds

(3.10)
d2

ds2
I(s; q(s)) = q(s)2

(3.11)
d

ds
J(s; q(s)) = −q(s)

Proof. First, consider the function

W (s) =

∞∫

s

R(x, s)dx, s ∈ R,
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where R(x, s) is some function.
Recall [e.g. Korn and Korn (1968,pp 114-115)] that the Leibnitz rule of the differentiation

under the sign of integral can be applied in the following two cases as follows:

(3.12)
d

ds

bZ

a

f(x, s)dx =

bZ

a

∂

∂s
f(x, s)dx,

(3.13)
d

ds

β(s)Z

α(s)

f(x, s)dx =

β(s)Z

α(s)

∂

∂s
f(x, s)dx + f(α(s), s)

dα

ds
− f(β(s), s)

dβ

ds
,

under conditions that the function f(x, s) and its partial derivative ∂
∂s

f(x, s) are continuous in

some rectangular [a, b]×[s1, s2] and the functions α(s) and β(s) are differentiable on [s1, s2] and are

bounded on this segment. Furthermore, the formula (3.12) is also true for improper integrals under

condition that the integral
bR

a
f(x, s)dx converges, and the integral

bR
a

∂
∂s

f(x, s) converges uniformly

on the segment [s1, s2]. In this case the function f(x, s) and its partial derivative ∂
∂s

f(x, s) are

only supposed to be continuous on the set [a, b)× [s1, s2], or (a, b]× [s1, s2], depending on which

point makes the integral improper.

Now represent W (s) as follows

W (s) =

b∫

s

R(x, s)dx +

∞∫

b

R(x, s)dx, for some b ∈ [s,∞),

and apply the Leibnitz rule for each of the summands under the suitable conditions
imposed on R(x, s):

d

ds

b∫

s

R(x, s)dx =

b∫

s

∂

∂s
R(x, s)dx + R(b, s)

db

ds
−R(s, s)

ds

ds

=

b∫

s

∂

∂s
R(x, s)dx−R(s, s), and

d

ds

∞∫

b

R(x, s)dx =

∞∫

b

∂

∂s
R(x, s)dx,

where for the second differentiation we have used the rule (3.13) for improper
integrals as exposed above.

Finally, derive that

(3.14)
d

ds

∞∫

s

R(x, s)dx =

∞∫

s

∂

∂s
R(x, s)dx−R(s, s).

This particularly gives for R(x, s) ≡ I(s; q(s)) the expression

d

ds
I(s; q(s)) = −

∞∫

s

q(x)2dx,
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which after the repeated differentiation using the same rule becomes

d2

ds2
I(s; q(s)) = q(s)2.

Similarly, for J(s; q(s)) one gets

d

ds
J(s; q(s)) = −q(s).

The conditions under which the differentiation takes place can be easily verified
knowing the properties of the Painlevé II transcendent q(s) and its asymptotic
behaviour at +∞. ¤

Write further [·] for a vector and [·]T for a vector transpose.

Define the following vector function

(3.15) V(s)
∂ef
= [ q(s), q′(s), I(s; q(s)), I ′(s; q(s)), J(s) ]T .

The results of the Proposition 2 can be used together with the idea of artificial
representation of an ODE with a system of ODE’s. Namely, the following system
with the initial condition is a base of using the solver ivp.ab, which will perform
the numerical integration automatically:

V′(s) =
[
q′(s), sq + 2q3(s), I ′(s; q(s)), q2(s),−q(s)

]T
,(3.16)

V(s0) =
[
Ai(s0),Ai′(s0), I(s0; Ai(s)), Ai(s0)2, J(s0; Ai(s))

]T
.(3.17)

The initial values in (3.17) should be computed to be passed to the function
ivp.ab. The Airy function Ai(s) can be represented in terms of other common
special functions, such as the Bessel function of a fractional order, for instance.
However, there is no default support neither for the Airy function, nor for the Bessel
functions in S-Plus. Therefore, the values from (3.17) at some ”large enough” point
s0 can, again, be approximated using the asymptotics of the Airy function (s →∞).
The general asymptotic expansions for large complex s of the Airy function Ai(s)
and its derivative Ai′(s) are as follows [see, e.g., Antosiewitcz (1972)]:

(3.18) Ai(s) ∼ 1
2
π−1/2s−1/4e−ζ

∞∑

k=0

(−1)kckζ−k, | arg s| < π,

where

(3.19) c0 = 1, ck =
Γ(3k + 1

2 )
54kk!Γ(k + 1

2 )
=

(2k + 1)(2k + 3) . . . (6k − 1)
216kk!

, ζ =
2
3
s3/2;

and

(3.20) Ai′(s) ∼ −1
2
π−1/2s1/4e−ζ

∞∑

k=0

(−1)kdkζ−k, | arg s| < π,

where

(3.21) d0 = 1, dk = −6k + 1
6k − 1

ck, ζ =
2
3
s3/2.
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Setting

c̃k
∂ef
= ln ck = ln(2k + 1) + ln(2k + 3) + . . . + ln(6k − 1)− k ln 216−

k∑

i=1

ln i, and

d̃k
∂ef
= ln(−dk) = ln

6k + 1
6k − 1

+ c̃k,

one gets the following recurrences:

c̃k = c̃k−1 + ln(3− (k − 1/2)−1),

d̃k = c̃k−1 + ln(3 + (k/2− 1/4)−1),

which can be efficiently used for the calculations of the asymptotics (3.19) and
(3.20) in the following form:

Ai(s) ∼ 1
2
π−1/2s−1/4e−ζ

∞∑

k=0

(−1)kec̃kζ−k,(3.22)

Ai′(s) ∼ 1
2
π−1/2s1/4e−ζ

∞∑

k=0

(−1)k+1ed̃kζ−k.(3.23)

The function AiryAsymptotic can be found in Listing. For example, its calls
with 200 terms of the expansion at the points 4.5, 5 and 6 return:
> AiryAsymptotic(c(4.5,5,6),200)
[1] 3.324132e-004 1.089590e-004 9.991516e-006
which is precise up to a sixth digit (compare with the example in Antosiewitcz
(1972, p.454) and with MATLAB’s output).

However, if the value for s0 is set to be fixed appropriately, there is no need in
asymptotic expansions of Ai(s) and Ai′(s) for solving the problem5 (3.16)+(3.17).
From the experimental work I have found that the value s0 = 5 would be an enough
”good” to perform the calculations. The initial values are as follows:

V(5) = [1.0834e−4,−2.4741e−4, 5.3178e−10, 1.1739e−8, 4.5743e−5]T .

From now on let I(s) ≡ I(s; q(s)) and J(s) ≡ J(s; q(s)). Further we show how to
express Fβ , fβ in terms of I(s) and J(s) and their derivatives. This will permit to
evaluate approximatively the Tracy-Widom distribution for β = 1, 2, 4 by solving
the initial value problem (3.16)+(3.17).

From (3.5)-(3.7) the expressions for F1 and F4 follows immediately:

F1(s) = e−
1
2 [I(s)+J(s)](3.24)

F4(s) = cosh(−1
2
J(γs))e−I(γs),(3.25)

where γ = 22/3.

Next, find expressions for fβ . From (3.5) it follows that

(3.26) f2(s) = −I ′(s)e−I(s).

5Note also that the using of (3.19) and (3.20) would add an additional error while solving the
Painlevé II with the initial boundary condition (2.10) and thus while evaluating Fβ .
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β \ p-points 0.995 0.975 0.95 0.05 0.025 0.01 0.005 0.001

1 -4.1505 -3.5166 -3.1808 0.9793 1.4538 2.0234 2.4224 3.2724

2 -3.9139 -3.4428 -3.1945 -0.2325 0.0915 0.4776 0.7462 1.3141

4 -4.0531 -3.6608 -3.4556 -1.0904 -0.8405 -0.5447 -0.3400 0.0906

Table 1. Values of the Tracy-Widom distributions (β=1, 2, 4)
exceeded with probability p.

The expressions for f1, f4 follows from (3.24) and (3.25):

(3.27) f1(s) = −1
2
[I ′(s)− q(s)]e−

1
2 [I(s)+J(s)],

and

(3.28) f4(s) = −γ

2
e−

I(γs)
2

[
sinh

(
J(γs)

2

)
q(γs) + I ′(γs) cosh

(
J(γs)

2

)]
.

Note that J ′(s) = −q(s) as shown in the Proposition 2.

Implementation notes. As already mentioned, the problem (3.16)+(3.17) can
be solved in S-plus using the initial value solver ivp.ab.

For instance, the call
> out <- ivp.ab(fin=s,init=c(5,c(1.0834e-4,-2.4741e-4, 5.3178e-10,
1.1739e-8,4.5743e-5)), deriv=fun,tolerance=1e-11) ,
where the function fun is defined as follows
> fun<-function(s,y) c(y[2],s*y[1]+2*y[1]∧3,y[4],y[1]∧2,-y[1]) ,
evaluates the vector V, defined in (3.15), at some point s, and hence evaluates
the functions q(s), I(s) and J(s). Further, Fβ , fβ can be evaluated using (3.5),
(3.24), (3.25), (3.27)-(3.28). The corresponding functions are FTWb(s,beta) and
fTWb(s,beta), and can be found in Listing.

The Tracy-Widom quantile function qTWb(p,beta) uses the dichotomy method
applied for the cdf of the corresponding Tracy-Widom distribution. Alternatively,
the Newton-Raphson method can be used, since we know how to evaluate the
derivative of the distribution function of the Tracy-Widom law, i.e. how to calculate
the Tracy-Widom density.

Finally, given a quantile returning function it is easy now to generate Tracy-
Widom random variables using the Inverse Transformation Method (e.g. see Ross
(1997)). The corresponding function rTWb(beta) can be found in Listing.

Using the written S-Plus functions which are mentioned above, the statistical
tables of the Tracy-Widom distributions (β = 1, 2, 4) have been constructed. These
can be found in Appendix A. Table 1 comprises some standard tail p-values of the
Tracy-Widom laws.

Some examples of using the described functions follow:
0.05% p-value of TW2 is
> qTWb(1-0.95,2)
[1] -3.194467
Conversely, check the 0.005% tail p− value of TW1:
> 1-FTWb(2.4224,1)
val 5
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Figure 3. Tracy-Widom density plots, corresponding to the val-
ues of β: 1, 2 and 4.

0.004999185
(compare with the corresponding entries of Table 1)

Next, evaluate the density of TW4 at the point s = −1:
> fTWb(-1,4)
val 3
0.1576701

Generate a realization of a random variable distributed as TW1:
> rTWb(1)
[1] -1.47115

Finally, for the density plots of the Tracy-Widom distributions (β = 1, 2, 4)
appeal to Figure 3.

Performance and stability issues. There are two important questions: how
fast the routines evaluating the Tracy-Widom distributions related functions are,
and whether the calculations provided by these routines are enough accurate to use
them in statistical practice.

The answer to the former question is hardly not to be expected – the ”Tracy-
Widom” routines in the form as they are presented above exhibit an extremely
slow performance. This reflects dramatically on the quantile returning functions
which use the dichotomy method and therefore need several calls of corresponding
cumulative functions. The slow performance can be well explained by a necessity to
solve a system of ordinary differential equations given an initial boundary condition.
However, if the calculations provided by these routines are ”enough” precise we
could tabulate the Tracy-Widom distributions on a certain grid of points and then
proceed with an approximation of these distributions using, for instance, smoothing
or interpolating splines.

Unfortunately, there is not much to say on the former question, although some
insight can be gained. The main difficulty here is the evaluation of the error ap-
pearing while substituting the Painlevé II problem with a boundary condition at
+∞ by a problem with an initial value at some finite point, i.e., while substituting
(3.1)+(3.2) by the problem (3.3)+(3.4). However, it would be really good to have
any idea about how sensible such substitution is. For this, appeal to Figure 4,
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where the plots of three different Painlevé II transcendents evaluated on a uniform
grid from the segment [−15, 5] using the calls of ivp.ab with different initial values
are given, such that these transcendents ”correspond” to the following boundary
conditions: q(s) ∼ k Ai(s), k = 1 − 10−4, 1, 1 + 104. The plots were produced by
evaluating the transcendents using the substitution (3.4) of the initial boundary
condition. The value for s0 has been chosen the same as in the calculations for the
Tracy-Widom distribution: s0 = 5. The question is how the output obtained with
the help of ivp.ab after a substitution of the boundary condition at +∞ with the
local one agrees with the theory?

Consider the null parameter Painlevé II equation

(3.29) q′′ = sq + 2q3,

and a boundary condition

(3.30) q(s) ∼ k Ai(s), s → +∞.

The asymptotic behaviour on the negative axis of the solutions to (3.29) satisfying
the condition (3.30) is as follows [Clarkson and McLeod (1988), Ablowitz and Sequr
(1977)]:

• if |k| < 1, then as z → −∞

(3.31) q(s) ∼ d(−s)−1/4 sin
(

2
3
(−s)3/2 − 3

4
d2 ln(−s)− θ

)
,

where the so called connection formulae for d and θ are

d2(k) = −π−1 ln(1− k2),

θ(k) =
3
2
d2 ln 2 + arg

(
Γ(1− 1

2
id2)

)
;

• if |k| = 1, then as z → −∞

(3.32) q(s) ∼ sign(k)

√
−1

2
s;

• if |k| > 1, then q(s) blows up at a finite s∗:

(3.33) q(s) ∼ sign(k)
1

s− s∗
.

From Figure 4 one can see that the cases when k < 1 and k > 1 are sensitively
different, whereas the case with k = 1 appeared to have the asymptotics of the
solutions with k < 1. However, all the three solutions are hardly distinguished to
the right from s = −2.5.

Next, compare the plot of the solution corresponding to the case k = 1 with
the curve corresponding to the theoretical asymptotic behaviour given by (3.32).
The plot is presented in Figure 5. Here we see that the plot of our solution con-
gruently follows the asymptotic curve up to the point s ≈ −4. In this connection
an important observation should be made – to the left from this point the Tracy-
Widom densities’ values (β = 1, 2, 4) become smaller and smaller, starting with
max

β=1,2,4
fβ(−4) = f1(−4) ≈ 0.0076.
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Finally, Figure 6 represents a graphical comparison of the evaluated Painlevé II
transcendent, for which k is less but close to one, with the predicted theoretical
behaviour of the decay oscillations type, given by (3.31).

All these graphical comparisons permit us to conclude that the using of the func-
tion ivp.ab for solving the initial value problem for a system of ordinary differential
equations, which was a result of some artificial transformations, delivers quite sensi-
ble calculations, according with the theoretical prediction based on the asymptotic
behaviour of the desired objects. Unfortunately, there is not much information on
the numerical estimation of the accuracy of the computations presented here.

It is believed by the author of this paper that the values of the tabulated Tracy-
Widom distributions from Tables (2)-(7) are precise up to the fourth digit.

The problem is now to struggle with the speed of performance. We move to the
spline approximation.
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Figure 6. (a) The evaluated Painlevé II transcendent q(s) ∼
0.999Ai(s), s → +∞, and (b) the asymptotic (s → −∞) curve
(3.31), corresponding to k = 1− 10−4 .

3.1.2. Spline approximation. As we found, the functions calculating the Tracy-
Widom distributions, described above, have a very slow performance, which makes
their use almost ineffective in applications. On the other hand, our heuristical anal-
ysis has shown that the accuracy of those functions is relatively high. How to use
this latter property and eliminate of the former one?

We use the cubic spline interpolation for representing the functions related with
the Tracy-Widom (cumulative distribution functions, density functions and quantile
functions).

The main idea is in the following: the Tracy-Widom distributions are tabulated
on a uniform gird from the segment of the maximal concentration of a respective
distribution (β = 1, 2, 4) using ”precise” functions from Listing and described in
§ 3.1.1. Then, this data set is used for interpolating by using the cubic splines.

The S-Plus function spline, which interpolates through data points by means
of a cubic spline, is used rather for visualizing purposes, since this functions can
only interpolate the initial data set at evenly situated new points. The function bs
can be used for a generation of a basis matrix for polynomial splines and can be
used together with linear model fitting functions. Its use is rather tricky and, again,
inappropriate in our situation. What we want is the function which would permit
us to interpolate through a given set of tabulated points of a desired distribution.
Preferably, it should be a vector-supporting function.

Such function have been written for using in S-Plus. The function my.spline.eval
is designed for the coefficients’ calculation of a cubic spline given a data set, and
the function my.spline returns a value of the spline with the coefficients passed to
this function. Practically, the both functions can be used efficiently together. See
their description and body texts in Listing.

The following examples are to demonstrate the use of the functions my.spline.eval
and my.spline, as well as some peculiarities of the spline interpolation depending
on the data set’s features and character.

Figures 7(a) and 7(b) contain the graphical outputs of the following two S-Plus
sessions:
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> x<-runif(20,0,1);y<-runif(20,0,1);x<-sort(x);reg<-seq(0,10,0.01)
> plot(x,y,xlim=c(-1,11),ylim=c(-10,21))
> lines(reg,my.spline.eval(reg,x,y,my.spline(x,y)))
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(a) first example: phenomenon of a
sudden oscillation in spline interpola-
tion of data
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(b) second example: no sudden oscil-
lations

Figure 7. Characteristic example of using the functions
my.spline and my.spline.eval in S-Plus.

> x<-seq(0,10,0.5);y<-sqrt(x)+rnorm(21,0,0.1);reg<-seq(0,10,0.01)
> plot(x,y);lines(reg,my.spline.eval(reg,x,y,my.spline(x,y)))

Listing contains the text bodies of the functions dtw, ptw and qtw which im-
plements the evaluation of the Tracy-Widom density, cumulative distribution and
quantile, correspondingly, using the cubic spline interpolation. The use of these
functions is standard, e.g.
> dtw(runif(4,-6,7),1)
[1] 0.0002247643 0.2891297912 0.0918758337 0.2393426156

Interestingly, it has been found that the S-Plus function smooth.spline pro-
vides even faster calculations, though relatively as good as the functions based on
my.spline and my.spline.eval. Analogs of dtw, ptw and qtw based on the using
of smooth.spline can be found in Listing 5b.
> reg<-runif(4,-6,7); dtw(reg,1);dtwsmooth1(reg)
> [1] 0.00738347825 0.06450056711 0.00009679960 0.00004254274
> 0.007383475 0.06450054 0.00009685025 0.00004254317

3.2. Summary. To summarize, the work relating to the numerical evaluation of
the Tracy-Widom density, cumulative distribution functions as well as quantile and
random number generation functions for the using in S-Plus was described in this
chapter. The approach based on the representation of an ordinary differential equa-
tion of the order higher than one with the system of ordinary differential equations
led to extremely slow, though ”sensible” computations. Therefore, the method of
spline approximation on a uniform grid has been used. The implementation of this
method provided significantly faster calculations which permit an efficient statisti-
cal work. Although, there are some principal difficulties with the estimation of the
accuracy of the calculations.
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4. Applications

This section is designed for the discussion on some applications of the results
relating to the distribution of the largest eigenvalue(s) in covariance matrices.

4.1. Tests on covariance matrices and sphericity tests. Sphericity tests rep-
resent inferential tools for answering the question: is there an evidence that a
population matrix is not proportional to the identity one? Such tests can be used
while studying the question whether a certain sample covariance matrix (its real-
ization) corresponds to a population with a given matrix describing the population
covariance structure.

Put it more formally. Suppose the matrix S is a sample covariance matrix
calculated from some data obtained in an experiment. Suppose also that we want
to check the following hypothesis: does S correspond to a population with true
covariance matrix Σ?

Kendall and Stuart (1968) reduce this hypothesis to a sphericity hypothesis.
Since Σ is known, they point, it can be linearly transformed to a unity matrix (of
course, this linear transformation is nothing but Σ−1). Now it suffices to check
whether the matrix C = Σ−1S does correspond to the theoretic matrix σ2I, where
σ is unknown. This is called the sphericity test.

The statistics of such test under the assumption of multinormality is due to
Mauchly (1940) and it is given by

(4.1) l =
[

detC

((trC)/p)p

]n/2

,

where n and p are the data dimensions as usual. The quantity −n log l2/n is dis-
tributed as χ2 with f = p(p + 1)/2− 1 degrees of freedom.

The Johnstone’s result (Theorem 5) leads straightforwardly to a test of sphericity.
Indeed, the result is stated for white Wishart matrices, hence a sphericity test for
covariance matrices based on the largest eigenvalue statistics can be constructed.
Namely, consider the following null hypothesis

(4.2) H0 : Σ = σ2I,

against the alternative one
H1 : Σ 6= σ2I.

Under the assumption of multinormality, the properly rescaled multiple of the
largest eigenvalue of the sample covariance matrix has approximately the Tracy-
Widom (β = 1) distribution. Thus, approximate p ·100% significance values for the
sphericity test will be the corresponding p/2 · 100% and (1− p/2) · 100% quantiles
of this distribution. The test is double-sided.

Consider an illustrative example, which is rather artificial, nevertheless sufficient
to demonstrating the technique.

Let SIGMA be an S-Plus variable representing some positive-definite square ma-
trix of size 10× 10. Simulate 40 samples from the multivariate normal population
with the true covariance matrix Σ ≡ SIGMA:
> X<-rmvnorm(40, mean=rep(0,10), cov=SIGMA);
then derive a sample covariance matrix and its inverse
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> S<-var(X)
> L<-ginverse(SIGMA);
which after the appropriate transformation
> C<-L%*%S
can be tested on sphericity (C = σ2I ?) This can be done by using the statistics l
from (4.1)
> s<-sum(eigen(C)$values)
> p<-prod(eigen(C)$values)
> l<-( p/((s/10)^10) )^(20)
> -40*log(l^(2/40))
> [1] 52.31979
and this value is not significant, since the 99% quantile of the χ2 distribution with
54 degrees of freedom is much greater than the mean of this distribution which is
just 54 – the number of degrees of freedom. There is no evidence for rejecting the
hypothesis that S is a sample covariance matrix corresponding to the population
with true covariance matrix which is equal to SIGMA.

Consider now the verification of the same hypothesis using the largest eigenvalue
statistics
> l<-eigen(C)$values[1]
> n<-40; p<-10; mu<-(sqrt(n-1)+sqrt(p))^2
> sigma<-sqrt(mu)*(1/sqrt(n-1)+1/sqrt(p))^(1/3)
> (40*l-mu)/sigma
> -2.939404
Now appeal to Table 1 to find that −2.94 does not fall in the rejection 99% double-
sided significance region of the TW1. The null hypothesis can be accepted.

4.2. Principal Component Analysis. As already noted, the Principal Compo-
nent Analysis is one of the most employed statistical techniques. This technique is
based on the spectral decomposition of covariance matrices, and it is not surpris-
ingly, that the variability and asymptotical results on the boundary of the spectra
of such matrices significantly contribute to the development of the PCA techniqe.

4.2.1. Lizard spectral reflectance data. A data set used as an example in the further
exposition is described here.

The data set we used contains the lizard spectral reflectance data. Such mea-
surements of colours’ variations within and/or between populations are often used
in biology to study and analyze the sexual selection, species recognition and differ-
ential predation risk in the animal world.

The measurements of lizard front legs’ spectra were made with the use of a spec-
trophonometer, normal to the surface. They were expressed relative to a certified
99% white reflectance standard. The range of measurements was from 320 to 700
nm, and the data set comprised 77 data points at 5 nm intervals of wavelength.
Each measurement was an average of three consecutive readings. The graphical
summary of the data is presented in Figure 8. There are 95 records of 77 wave-
length points and this data set is a typical example of high dimensional data.

The data was kindly offered by Professor Firth and Mr. Caralambous. This
assistance is gratefully acknowledged.
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All the 95 lizards in their overpowering beauty
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Figure 8. Reflectance samples measured from 95 lizards’ front
legs (wavelengths are measured in nanometers).

4.2.2. Wachter plot. There may be given many suggestions and rules regarding
how many principal components to retain while proceeding with PCA. One of the
heuristical ways of the graphical nature for doing this is the so called screeplot. This
is a plot of the ordered principal component variances, i.e. a plot of the eigenvalues
of a corresponding realization of the sample covariance matrix. The screeplot of
eigenvalues in the lizard example is given in Figure 9(a).
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Figure 9. Comparison of the sreeplot and Wachter plot for the
lizard data.

There is a modification of a screeplot due to Wachter (1976) who proposed a
graphical data-analytic use of the Marčenko-Pastur ”semicircle”-type law behaviour
of eigenvalues 6: to make a probability plot of the ordered observed eigenvalues
lp−i+1 against the quantiles G−1

(
i−1/2

p

)
of the Marčenko-Pastur distribution with

the density given by (2.4). Let us call such a plot the Wachter plot.

The Wachter plot corresponding to the lizard data is presented in Figure 9(b).
This plot shows an interesting feature – there is an uptick from the right, – a
departure from the straight line displacement, which is predicted theoretically by

6See the discussion in § 2.3.2.
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the Marčenko-Pastur law. Can one use the Wachter plot in the context of the lizard
data? Recall that the Marčenko-Pastur theorem (§ 2.3.2) was formulated for the
white case, i.e. the i.i.d. Gaussian data samples were assumed then.

Perform now a test of the departure from the multinormality on the lizard data.
The test is based on the Mahalanobis distance statistics [e.g. Boik 2004)]:

Di =
[
(xi − x)′S−1(xi − x)

]1/2
,

where S is a sample covariance matrix corresponding to a data matrix consisting
of samples {xi}n

i=1. If the data have been sampled from a multivariate normal
population, then

(4.3)
n

(n− 1)2
D2

i ∼ Beta
(

p

2
,
n− p− 1

2

)
,

where n is the number of p-variate data samples.

The QQ plot of the ordered D2
i statistics against the quantiles of the beta distri-

bution with parameters 77/2 and (95−77−1)/2 is reproduced in Figure 10. There
is an evidence of the departure from the multivariate normal distribution 7. More
of this, it can be easily found that ”neighbour” wavelengths are strongly correlated,
which is natural to expect.

However, it is known that the Marčenko-Pastur result still holds for some special
models. One of such models is a spiked population models. This model helps to
understand the phenomenon occurring in the Wachter plot and to extract some
useful information of the population covariance matrix even in the case when the
sample covariance matrix is not a good approximate.
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Figure 10. QQ plot of squared Mahalanobis distance correspond-
ing to the lizard data: test on the departure from multinormality.

4.2.3. Spiked Population Model. It has been observed by many researches that for
certain types of data only a few first (ordered) sample eigenvalues have the limit-
ing behaviour differing from the behaviour that would be expected under identity
covariance scenario. Debashis (2004) mentions that this phenomenon occurs in

7Notice also that the assumption of multinormality would lead to marginal normality for each
wavelength value measured, which evidently is not the case. Recall that the multinormality implies
marginal normality, the converse is generally not true.
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speech recognition [Buja et al (1995)], wireless communication and engineering
[Telatar (1999)], statistical learning [Hoyle and Rattray (2003, 2004)].

To study this phenomenon, Johnstone (2001) introduced the so called spiked
population model – a model in which independently and identically distributed zero-
mean real-valued observations X1, . . . ,Xn from a p-variate normal distribution have
the covariance matrix Σ = diag(l1, l2, . . . , lr, 1, . . . , 1) where l1 ≥ l2 ≥ . . . ≥ lr > 1.

Baik and Silverstein (2004) studied the problem of the sample eigenvalues’ be-
haviour in the spiked population models for a more general class of samples. In
their settings, the spiked population model comprises a class of p-variate populations
with non-negative definite Hermitian covariance matrices, which have the follow-
ing spectra (given in the form of a diagonal matrix extracted from the spectral
decomposition of covariance matrix):

Λr = diag(λ1, . . . , λ1︸ ︷︷ ︸
k1

, λ2, . . . , λ2︸ ︷︷ ︸
k1

, . . . , λM , . . . , λM︸ ︷︷ ︸
kM

, 1, . . . , 1︸ ︷︷ ︸
p−r

),

where r = k1 + k2 + . . . + kM , ki ≥ 0, i = 1, . . . ,M , and λ1 > . . . > λM . One can
say that Λ defines a spiked model.

In such settings, following Johnstone (2001), denote the distribution of the kth

largest sample eigenvalue lk in the spiked model defined by Λr by L (lk|n, p, Λr).
It was proved by Johnstone that

(4.4) L (lr+1|n, p, Λr)
st
< L (l1|n, p− r, Ip−r),

where r < p, s.t.
PIp−r (l1 < x) < PΛr (lr+1 < x),

where PIp−r (·) and PΛ(·) are the distribution functions for the largest and the
(r + 1)th eigenvalues in the null and the spiked models, correspondingly.

This result provides a conservative p-value for testing the null hypothesis H0 :
λr+1 = 1 in the spiked model. This means, that the null hypothesis must be
rejected on the p · 100% level of significance once the corresponding p-value for
L (l1|n, p− r, Ip−r) happens to be significant8.

Consider for a moment the same S-Plus variable SIGMA introduced in § 4.1.
The Wachter plot, corresponding to SIGMA is presented in Figure 11. It suggests
departure from the sphericity at least in 3 directions. Here n = 40, p = 10, and the
spiked model corresponding to the three separated eigenvalues is of our primary
interest. Let Λ3 to be a diagonal 10 × 10 matrix with the top values λ1, λ2, λ3

equal to the observed ones, and the remaining diagonal elements all set to one.
The following S-Plus code shows that by virtue of the Johnstone’s result (4.4) the
fourth eigenvalue in the data is significantly larger that would be expected under
the corresponding null model.
> n<-40; p<-10; r<-3;
> mu<-(sqrt(n-1)+sqrt(p-r))^2;
> sigma<-sqrt(mu)*(1/sqrt(n-1)+1/sqrt(p-r))^(1/3)
> len<-length(eigen(SIGMA)$values);
> su<-sum(eigen(SIGMA)$values[(r+1):len])

8Note, that p in the word combination ”p-value” is a number between 0 and 1, whereas p in
L (lr+1|n, p, Λr) and L (l1|n, p− r, Ip−r) stands for the dimension of the data.
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Figure 11. Wachter plot for the sample data simulated from a
population with the true covariance matrix SIGMA.

> tauhatsquared<-su/(n*(p-r)); tauhatsquared*(mu+2.02*sigma)
> [1] 0.2447291
> eigen(SIGMA)$values[r]
> [1] 0.176367
The calculations were performed on the 99% level of significance: 0.2447291 >
0.176367. The corresponding approximate percentile of TW1 can be found from
the first row of Table 1 to be 0.02. The case with r = 4 also gives significant result,
whereas r = 5 does not lead us to the rejection of the null hypothesis. We can
suggest the model with only 4 direction of the variability in our data.
> n<-40; p<-10; r<-5
> mu<-(sqrt(n-1)+sqrt(p-r))^2;
> sigma<-sqrt(mu)*(1/sqrt(n-1)+1/sqrt(p-r))^(1/3)
> len<-length(eigen(SIGMA)$values)
> su<-sum(eigen(SIGMA)$values[(r+1):len])
> tauhatsquared<-su/(n*(p-r)); tauhatsquared*(mu+2.02*sigma)
[1] 0.1522345
> eigen(SIGMA)$values[r]
[1] 0.1480558

Interestingly, it took some 70 analogous verifications (tests) for the lizard data
to come up to the first non-significant result: r = 73 (recall, that p = 77). This is
not in the accordance with the Wachter plot, Figure 9(b).

Some farther work should be done to explain this phenomenon. Notice, that the
result (4.4) is valid for the null case, but the lizard data, as we saw, can even hardly
be assumed to come from the multivariate normal distribution.

5. Summary and conclusions

5.1. Conclusions. The behaviour of the largest eigenvalues of sample covariance
matrices as random objects has been studied in this paper. A special accent was
put on the study of the asymptotic results. The choice of the largest eigenvalues
as the objects of interest was motivated by their importance in many techniques of
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multivariate statistics, including the Principal Component Analysis, and possibility
of their using in statistical tests as test statistics.

The study was done under the standard assumption of the data normality (Gaus-
sianity). Such assumption lead us to the special class of the covariance matrices
which have the Wishart distribution.

Even for the white Wishart case the exact distribution of the largest eigenvalue
of a sample covariance matrix cannot be extracted explicitly from the joint density
distribution of the eigenvalues, though the latter has an explicit form (see § 2.1.4).

The asymptotic result of Johnstone (§ 2.3.3) in the real white Wishart case fol-
lowed the work of Johansson for the complex case, and established the convergence
of the properly rescaled largest eigenvalue to the Tracy-Widom distribution TW1

– one of the three limiting distributions for the largest eigenvalues in the Gauss-
ian Orthogonal, Unitary and Symplectic Ensembles, found by Tracy and Widom
just some ten years ago. These distributions have seen great generalizations, both
theoretical and practical in the consecutive works of many authors.

The Johnstone’s asymptotic result gives a good approximation for the data ma-
trices’ sizes as small as 10× 10. This is especially important for the today applica-
tions where one deals with data matrices of great, sometimes huge sizes. However,
the main difficulty in using of the results of Johnstone, as well as similar and ear-
lier results of Johansson, Tracy and Widom, is due to the fact the the limiting
distributions, – the Tracy-Widom distributions – are stated in terms of the partic-
ular solution to the second order differential equation Painlevé II. This particular
solution is specified with the boundary condition.

To evaluate the functions relating to the Tracy-Widom distributions in S-Plus
(density, cumulative distribution, quantile, random number generation functions),
the boundary condition which specified the solution to Painlevé II has been substi-
tuted by a local initial value condition. This permitted to reduce set of ordinary
differential equations to a system of ODE’s and use the initial value solver for such
systems in S-Plus.

Using these, relatively precise calculations, the Tracy-Widom distributions (β =
1, 2, 4) have been tabulated on the intervals of the most concentration. The table
of standard p-values is also presented. It is useful for the inferential statistical work
involving these distributions.

However, the use of the written S-Plus functions for evaluating the Tracy-Widom
distributions using the described above conception of solving the Painlevé II practi-
cally is hardly possible, since the performance of those functions is extremely slow.
The cubic spline interpolation has been used to ”recover” the distribution values
from the set of pre-tabulated points. As a result, fast performance functions eval-
uating the Tracy-Widom distributions have been presented for the statistical work
in S-Plus.

Interestingly, both the Tracy-Widom distribution as the limiting law and the
exact largest eigenvalue distribution law required quite sophisticated computational
algorithms to be efficiently evaluated using the standard mathematical software
packages. We saw it for the asymptotic case, and the problem of the evaluation of
the exact distribution was studied in the work of Koev and Edelman (2005), from
which I draw the same conclusion.
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Finally, a few practical examples have been considered to show how the studied
distributions can be used in applications. These include the test on covariance
matrices, and particularly the sphericity test, the spectral analysis of the high
dimensional data with the use of the spiked model introduced recently by Johnstone
(2001). However, one should acknowledge that in the last example (with the lizard
data) many things remained not interpreted and justified at this stage of study.
Here we see a necessity of some farther research.

5.2. Open problems and further work. In this paper many interesting prob-
lems from the area of the study have not been touched.

We did not study the recent developments relating to the efficient evaluation of
the hypergeometric function of a matrix argument. This refers to the problem of
the evaluation of the largest eigenvalue’s exact distribution. The most recent results
in this area are reported by Koev and Edelman (2005). A comparative analysis of
the two different ways: the use of asymptotic distributions and evaluation of the
exact ones, – could be done in perspective.

However, both approaches require methods of estimation of an error of approxi-
mation appearing therein. In our study it is the error appearing while substituting
of the Painlevé II with a boundary condition with the Painlevé II with a local
initial value condition. Although, it was shown on examples that the methods
we implement by the means of S-Plus to solve the Painlevé II and evaluate the
Tracy-Widom distributions are enough ”sensible” to distinguish between what is
predicted by theory even when we make such substitution of initial value problems.
However, more rigorous justification should be found to use the methods we follow
and to estimate the approximation error we make by using these methods. The
use of splines and general theory of spline approximation would permit then to
estimate the error appearing while recovering the Tracy-Widom distributions from
the tabulated set of points, by considering these distributions as functions-members
of a certain class of functions, and thus to estimate the final approximation error.
Currently, the author cannot estimate exactly the accuracy of the numerical evalu-
ation of the Tracy-Widom distributions presented in Tables 2-7, Appendix A. It is
only believed from the experimental work the approximation is exact up to a fourth
digit.

A general suggestion can be given to increase the performance of the written
S-Plus routines: the calculation code should be written in C++ where possible and
then compiled into *.dll file to be used in S-Plus.

There are some gaps in the consideration of using the studied asymptotic results
in applications. Thus, the aspects related to the power of the sphericity test based
on the largest eigenvalue statistics and the Tracy-Widom (β = 1) distribution where
not touched here. Also, one needs to be more careful while using the spiked model.
It also needs some further development and study. Particularly, it should be found
out how robust it is in the sense of the departure of the normality of the data.
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générale est uniforme. Acta Math., 25, 1–85.

[75] Persson, Per-Olof (2002) Random matrices. Numerical methods for random matrices.
http://www.mit.edu/~persson/numrand report.pdf

[76] Pillai, K.C.S. (1976) Distribution of characteristic roots in multivariate analysis. Part I: Null
distributions. Can. J. Statist., 4, 157–184.

[77] Pillai, K.C.S. (1976) Distribution of characteristic roots in multivariate analysis. Part II:
Non-null distributions. Can. J. Statist., 5, 1–62.

[78] Ross, S.M. (1997) Simulation. Academic Press.
[79] Roy, S.N. (1953) On a heuristic method of test construction and its use in multivariate

analysis. Ann. Math. Statist., 24, 220–238.
[80] Samarskiy, A.A. (1982) Introduction to numerical methods. Moscow, Nauka (in Russian).
[81] Schensted, C. (1961) Longest increasing and decreasing subsequences. Canadian Journal of

Mathematics, 13, 179–191.
[82] Silverstein, J.W. (1985) The smallest eigenvalue of a large dimensional Wishart matrix. Ann.

Probab., 13(4), 1364–1368.
[83] Silverstein, J.W., Combettes, P.L. (1992) Large dimensional random ma-

trix theory for signal detection and estimation in array processing. Preprint.
http://www4.ncsu.edu/~jack/workshop92.pdf

[84] Smale (1985) On the efficiency of algorithms of analysis. Bull. Amer. Math. Soc., 13, 87–121.



38 ANDREI IU. BEJAN

[85] Soshnikov, A. (2002) A note on universality of the distribution of the largest eigenvalues in
certain sample covariance matrices. J. Statist. Phys., 108, 1033–1056.

[86] Stanley, R. (1989) Some combinatorial properties of Jack symmetric functions. Adv. Math.,
77(1), 76–115.

[87] Sugiyama, T. (1970) Joint distribution of the extreme roots of a covariance matrix. Ann.
Math. Statist. 41, 655–657.

[88] Sugiyama, T. (1972) Percentile points of the largest latent root of a matrix and power calcu-
lation for testing Σ = I. J. Japan. Statist. Soc. 3, 1–8.

[89] Telatar, E. (1999) Capacity of multi-antenna Gaussian channels. European Transactions on
Telecommunications, 10, 585–595.

[90] Tracy, C.A., Widom, H. (1993) Level-spacing distribution and Airy kernel. Phys. Letts. B
305, 115–118.

[91] Tracy, C.A., Widom, H. (1994) Level-spacing distribution and Airy kernel. Comm. Math.
Phys. 159, 151–174.

[92] Tracy, C.A., Widom, H. (1996) On orthogonal and symplectic matrix ensambles. Comm.
Math. Phys. 177, 727–754.

[93] Tracy, C.A., Widom, H. (1999) On the distribution of the lengths of the longest monotone
subsequences in random words. http://arXiv.org/abs/math/9904042

[94] Tracy, C.A., Widom, H. (2000) Airy Kernel and Painlevé II. arXiv:solv-int/9901004
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s 9 8 7 6 5 4 3 2 1 0

-3.8 0.010182 010449 010722 011001 011286 011577 011875 012179 012489 012806

-3.7 013130 013460 013798 014142 014494 014853 015219 015593 015974 016363

-3.6 016760 017165 017577 017998 018427 018865 019311 019765 020229 020701

-3.5 021182 021672 022171 022680 023198 023726 024263 024810 025367 025934

-3.4 026511 027098 027696 028304 028922 029552 030192 030844 031506 032180

-3.3 032865 033561 034269 034989 035720 036463 037219 037986 038766 039559

-3.2 040363 041181 042011 042854 043710 044579 045461 046356 047265 048188

-3.1 049124 050074 051037 052015 053006 054012 055032 056067 057116 058179

-3.0 059257 060350 061458 062581 063718 064871 066039 067223 068421 069636

-2.9 070865 072111 073372 074649 075942 077251 078576 079917 081274 082647

-2.8 084037 085443 086866 088305 089760 091232 092721 094227 095749 097288

-2.7 098844 100417 102006 103613 105237 106877 108535 110210 111902 113611

-2.6 115338 117081 118842 120620 122415 124227 126057 127904 129768 131649

-2.5 133547 135463 137396 139346 141314 143298 145300 147319 149354 151407

-2.4 153477 155564 157668 159789 161927 164081 166252 168440 170645 172866

-2.3 175104 177358 179629 181916 184220 186539 188875 191227 193594 195978

-2.2 198377 200793 203223 205670 208131 210608 213100 215608 218130 220667

-2.1 223219 225786 228367 230962 233572 236196 238834 241486 241452 246831

-2.0 249524 252231 254950 257683 260428 263186 265957 268740 271536 274344

-1.9 277163 279995 282838 285693 288559 291436 294324 297223 300133 303053

-1.8 305983 308924 311874 314835 317804 320783 323772 326769 329775 332790

-1.7 335813 338844 341884 344931 347986 351048 354118 357194 360278 363368

-1.6 366464 369567 372675 375790 378910 382036 385166 388302 391443 394588

-1.5 397737 100891 404048 407209 410374 413542 416713 419887 423064 426243

-1.4 429425 432608 435793 438980 442169 445358 448549 451740 454932 458124

-1.3 461317 464509 467701 470893 474083 477274 480462 483650 486836 490021

-1.2 493203 496384 499562 502738 505911 509081 512248 515411 518572 521728

-1.1 524881 528030 531174 534314 537449 540580 543705 546826 549941 553050

-1.0 556154 559252 562344 565429 568508 571581 574647 577706 580757 583802

-0.9 586839 589869 592891 595905 598911 601908 604898 607879 610851 613814

-0.8 616769 619714 622650 625577 628494 631402 634300 637188 640066 642934

-0.7 645791 648639 651475 654301 657116 659921 662714 665496 668267 671027

-0.6 673775 676512 679237 681951 684652 687342 690020 692685 695339 697980

-0.5 700609 703225 705829 708420 710999 713565 716118 718658 721185 723699

-0.4 726200 728688 731163 733624 736072 738507 740928 743336 745730 0748111

-0.3 750478 752832 755171 757497 75981 762108 764393 766663 76892 771163

-0.2 773392 775607 777808 779995 782168 784327 786472 788603 790719 792822

-0.1 794910 796985 799045 801091 803123 805141 807145 809134 811110 813071

-0.0 815019 816952 818871 820776 822668 824545 826408 828257 830092 831913

Table 2. Values of the TW1 cumulative distribution function for
the negative values of the argument.



40 ANDREI IU. BEJAN

s 0 1 2 3 4 5 6 7 8 9

0.0 0.831913 833720 835513 837293 839058 840810 842548 844272 845982 847679

0.1 849362 851031 852687 854329 855958 857573 859175 860763 862338 863899

0.2 865448 866983 868505 870013 871509 872992 874461 875918 877362 878793

0.3 880211 881616 883009 884389 885756 887111 888454 889784 891102 892407

0.4 893700 894981 896250 897507 898752 899985 901206 902416 903613 904799

0.5 905974 907137 908288 909428 910557 911674 912780 913875 914959 916032

0.6 917094 918146 919186 920216 921235 922243 923241 924229 925206 926173

0.7 927129 928076 929012 929938 930855 931761 932658 933545 934422 935290

0.8 936148 936997 937836 938666 939487 940299 941101 941895 942679 943455

0.9 944222 944980 945730 946471 947203 947927 948643 949350 950049 950740

1.0 951423 952097 952764 953423 954074 954717 955353 955981 956602 957215

1.1 957820 958418 959009 959593 960170 960739 961302 961858 962406 962948

1.2 963483 964012 964534 965049 965558 966061 966557 967046 967530 968007

1.3 968479 968944 969403 969856 970304 970746 971181 971612 972036 972455

1.4 972869 973277 973680 974077 974469 974856 975238 975615 975986 976353

1.5 976714 977071 977423 977770 978113 978450 978784 979112 979436 979756

1.6 980071 980382 980688 980991 981289 981582 981872 982158 982440 982717

1.7 982991 983261 983527 983789 984048 984303 984554 984802 985046 985286

1.8 985523 985757 985987 986214 986438 986658 986875 987089 987300 987507

1.9 987712 987914 988112 988308 988501 988690 988877 989062 989243 989422

2.0 989598 989771 989942 990110 990276 990439 990599 990758 990913 991067

2.1 991218 991366 991513 991657 991799 991938 992076 992211 992344 992476

2.2 992605 992732 992857 992980 993101 993220 993338 993453 993567 993679

2.3 993789 993897 994004 994109 994212 994313 994413 994511 994608 994703

2.4 994797 994889 994979 995068 995156 995242 995327 995410 995492 995573

2.5 995652 995730 995807 995882 995956 996029 996101 996172 996241 996309

2.6 996376 996442 996507 996570 996633 996695 996755 996815 996873 996931

2.7 996987 997043 997097 997151 997203 997255 997306 997356 997405 997454

2.8 997501 997548 997594 997639 997683 997726 997769 997811 997852 997893

2.9 997932 997972 998010 998048 998085 998121 998157 998192 998226 998260

3.0 998294 998326 998358 998390 998421 998451 998481 998510 998539 998567

3.1 998595 998622 998649 998675 998701 998726 998751 998775 998799 998823

3.2 998846 998868 998891 998912 998934 998955 998975 998996 999015 999035

3.3 999054 999073 999091 999109 999127 999144 999162 999178 999195 999211

3.4 999227 999242 999257 999272 999287 999301 999315 999329 999343 999356

3.5 999369 999382 999394 999407 999419 999431 999442 999454 999465 999476

Table 3. Values of the TW1 cumulative distribution function for
the positive values of the argument.

Appendix A. Tracy-Widom distributions: statistical tables
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LARGEST EIGENVALUES AND SAMPLE COVARIANCE MATRICES. 41

s 9 8 7 6 5 4 3 2 1 0

-3.8 0.005479 005691 005910 006137 006370 006612 006861 007119 007384 007659

-3.7 007941 008233 008534 008844 009164 009494 009833 010183 010544 010915

-3.6 011297 011691 012096 012513 012941 013383 013836 014303 014782 015275

-3.5 015782 016302 016837 017386 017950 018529 019123 019733 020358 021000

-3.4 021659 022334 023026 023736 024463 025209 025972 026755 027556 028376

-3.3 029216 030076 030956 031856 032777 033719 034683 035668 036675 037704

-3.2 038756 039831 040929 042050 043195 044364 045558 046776 048019 049287

-3.1 050581 051901 053247 054619 056017 057443 058895 060375 061883 063419

-3.0 064982 066574 068195 069845 071524 073232 074969 076736 078534 080361

-2.9 082219 084107 086026 087976 089957 091969 094013 096088 098194 100333

-2.8 102503 104706 106940 109207 111506 113838 116202 118599 121028 123490

-2.7 125984 128511 131071 133664 136290 138948 141639 144363 147120 149909

-2.6 152730 155585 158471 161390 164342 167325 170341 173389 176468 179579

-2.5 182721 185895 189100 192336 195603 198901 202229 205587 208975 212392

-2.4 215839 219316 222821 226355 229917 233507 237125 240771 244443 248142

-2.3 251868 255620 259397 263200 267028 270880 274756 278657 282580 286527

-2.2 290496 294487 298500 302534 306589 310664 314759 318873 323006 327157

-2.1 331327 335513 339717 343937 348173 352424 356691 360971 365265 369573

-2.0 373893 378225 382569 386924 391290 395665 400050 404444 408846 413256

-1.9 417673 422097 426527 430962 435402 439847 444295 448747 453201 457657

-1.8 462115 466574 471033 475492 479950 484407 488862 493315 497765 502211

-1.7 506654 511091 515524 519951 524372 528785 533192 537591 541982 546363

-1.6 550736 555099 559451 563792 568123 572441 576747 581040 585320 589587

-1.5 593839 598077 602300 606507 610698 614873 619031 623172 627296 631401

-1.4 635489 639557 643607 647637 651647 655637 659606 663554 667482 671388

-1.3 675272 679133 682973 686789 690583 694353 698100 701823 705522 709196

-1.2 712846 716471 720072 723646 727196 730720 734218 737690 741136 744555

-1.1 747948 751315 754654 757967 761252 764511 767742 770946 774122 777271

-1.0 780392 783485 786550 789588 792597 795579 798533 801458 804356 807225

-0.9 810066 812880 815665 818422 821150 823851 826524 829168 831785 834374

-0.8 836935 839467 841973 844450 846900 849322 851716 854084 856423 858736

-0.7 861021 863280 865511 867716 869894 872045 874170 876268 878340 880387

-0.6 882407 884401 886370 888313 890231 892124 893992 895834 897652 899446

-0.5 901215 902960 904681 906378 908052 909702 911328 912932 914512 916070

-0.4 917605 919118 920609 922078 923524 924950 926354 927737 929098 930439

-0.3 931760 933060 934340 935599 936840 938060 939261 940443 941606 942751

-0.2 943876 944984 946073 947145 948198 949235 950253 951255 952240 953208

-0.1 954160 955095 956015 956918 957806 958678 959535 960377 961204 962016

-0.0 962814 963598 964367 965123 965865 966593 967308 968010 968699 969375

Table 4. Values of the TW2 cumulative distribution function for
the negative values of the argument.



42 ANDREI IU. BEJAN

s 0 1 2 3 4 5 6 7 8 9

0.0 0.969375 970038 970689 971328 971955 972570 973173 973764 974345 974914

0.1 975472 976019 976556 977082 977598 978103 978599 979085 979561 980027

0.2 980485 980933 981371 981801 982223 982635 983039 983435 983823 984202

0.3 984574 984938 985294 985643 985984 986318 986645 986965 987278 987585

0.4 987885 988178 988465 988746 989020 989289 989551 989808 990059 990305

0.5 990545 990780 991009 991234 991453 991667 991877 992081 992281 992477

0.6 992668 992854 993036 993214 993388 993558 993724 993886 994044 994198

0.7 994349 994496 994640 994780 994917 995050 995181 995308 995432 995553

0.8 995671 995787 995899 996009 996116 996220 996322 996421 996518 996612

0.9 996704 996794 996881 996967 997050 997131 997210 997286 997361 997434

1.0 997506 997575 997642 997708 997772 997835 997896 997955 998012 998069

1.1 998123 998177 998228 998279 998328 998376 998422 998468 998512 998554

1.2 998596 998637 998676 998715 998752 998789 998824 998858 998892 998924

1.3 998956 998987 999017 999046 999074 999102 999128 999154 999180 999204

1.4 999228 999251 999274 999296 999317 999338 999358 999377 999396 999414

1.5 999432 999450 999467 999483 999499 999514 999529 999544 999558 999572

1.6 999585 999598 999610 999622 999634 999646 999657 999668 999678 999688

1.7 999698 999708 999717 999726 999735 999743 999751 999759 999767 999774

1.8 999782 999789 999795 999802 999808 999815 999821 999827 999832 999838

1.9 999843 999848 999853 999858 999863 999867 999871 999876 999880 999884

2.0 999888 999891 999895 999898 999902 999905 999908 999911 999914 999917

2.1 999920 999923 999925 999928 999930 999933 999935 999937 999939 999941

2.2 999943 999945 999947 999949 999951 999952 999954 999956 999957 999959

2.3 999960 999961 999963 999964 999965 999967 999968 999969 999970 999971

2.4 999972 999973 999974 999975 999976 999977 999977 999978 999979 999980

Table 5. Values of the TW2 cumulative distribution function for
the positive values of the argument.



LARGEST EIGENVALUES AND SAMPLE COVARIANCE MATRICES. 43

s 9 8 7 6 5 4 3 2 1 0

-3.9 0.006650 006950 007263 007588 007925 008275 008638 009015 009406 009812

-3.8 010232 010668 011119 011587 012071 012572 013091 013628 014184 014758

-3.7 015352 015966 016600 017255 017932 018631 019352 020096 020864 021655

-3.6 022472 023313 024181 025074 025994 026942 027918 028922 029955 031018

-3.5 032110 033234 034389 035576 036795 038047 039332 040652 042006 043396

-3.4 044821 046283 047781 049317 050891 052503 054154 055844 057575 059346

-3.3 061158 063012 064907 066845 068826 070850 072918 075030 077186 079388

-3.2 081635 083928 086267 088653 091085 093564 096091 098666 101289 103960

-3.1 106679 109448 112265 115131 118047 121012 124027 127092 130206 133370

-3.0 136584 139848 143162 146526 149940 153403 156916 160479 164092 167754

-2.9 171465 175225 179034 182892 186798 190752 194754 198803 202899 207042

-2.8 211231 215466 219746 224071 228441 232854 237312 241811 246354 250937

-2.7 255562 260228 264933 269677 274459 279279 284136 289029 293958 298921

-2.6 303918 308947 314009 319102 324225 329378 334559 339767 345003 350263

-2.5 355549 360858 366191 371544 376919 382313 387726 393156 398603 404066

-2.4 409543 415033 420536 426050 431574 437127 442649 448197 453751 459309

-2.3 464871 470436 476002 481569 487134 492698 498259 503816 509368 514914

-2.2 520452 525983 531504 537015 542514 548001 553475 558934 564378 569805

-2.1 575215 580607 585980 591332 596664 601973 607260 612523 617761 622974

-2.0 628160 633319 638451 643554 648627 653670 658683 663663 668612 673527

-1.9 678409 683256 688069 692846 697587 702291 706958 711588 716179 720731

-1.8 725245 729718 734152 738545 742898 747209 751478 755706 759892 764035

-1.7 768135 772193 776207 780177 784105 787988 791827 795622 799373 803079

-1.6 806741 810359 813932 817460 820944 824383 827777 831127 834432 837693

-1.5 840909 844081 847209 850293 853332 856328 859280 862189 865054 867876

-1.4 870655 873391 876085 878737 881346 883914 886440 888926 891370 893773

-1.3 896136 898460 900743 902987 905192 907359 909487 911577 913630 915645

-1.2 917623 919565 921471 923341 925176 926975 928741 930472 932169 933833

-1.1 935464 937063 938629 940164 941667 943140 944582 945995 947377 948731

-1.0 950055 951352 952620 953861 955075 956263 957424 958559 959669 960754

-0.9 961814 962850 963863 964852 965818 966761 967682 968582 969460 970317

-0.8 971154 971970 972766 973543 974301 975040 975761 976464 977149 977816

-0.7 978467 979101 979719 980321 980907 981478 982034 982576 983103 983616

-0.6 984115 984601 985074 985534 985981 986416 986840 987251 987651 988040

-0.5 988418 988785 989142 989489 989826 990153 990471 990779 991079 991370

-0.4 991652 991926 992192 992450 992701 992943 993179 993407 993629 993844

-0.3 994052 994254 994449 994639 994822 995000 995172 995339 995501 995658

-0.2 995809 995956 996098 996235 996368 996497 996622 996742 996858 996971

-0.1 997080 997185 997287 997386 997481 997573 997662 997748 997830 997911

-0.0 997988 998063 998135 998204 998272 998337 998399 998460 998518 998574

Table 6. Values of the TW4 cumulative distribution function for
the negative values of the argument.



44 ANDREI IU. BEJAN

s 0 1 2 3 4 5 6 7 8 9

0.0 0.998574 998629 998681 998731 998780 998827 998872 998916 998958 998999

0.1 999038 999075 999112 999146 999180 999212 999244 999274 999303 999330

0.2 999357 999383 999408 999432 999455 999477 999498 999519 999538 999557

0.3 999575 999593 999610 999626 999641 999656 999670 999684 999697 999710

0.4 999722 999734 999745 999756 999766 999776 999786 999795 999804 999812

0.5 999820 999828 999835 999842 999849 999856 999862 999868 999874 999879

0.6 999885 999890 999895 999899 999904 999908 999912 999916 999920 999923

Table 7. Values of the TW4 cumulative distribution function for
the positive values of the argument.


