Simple Linear Regression

Nathaniel E. Helwig

Assistant Professor of Psychology and Statistics
University of Minnesota (Twin Cities)

Updated 04-Jan-2017
1) Overview of SLR Model:
 - Model form (scalar)
 - SLR assumptions
 - Model form (matrix)

2) Estimation of SLR Model:
 - Ordinary least squares
 - Maximum likelihood
 - Estimating error variance

3) Inferences in SLR:
 - Distribution of estimator
 - ANOVA table and F test
 - CIs and prediction

4) SLR in R:
 - The `lm` Function
 - Example A: Alcohol
 - Example B: GPA
Overview of SLR Model
The simple linear regression model has the form

\[y_i = b_0 + b_1 x_i + e_i \]

for \(i \in \{1, \ldots, n\} \) where

- \(y_i \in \mathbb{R} \) is the real-valued response for the \(i \)-th observation
- \(b_0 \in \mathbb{R} \) is the regression intercept
- \(b_1 \in \mathbb{R} \) is the regression slope
- \(x_i \in \mathbb{R} \) is the predictor for the \(i \)-th observation
- \(e_i \overset{iid}{\sim} \mathcal{N}(0, \sigma^2) \) is a Gaussian error term
The model is **simple** because we have only one predictor.

The model is **linear** because y_i is a linear function of the parameters (b_0 and b_1 are the parameters).

The model is a **regression** model because we are modeling a response variable (Y) as a function of a predictor variable (X).
SLR Model: Visualization

\[E(y) = 1.1 + 2x \]

\[e_i \]

Nathaniel E. Helwig (U of Minnesota)
SLR Model: Example

Have GPA from high school and university for \(n = 105 \) students.

Simple linear regression equation for modeling university GPA:

\[
(U_{\text{gpa}})_i = 1.0968 + 0.6748(H_{\text{gpa}})_i + (\text{error})_i
\]

Data from http://onlinestatbook.com/2/regression/intro.html
The fundamental assumptions of the SLR model are:

1. Relationship between X and Y is **linear**.
2. x_i and y_i are **observed random variables** (known constants).
3. $e_i \overset{iid}{\sim} N(0, \sigma^2)$ is an **unobserved random variable**.
4. b_0 and b_1 are **unknown constants**.
5. $(y_i | x_i) \overset{ind}{\sim} N(b_0 + b_1 x_i, \sigma^2)$; note: **homogeneity of variance**.

Note: b_1 is expected increase in Y for 1-unit increase in X.

Which assumption may be violated in the GPA example??
Overview of SLR Model

SLR Assumptions: Visualization

\[E(Y) = \beta_1 x + \beta_0 \]

\[N(\beta_1 x_1 + \beta_0, \sigma^2) \]

\[N(\beta_1 x_2 + \beta_0, \sigma^2) \]

\[N(\beta_1 x_3 + \beta_0, \sigma^2) \]

SLR Model: Form (revisited)

The simple linear regression model has the form

$$ y = Xb + e $$

where

- $y = (y_1, \ldots, y_n)' \in \mathbb{R}^n$ is the $n \times 1$ response vector
- $X = [\mathbf{1}_n, \mathbf{x}] \in \mathbb{R}^{n \times 2}$ is the $n \times 2$ design matrix
 - $\mathbf{1}_n$ is an $n \times 1$ vector of ones
 - $\mathbf{x} = (x_1, \ldots, x_n)' \in \mathbb{R}^n$ is the $n \times 1$ predictor vector
- $b = (b_0, b_1)' \in \mathbb{R}^2$ is the 2×1 regression coefficient vector
- $e = (e_1, \ldots, e_n)' \in \mathbb{R}^n$ is the $n \times 1$ error vector
Matrix form writes SLR model for all \(n \) points simultaneously

\[
y = Xb + e
\]

\[
\begin{pmatrix}
y_1 \\
y_2 \\
y_3 \\
\vdots \\
y_n \\
\end{pmatrix} =
\begin{pmatrix}
1 & x_1 \\
1 & x_2 \\
1 & x_3 \\
\vdots & \vdots \\
1 & x_n \\
\end{pmatrix}
\begin{pmatrix}
b_0 \\
b_1 \\
\end{pmatrix} +
\begin{pmatrix}
e_1 \\
e_2 \\
e_3 \\
\vdots \\
e_n \\
\end{pmatrix}
\]
In matrix terms, the error vector is multivariate normal:

\[e \sim N(0_n, \sigma^2 I_n) \]

In matrix terms, the response vector is multivariate normal given \(x \):

\[(y|x) \sim N(Xb, \sigma^2 I_n) \]
Estimation of SLR Model
The ordinary least squares (OLS) problem is

\[
\min_{b_0, b_1 \in \mathbb{R}} \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i)^2
\]

and the OLS solution has the form

\[
\hat{b}_0 = \bar{y} - \hat{b}_1 \bar{x}
\]

\[
\hat{b}_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}
\]

where \(\bar{x} = (1/n) \sum_{i=1}^{n} x_i \) and \(\bar{y} = (1/n) \sum_{i=1}^{n} y_i \)
Ordinary Least Squares: Matrix Form

The ordinary least squares (OLS) problem is

$$\min_{b \in \mathbb{R}^2} \| y - Xb \|^2$$

where \(\| \cdot \| \) denotes the Frobenius norm; the OLS solution has the form

$$\hat{b} = (X'X)^{-1}X'y$$

where

$$(X'X)^{-1} = \frac{1}{n \sum_{i=1}^{n} (x_i - \bar{x})^2} \left(\begin{array}{cc} \sum_{i=1}^{n} x_i^2 & - \sum_{i=1}^{n} x_i \\ - \sum_{i=1}^{n} x_i & n \end{array} \right)$$

$$X'y = \left(\begin{array}{c} \sum_{i=1}^{n} y_i \\ \sum_{i=1}^{n} x_i y_i \end{array} \right)$$

Calculus derivation
Fitted Values and Residuals

SCALAR FORM:

Fitted values are given by
\[\hat{y}_i = \hat{b}_0 + \hat{b}_1 x_i \]
and residuals are given by
\[\hat{e}_i = y_i - \hat{y}_i \]

MATRIX FORM:

Fitted values are given by
\[\hat{y} = X\hat{b} \]
and residuals are given by
\[\hat{e} = y - \hat{y} \]
Hat Matrix

Note that we can write the fitted values as

\[\hat{y} = X\hat{b} = X(X'X)^{-1}X'y = Hy \]

where \(H = X(X'X)^{-1}X' \) is the hat matrix.

\(H \) is a symmetric and idempotent matrix: \(HH = H \)

\(H \) projects \(y \) onto the column space of \(X \).
Some useful properties of OLS estimators include:

1. \(\sum_{i=1}^{n} \hat{e}_i = 0 \)
2. \(\sum_{i=1}^{n} \hat{e}_i^2 \) is minimized with \(b = \hat{b} \)
3. \(\sum_{i=1}^{n} y_i = \sum_{i=1}^{n} (\hat{y}_i + \hat{e}_i) = \sum_{i=1}^{n} \hat{y}_i \)
4. \(\sum_{i=1}^{n} x_i \hat{e}_i = \sum_{i=1}^{n} x_i (y_i - \hat{b}_0 - \hat{b}_1 x_i) = 0 \)
5. Regression line passes through center of mass: \((\bar{x}, \bar{y})\)
Example #1: Pizza Data

The owner of Momma Leona’s Pizza restaurant chain believes that if a restaurant is located near a college campus, then there is a linear relationship between sales and the size of the student population. Suppose data were collected from a sample of 10 Momma Leona’s Pizza restaurants located near college campuses.

<table>
<thead>
<tr>
<th>Population (1000s): x</th>
<th>2</th>
<th>6</th>
<th>8</th>
<th>8</th>
<th>12</th>
<th>16</th>
<th>20</th>
<th>20</th>
<th>22</th>
<th>26</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales ($1000s): y</td>
<td>58</td>
<td>105</td>
<td>88</td>
<td>118</td>
<td>117</td>
<td>137</td>
<td>157</td>
<td>169</td>
<td>149</td>
<td>202</td>
</tr>
</tbody>
</table>

We want to find the equation of the least-squares regression line predicting quarterly pizza sales (y) from student population (x).
Example #1: OLS Estimation

First note that $\hat{b}_0 = \bar{y} - \hat{b}_1 \bar{x}$ and $\hat{b}_1 = \frac{\sum_{i=1}^{n}(x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n}(x_i - \bar{x})^2}$.

Next note that...

- $\sum_{i=1}^{n}(x_i - \bar{x})^2 = \sum_{i=1}^{n} x_i^2 - n\bar{x}^2$
- $\sum_{i=1}^{n}(x_i - \bar{x})(y_i - \bar{y}) = \sum_{i=1}^{n} x_i y_i - n\bar{x}\bar{y}$

We only need to find means, sums-of-squares, and cross-products.
Example #1: OLS Estimation (continued)

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>x^2</th>
<th>y^2</th>
<th>xy</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>58</td>
<td>4</td>
<td>3364</td>
<td>116</td>
</tr>
<tr>
<td>6</td>
<td>105</td>
<td>36</td>
<td>11025</td>
<td>630</td>
</tr>
<tr>
<td>8</td>
<td>88</td>
<td>64</td>
<td>7744</td>
<td>704</td>
</tr>
<tr>
<td>8</td>
<td>118</td>
<td>64</td>
<td>13924</td>
<td>944</td>
</tr>
<tr>
<td>12</td>
<td>117</td>
<td>144</td>
<td>13689</td>
<td>1404</td>
</tr>
<tr>
<td>16</td>
<td>137</td>
<td>256</td>
<td>18769</td>
<td>2192</td>
</tr>
<tr>
<td>20</td>
<td>157</td>
<td>400</td>
<td>24649</td>
<td>3140</td>
</tr>
<tr>
<td>20</td>
<td>169</td>
<td>400</td>
<td>28561</td>
<td>3380</td>
</tr>
<tr>
<td>22</td>
<td>149</td>
<td>484</td>
<td>22201</td>
<td>3278</td>
</tr>
<tr>
<td>26</td>
<td>202</td>
<td>676</td>
<td>40804</td>
<td>5252</td>
</tr>
<tr>
<td>\sum</td>
<td>140</td>
<td>1300</td>
<td>2528</td>
<td>184730</td>
</tr>
</tbody>
</table>
Example #1: OLS Estimation (continued)

\[
\sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} x_i^2 - n\bar{x}^2 = 2528 - 10(14^2) = 568
\]

\[
\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = \sum_{i=1}^{n} x_i y_i - n\bar{x}\bar{y} = 21040 - 10(14)(130) = 2840
\]

\[
\hat{b}_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} = \frac{2840}{568} = 5
\]

\[
\hat{b}_0 = \bar{y} - \hat{b}_1 \bar{x} = 130 - 5(14) = 60
\]

\[
\hat{y} = 60 + 5x
\]
Regression Sums-of-Squares

In SLR models, the relevant sums-of-squares (SS) are

- **Sum-of-Squares Total:** \(SST = \sum_{i=1}^{n} (y_i - \bar{y})^2 \)
- **Sum-of-Squares Regression:** \(SSR = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 \)
- **Sum-of-Squares Error:** \(SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \)

The corresponding **degrees of freedom** (df) are

- **SST:** \(df_T = n - 1 \)
- **SSR:** \(df_R = 1 \)
- **SSE:** \(df_E = n - 2 \)
We can partition the total variation in \(y_i \) as

\[
SST = \sum_{i=1}^{n} (y_i - \bar{y})^2
\]

\[
= \sum_{i=1}^{n} (y_i - \hat{y}_i + \hat{y}_i - \bar{y})^2
\]

\[
= \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + 2 \sum_{i=1}^{n} (\hat{y}_i - \bar{y})(y_i - \hat{y}_i)
\]

\[
= SSR + SSE + 2 \sum_{i=1}^{n} (\hat{y}_i - \bar{y}) \hat{e}_i
\]

\[
= SSR + SSE
\]
Coefficient of Determination

The coefficient of determination is defined as

\[R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST} \]

and gives the amount of variation in \(y_i \) that is explained by the linear relationship with \(x_i \).

When interpreting \(R^2 \) values, note that...

- \(0 \leq R^2 \leq 1 \)
- Large \(R^2 \) values do not necessarily imply a good model
Example #1: Fitted Values and Residuals

Returning to the Momma Leona’s Pizza example: \(\hat{y} = 60 + 5x \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
<th>(\hat{y})</th>
<th>(\hat{e})</th>
<th>(\hat{e}^2)</th>
<th>(y^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>58</td>
<td>70</td>
<td>-12</td>
<td>144</td>
<td>3364</td>
</tr>
<tr>
<td>6</td>
<td>105</td>
<td>90</td>
<td>15</td>
<td>225</td>
<td>11025</td>
</tr>
<tr>
<td>8</td>
<td>88</td>
<td>100</td>
<td>-12</td>
<td>144</td>
<td>7744</td>
</tr>
<tr>
<td>8</td>
<td>118</td>
<td>100</td>
<td>18</td>
<td>324</td>
<td>13924</td>
</tr>
<tr>
<td>12</td>
<td>117</td>
<td>120</td>
<td>-3</td>
<td>9</td>
<td>13689</td>
</tr>
<tr>
<td>16</td>
<td>137</td>
<td>140</td>
<td>-3</td>
<td>9</td>
<td>18769</td>
</tr>
<tr>
<td>20</td>
<td>157</td>
<td>160</td>
<td>-3</td>
<td>9</td>
<td>24649</td>
</tr>
<tr>
<td>20</td>
<td>169</td>
<td>160</td>
<td>9</td>
<td>81</td>
<td>28561</td>
</tr>
<tr>
<td>22</td>
<td>149</td>
<td>170</td>
<td>-21</td>
<td>441</td>
<td>22201</td>
</tr>
<tr>
<td>26</td>
<td>202</td>
<td>190</td>
<td>12</td>
<td>144</td>
<td>40804</td>
</tr>
<tr>
<td>**(\sum)</td>
<td>140</td>
<td>1300</td>
<td>1300</td>
<td>0</td>
<td>1530</td>
</tr>
</tbody>
</table>
Using the results from the previous table, note that

\[
SST = \sum_{i=1}^{10} (y_i - \bar{y})^2 = \sum_{i=1}^{10} y_i^2 - 10\bar{y}^2 = 184730 - 10(130^2) = 15730
\]

\[
SSE = \sum_{i=1}^{10} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{10} \hat{e}_i^2 = 1530
\]

\[
SSR = SST - SSE = 15730 - 1530 = 14200
\]

which implies that

\[
R^2 = \frac{SSR}{SST} = \frac{14200}{15730} = 0.9027336
\]

so the student population can explain about 90% of the variation in Momma Leona’s pizza sales.
Estimation of SLR Model

Ordinary Least Squares

Example #1: SS Partition Trick

Note that \(\hat{y}_i = \hat{b}_0 + \hat{b}_1 x_i = \bar{y} + \hat{b}_1 (x_i - \bar{x}) \) because \(\hat{b}_0 = \bar{y} - \hat{b}_1 \bar{x} \)

Plugging \(\hat{y}_i = \bar{y} + \hat{b}_1 (x_i - \bar{x}) \) into the definition of SSR produces

\[
SSR = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 \\
= \sum_{i=1}^{n} \hat{b}_1^2 (x_i - \bar{x})^2 \\
= 5^2 (568) \\
= 14200
\]

so do not need the sum-of-squares for \(y_i \)
Remember that \((y|x) \sim N(Xb, \sigma^2 I_n) \), which implies that \(y \) has pdf

\[
f(y|x, b, \sigma^2) = (2\pi)^{-n/2}(\sigma^2)^{-n/2} e^{-\frac{1}{2\sigma^2}(y-Xb)'(y-Xb)}
\]

As a result, the log-likelihood of \(b \) given \((y, x, \sigma^2) \) is

\[
\ln\{L(b|y, x, \sigma^2)\} = -\frac{1}{2\sigma^2}(y - Xb)'(y - Xb) + c
\]

where \(c \) is a constant that does not depend on \(b \).
The maximum likelihood estimate (MLE) of b is the estimate satisfying

$$\max_{b \in \mathbb{R}^2} - \frac{1}{2\sigma^2} (y - Xb)'(y - Xb)$$

Now, note that...

- $\max_{b \in \mathbb{R}^2} - \frac{1}{2\sigma^2} (y - Xb)'(y - Xb) = \max_{b \in \mathbb{R}^2} -(y - Xb)'(y - Xb)$
- $\max_{b \in \mathbb{R}^2} -(y - Xb)'(y - Xb) = \min_{b \in \mathbb{R}^2} (y - Xb)'(y - Xb)$

Thus, the OLS and ML estimate of b is the same: $\hat{b} = (X'X)^{-1}X'y$
The estimated error variance is

$$\hat{\sigma}^2 = \frac{SSE}{n - 2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 / (n - 2)$$

$$= \| (I_n - H)y \|^2 / (n - 2)$$

which is an unbiased estimate of error variance σ^2.

The estimate $\hat{\sigma}^2$ is the mean squared error (MSE) of the model.
Maximum Likelihood Estimate of Error Variance

\[\tilde{\sigma}^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 / n \]
is the MLE of \(\sigma^2 \).

From our previous results using \(\hat{\sigma}^2 \), we have that

\[E(\tilde{\sigma}^2) = \frac{n - 2}{n} \sigma^2 \]

Consequently, the bias of the estimator \(\tilde{\sigma}^2 \) is given by

\[\frac{n - 2}{n} \sigma^2 - \sigma^2 = -\frac{2}{n} \sigma^2 \]

and note that \(-\frac{2}{n} \sigma^2 \to 0 \) as \(n \to \infty \).
Comparing $\hat{\sigma}^2$ and $\tilde{\sigma}^2$

Reminder: the MSE and MLE of σ^2 are given by

\begin{align*}
\hat{\sigma}^2 &= \| (I_n - H)y \|^2 / (n - 2) \\
\tilde{\sigma}^2 &= \| (I_n - H)y \|^2 / n
\end{align*}

From the definitions of $\hat{\sigma}^2$ and $\tilde{\sigma}^2$ we have that

$$\tilde{\sigma}^2 < \hat{\sigma}^2$$

so the MLE produces a smaller estimate of the error variance.
Example #1: Calculating $\hat{\sigma}^2$ and $\tilde{\sigma}^2$

Returning to Momma Leona’s Pizza example:

\[
SSE = \sum_{i=1}^{10} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{10} \hat{e}_i^2 = 1530
\]
\[
df_E = 10 - 2 = 8
\]

So the estimates of the error variance are given by

\[
\hat{\sigma}^2 = MSE = \frac{1530}{8} = 191.25
\]
\[
\tilde{\sigma}^2 = \frac{8}{10}MSE = 153
\]
Inferences in SLR
Inferences in SLR

Distribution of Estimator

OLS Coefficients are Random Variables

Note that \hat{b} is a linear function of y, so \hat{b} is multivariate normal.

The expectation of \hat{b} is given by

$$
E(\hat{b}) = E[(X'X)^{-1}X'y]
= E[(X'X)^{-1}X'(Xb + e)]
= E[b] + (X'X)^{-1}X'E[e]
= b
$$

and the covariance matrix is given by

$$
V(\hat{b}) = V[(X'X)^{-1}X'y]
= (X'X)^{-1}X'V[y]X(X'X)^{-1}
= (X'X)^{-1}X'(\sigma^2 I_n)X(X'X)^{-1}
= \sigma^2 (X'X)^{-1}
$$
Given the results on the previous slide, have that $\hat{\mathbf{b}} \sim N(\mathbf{b}, \sigma^2(\mathbf{X}'\mathbf{X})^{-1})$.

Remembering the form of $(\mathbf{X}'\mathbf{X})^{-1}$, we have that

\[
V(\hat{b}_0) = \frac{\sigma^2 \sum_{i=1}^{n} x_i^2}{n \sum_{i=1}^{n} (x_i - \bar{x})^2}
\]

\[
V(\hat{b}_1) = \frac{\sigma^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}
\]
Fitted Values are Random Variables

Similarly $\hat{y} = X\hat{b}$ is a linear function of y, so \hat{y} is multivariate normal.

The expectation of \hat{y} is given by

$$E(\hat{y}) = E[X(X'X)^{-1}X'y]$$
$$= E[X(X'X)^{-1}X'(Xb + e)]$$
$$= E[Xb] + HE[e]$$
$$= Xb$$

and the covariance matrix is given by

$$V(\hat{y}) = V[X(X'X)^{-1}X'y]$$
$$= X(X'X)^{-1}X'V[y]X(X'X)^{-1}X'$$
$$= H(\sigma^2 I_n)H$$
$$= \sigma^2 H$$
Residuals are Random Variables

Also \(\hat{e} = (I_n - H)y \) is a linear function of \(y \), so \(\hat{e} \) is multivariate normal.

The expectation of \(\hat{e} \) is given by

\[
\begin{align*}
E(\hat{e}) &= E[(I_n - H)y] \\
&= (I_n - H)E[y] \\
&= (I_n - H)Xb \\
&= 0
\end{align*}
\]

and the covariance matrix is given by

\[
\begin{align*}
V(\hat{e}) &= V[(I_n - H)y] \\
&= (I_n - H)V[y](I_n - H) \\
&= (I_n - H)(\sigma^2 I_n)(I_n - H) \\
&= \sigma^2(I_n - H)
\end{align*}
\]
Summary of Results

Summarizing the results on the previous slides, we have

\[\hat{b} \sim N(b, \sigma^2(X'X)^{-1}) \]

\[\hat{y} \sim N(Xb, \sigma^2H) \]

\[\hat{e} \sim N(0, \sigma^2(I_n - H)) \]

Typically \(\sigma^2 \) is unknown, so we use the MSE \(\hat{\sigma}^2 \) in practice.
We typically organize the SS information into an ANOVA table:

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSR</td>
<td>(\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2)</td>
<td>1</td>
<td>MSR</td>
<td>(F^*)</td>
<td>(p^*)</td>
</tr>
<tr>
<td>SSE</td>
<td>(\sum_{i=1}^{n} (y_i - \hat{y}_i)^2)</td>
<td>(n - 2)</td>
<td>MSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SST</td>
<td>(\sum_{i=1}^{n} (y_i - \bar{y})^2)</td>
<td>(n - 1)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
MSR = \frac{SSR}{1}, \quad MSE = \frac{SSE}{n-2}, \quad F^* = \frac{MSR}{MSE} \sim F_{1,n-2}, \quad p^* = P(F_{1,n-2} > F^*)
\]

\(F^* \)-statistic and \(p^* \)-value are testing \(H_0 : b_1 = 0 \) versus \(H_1 : b_1 \neq 0 \)
Example #1: ANOVA Table and R^2

Using the results from the previous table, note that

$$SST = \sum_{i=1}^{10} (y_i - \bar{y})^2 = \sum_{i=1}^{10} y_i^2 - 10\bar{y}^2 = 184730 - 10(130^2) = 15730$$

$$SSE = \sum_{i=1}^{10} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{10} \hat{e}_i^2 = 1530$$

$$SSR = SST - SSE = 15730 - 1530 = 14200$$

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSR</td>
<td>14200</td>
<td>1</td>
<td>14200.00</td>
<td>74.24837</td>
<td>< .0001</td>
</tr>
<tr>
<td>SSE</td>
<td>1530</td>
<td>8</td>
<td>191.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SST</td>
<td>15730</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reject $H_0 : b_1 = 0$ at any typical α level.
Inferences about \hat{b} with σ^2 Known

If σ^2 is known, form $100(1 - \alpha)\%$ CIs using

$$\hat{b}_0 \pm Z_{\alpha/2}\sigma_{b_0} \quad \hat{b}_1 \pm Z_{\alpha/2}\sigma_{b_1}$$

where

- $Z_{\alpha/2}$ is normal quantile such that $P(X > Z_{\alpha/2}) = \alpha/2$
- σ_{b_0} and σ_{b_1} are square-roots of diagonals of $V(\hat{b}) = \sigma^2(X'X)^{-1}$

To test $H_0 : b_j = b_j^\ast$ vs. $H_1 : b_j \neq b_j^\ast$ (for $j \in \{0, 1\}$) use test statistic

$$Z = (\hat{b}_j - b_j^\ast)/\sigma_{b_j}$$

which follows a standard normal distribution under H_0.

Inferences in SLR

Confidence Intervals and Prediction

Inferences about \hat{b} with σ^2 Unknown

If σ^2 is unknown, form $100(1 - \alpha)$% CIs using

$$
\hat{b}_0 \pm t_{n-2}^{(\alpha/2)} \hat{\sigma}_b_0 \\
\hat{b}_1 \pm t_{n-2}^{(\alpha/2)} \hat{\sigma}_b_1
$$

where

- $t_{n-2}^{(\alpha/2)}$ is t_{n-2} quantile such that $P \left(T > t_{n-2}^{(\alpha/2)} \right) = \alpha/2$
- $\hat{\sigma}_b_0$ and $\hat{\sigma}_b_1$ are square-roots of diagonals of $\hat{V}(\hat{b}) = \hat{\sigma}^2 (X'X)^{-1}$

To test $H_0 : b_j = b_j^*$ vs. $H_1 : b_j \neq b_j^*$ (for $j \in \{0, 1\}$) use test statistic

$$
T = (\hat{b}_j - b_j^*)/\hat{\sigma}_b_j
$$

which follows a t_{n-2} distribution under H_0.
Confidence Interval for σ^2

Note that \[
\frac{(n-2)\hat{\sigma}^2}{\sigma^2} = \frac{SSE}{\sigma^2} = \sum_{i=1}^{n} \frac{\hat{e}_i^2}{\sigma^2} \sim \chi_{n-2}^2
\]

This implies that

\[
\chi_{(n-2;1-\alpha/2)}^2 < \frac{(n-2)\hat{\sigma}^2}{\sigma^2} < \chi_{(n-2;\alpha/2)}^2
\]

where $P(Q > \chi_{(n-2;\alpha/2)}^2) = \alpha/2$, so a $100(1 - \alpha)\%$ CI is given by

\[
\frac{(n-2)\hat{\sigma}^2}{\chi_{(n-2;\alpha/2)}^2} < \sigma^2 < \frac{(n-2)\hat{\sigma}^2}{\chi_{(n-2;1-\alpha/2)}^2}
\]
Example #1: Inference Questions

Returning to Momma Leona’s Pizza example, suppose we want to...

(a) Construct a 90% CI for b_1
(b) Test $H_0 : b_0 = 0$ vs. $H_1 : b_0 \neq 0$. Use $\alpha = 0.01$ for the test.
(c) Test $H_0 : b_0 = 75$ vs. $H_1 : b_0 < 75$. Use a 5% level of significance.
(d) Construct a 95% confidence interval for σ^2.
Example #1: Answer 1a

Question: Construct a 90% CI for b_1.

The variance of \hat{b}_1 is given by

$$\hat{V}(\hat{b}_1) = \hat{\sigma}^2 / \sum_{i=1}^{n} (x_i - \bar{x})^2$$

$$= 191.25 / 568$$

$$= 0.3367077$$

and the critical t_8 values are $t(8; .95) = -1.85955$ and $t(8; .05) = 1.85955$

So the 90% CI for b_1 is given by

$$\hat{b}_1 \pm t_{(8; .05)} \sqrt{\hat{V}(\hat{b}_1)} = 5 \pm 1.85955 \sqrt{191.25 / 568}$$

$$= [3.920969; 6.079031]$$
Example #1: Answer 1b

Question: Test $H_0 : b_0 = 0$ vs. $H_1 : b_0 \neq 0$. Use $\alpha = 0.01$ for the test.

The variance of \hat{b}_0 is given by

$$\hat{V}(\hat{b}_0) = \frac{\hat{\sigma}^2 \sum_{i=1}^{n} x_i^2}{n \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

$$= \frac{191.25(2528)}{10(568)}$$

$$= 85.11972$$

and the critical t_8 values are $t_{(8:.995)} = -3.3554$ and $t_{(8:.005)} = 3.3554$

Observed t test statistic is $T = \frac{60 - 0}{\sqrt{85.11972}} = 6.503336$, so decision is $t_{(8:.005)} = 3.3554 < 6.503336 = T \implies$ Reject H_0
Example #1: Answer 1c

Question: Test $H_0 : b_0 = 75$ vs. $H_1 : b_0 < 75$. Use $\alpha = 0.05$ for the test.

The variance of \hat{b}_0 is given by

$$
\hat{V}(\hat{b}_0) = \frac{\hat{\sigma}^2 \sum_{i=1}^{n} x_i^2}{n \sum_{i=1}^{n} (x_i - \bar{x})^2}
$$

$$
= \frac{85.11972}{85.11972}
$$

and the critical t_8 value is $t_{(8,.95)} = 1.859548$

Observed t test statistic is $T = \frac{60 - 75}{\sqrt{85.11972}} = -1.625834$, so decision is

$$
t_{(8,.95)} = -1.859548 < -1.625834 = T \implies \text{Retain } H_0
$$
Example #1: Answer 1d

Question: Construct a 95% confidence interval for σ^2.

Using $\alpha = .05$, the critical χ^2 values are

$$\chi^2_{(8;.975)} = 2.179731 \quad \text{and} \quad \chi^2_{(8;.025)} = 17.53455$$

So the 95% confidence interval for σ^2 is given by

$$\left[\frac{8\hat{\sigma}^2}{\chi^2_{(8;.025)}} ; \frac{8\hat{\sigma}^2}{\chi^2_{(8;.975)}} \right] = \left[\frac{1530}{17.53455} ; \frac{1530}{2.179731} \right] = [87.2563; 701.9215]$$
Interval Estimation

Idea: estimate expected value of response for a given predictor score.

Given x_h, the fitted value is $\hat{y}_h = x_h \hat{b}$ where $x_h = (1 \ x_h)$.

Variance of \hat{y}_h is given by $\sigma^2_{\hat{y}_h} = V(x_h \hat{b}) = x_h V(\hat{b}) x'_h = \sigma^2 x_h (X'X)^{-1} x'_h$

- Use $\hat{\sigma}^2_{\hat{y}_h} = \hat{\sigma}^2 x_h (X'X)^{-1} x'_h$ if σ^2 is unknown

We can test $H_0 : E(y_h) = y^*_h$ vs. $H_1 : E(y_h) \neq y^*_h$

- Test statistic: $T = (\hat{y}_h - y^*_h)/\hat{\sigma}_{\hat{y}_h}$, which follows $t_{(n-2)}$ distribution

- $100(1 - \alpha)\%$ CI for $E(y_h)$: $\hat{y}_h \pm t_{(\alpha/2),n-2} \hat{\sigma}_{\hat{y}_h}$
Predicting New Observations

Idea: estimate observed value of response for a given predictor score.

- Note: interested in actual \hat{y}_h value instead of $E(\hat{y}_h)$

Given x_h, the fitted value is $\hat{y}_h = x_h \hat{b}$ where $x_h = (1 \ x_h)$.

- Note: same as interval estimation

When predicting a new observation, there are two uncertainties:

- location of the distribution of Y for X_h (captured by $\sigma^2_{\hat{y}_h}$)
- variability within the distribution of Y (captured by σ^2)
Two sources of variance are independent so $\sigma^2_{\hat{y}_h} = \sigma^2_{\bar{y}_h} + \sigma^2$

- Use $\hat{\sigma}^2_{\hat{y}_h} = \hat{\sigma}^2_{\bar{y}_h} + \hat{\sigma}^2$ if σ^2 is unknown

We can test $H_0 : y_h = y_h^*$ vs. $H_1 : y_h \neq y_h^*$

- Test statistic: $T = (\hat{y}_h - y_h^*) / \hat{\sigma}_{y_h}$, which follows $t_{(n-2)}$ distribution

- $100(1 - \alpha)$% Prediction Interval (PI) for y_h: $\hat{y}_h \pm t_{n-2}^{(\alpha/2)} \hat{\sigma}_{y_h}$
Familywise Confidence Intervals

Returning to the idea of interval estimation, we could construct a $100(1 - \alpha)\%$ CI around $E(y_h)$ for $g > 1$ different x_h values.

- Note: we have an error rate of α for each individual CI

The familywise error rate is the probability that we make one (or more) errors among all g predictions simultaneously.

If predictions are independent, we have that $FWER = 1 - (1 - \alpha)^g$.

- Note: familywise error rate increases as g increases
- With $g = 1$ and $\alpha = .05$, $FWER = 1 - (1 - .05) = .05$
- With $g = 2$ and $\alpha = .05$, $FWER = 1 - (1 - .05)^2 = 0.0975$
Familywise Confidence Intervals (continued)

There are many options (corrections or adjustments) we can use.

Bonferroni adjustment controls FWER at α by using $\alpha^* = \alpha/g$ as significance level for each of the g CIs.

Bonferroni’s adjustment is very simple, but is conservative

- Does not assume independence between g predictions
- Will be overly conservative if predictions are independent
Simultaneous Confidence Bands

In SLR we typically want a confidence band, which is similar to a CI but holds for multiple values of x.

Given the distribution of \hat{b} (and some probability theory), we have that

$$\frac{(\hat{b} - b)'X'X(\hat{b} - b)}{\sigma^2} \sim \chi^2_2$$

$$\frac{(n - 2)\hat{\sigma}^2}{\sigma^2} \sim \chi^2_{n-2}$$

which implies that

$$\frac{(\hat{b} - b)'X'X(\hat{b} - b)}{2\hat{\sigma}^2} \sim \frac{\chi^2_2 / 2}{\chi^2_{n-2} / (n - 2)} \equiv F_{2,n-2}$$
Simultaneous Confidence Bands (continued)

To form a $100(1 - \alpha)\%$ confidence band (CB) use limits such that

$$(\hat{\mathbf{b}} - \mathbf{b})' \mathbf{X}' \mathbf{X} (\hat{\mathbf{b}} - \mathbf{b}) \leq 2\hat{\sigma}^2 F_{2, n-2}^{(\alpha)}$$

where $F_{2, n-2}^{(\alpha)}$ is the critical value corresponding to significance level α.

For the SLR model we can form a $100(1 - \alpha)\%$ CB using

$$\hat{b}_0 + \hat{b}_1 x \pm \sqrt{2 F_{2, n-2}^{(\alpha)} \hat{\sigma}^2 (1 \ x) \ (X'X)^{-1} \begin{pmatrix} 1 \\ x \end{pmatrix}}$$
Example #1: Prediction Questions

Returning to Momma Leona’s Pizza example, suppose we want to...

(e) Construct a 95% confidence interval for $E(Y|X = 48)$.

(f) Construct a 95% prediction interval for a future value of Y corresponding to $X = 48$.

(g) University of Minnesota has 48 thousand students. Momma Leona would agree to open a restaurant near the UMN campus, but only if there is enough evidence that the average quarterly sales would be over $250,000. Using $\alpha = 0.05$, test $H_0 : E(Y|X = 48) = 250$ vs. $H_1 : E(Y|X = 48) > 250$.
Inferences in SLR

Example #1: Answer 1e

Question: Construct a 95% confidence interval for $E(Y|X = 48)$.

The fitted value is $\hat{y} = 60 + 5(48) = 300$ and the variance of $E(Y|X = 48)$ is given by

$$
\sigma_{\hat{y}}^2 = \hat{\sigma}^2 \begin{pmatrix} 1 & 48 \end{pmatrix} (X'X)^{-1} \begin{pmatrix} 1 \n 48 \end{pmatrix} = \hat{\sigma}^2 \left(\frac{1}{n} + \frac{(48 - \bar{x})^2}{\sum_{i=1}^{n}(x_i - \bar{x})^2} \right)
$$

$$
= \hat{\sigma}^2 \left(\frac{1}{10} + \frac{(48 - 14)^2}{568} \right)
$$

$$
= 191.25 \left(\frac{1}{10} + \frac{(48 - 14)^2}{568} \right)
$$

$$
= 191.25(2.135211)
$$

$$
= 408.3592
$$

and the critical t_8 values are $t_{(8,.975)} = -2.306$ and $t_{(8,.025)} = 2.306$
Example #1: Answer 1e (continued)

Question: Construct a 95% confidence interval for \(E(Y|X = 48) \).

Note that \(\hat{y} = 60 + 5(48) = 300 \), \(\sigma^2_{\hat{y}} = 408.3592 \), and \(t_{(8,.025)} = 2.306 \).

So the 95% CI for \(E(Y|X = 48) \) is given by

\[
\hat{y} \pm t_{(8,.025)} \sigma_{\hat{y}} = 300 \pm 2.306 \sqrt{408.3592} \\
= [253.4005; 346.5995]
\]
Example #1: Answer 1f

Question: Construct a 95% prediction interval for a future value of Y corresponding to $X = 48$.

The fitted value is $\hat{y} = 60 + 5(48) = 300$ and the variance of a predicted value corresponding to $X = 48$ is given by

$$\sigma_{\hat{y}}^2 = \sigma^2 \left[1 + \left(1 \quad 48 \right) \left(X'X \right)^{-1} \left(\begin{array}{c} 1 \\ 48 \end{array} \right) \right]$$

$$= 191.25 \left[1 + 2.135211 \right]$$

$$= 599.6092$$

So, given $X = 48$, the 95% PI for Y would be

$$\hat{y} \pm t_{(8; .025)} \sigma_{\hat{y}} = 300 \pm 2.306 \sqrt{599.6092}$$

$$= [243.5331; 356.4669]$$
Example #1: Answer 1g

Question: Test $H_0 : E(Y|X = 48) = 250$ vs. $H_1 : E(Y|X = 48) > 250$ using significance level of $\alpha = 0.05$.

The fitted value is $\hat{y} = 60 + 5(48) = 300$ and the variance of $E(Y|X = 48)$ is given by

$$\sigma_y^2 = \hat{\sigma}^2 \begin{pmatrix} 1 & 48 \end{pmatrix} (X'X)^{-1} \begin{pmatrix} 1 \\ 48 \end{pmatrix}$$

$$= 408.3592$$

and the critical t_8 value is $t_{(8; .05)} = 1.859548$

Observed t test statistic is $T = \frac{300 - 250}{\sqrt{408.3592}} = 2.47428$, so decision is

$$t_{(8; .95)} = 1.859548 < 2.47428 = T \implies \text{Reject } H_0$$
In R linear models are fit using the `lm` function.

For SLR the basic syntax of the `lm` function is:

```
lm(y ~ x, data=mydata)
```

where

- `y` is the response variable
- `x` is the predictor variable
- `~` separates response and predictors
- `mydata` is the data frame containing `y` and `x`

Note: if `y` and `x` are defined in workspace, you can ignore `data` input.
We fit and save a linear model using the code

```r
mymod = lm(y ~ x, data=mydata)
```

where `mymod` is the object produced by the `lm` function.

Note that `mymod` is an object of class `lm`, which is a list containing many pieces of information about the fit model:

- **coefficients**: \hat{b}_0 and \hat{b}_1 estimates
- **residuals**: $\hat{e}_i = y_i - \hat{y}_i$ estimates
- **fitted.values**: \hat{y}_i estimates
- And more...
print and summary of \(\text{lm} \) Output

We can input an object output from the \(\text{lm} \) function into...

- \texttt{print} function to see formula and coefficients
- \texttt{summary} function to see formula, coefficients, and some basic inference information (\(R^2 \), \(\hat{\sigma} \), \(\hat{\sigma}_{b_0} \), \(\hat{\sigma}_{b_1} \), etc.)

Note 1: \texttt{print(mymod)} produces same result as typing \texttt{mymod}

Note 2: \texttt{summary} is typically more useful than \texttt{print}
Example A: Drinking Data

This example uses the drinking data set from *A Handbook of Statistical Analyses using SAS, 3rd Edition* (Der & Everitt, 2008).

Y: number of cirrhosis deaths per 100,000 people (*cirrhosis*).

X: average yearly alcohol consumption in liters/person (*alcohol*).

Have data from $n = 15$ different countries (note: these data are old).
Example A: Drinking Data (continued)

> drinking
country alcohol cirrhosis
1 France 24.7 46.1
2 Italy 15.2 23.6
3 W.Germany 12.3 23.7
4 Austria 10.9 7.0
5 Belgium 10.8 12.3
6 USA 9.9 14.2
7 Canada 8.3 7.4
8 E&W 7.2 3.0
9 Sweden 6.6 7.2
10 Japan 5.8 10.6
11 Netherlands 5.7 3.7
12 Ireland 5.6 3.4
13 Norway 4.2 4.3
14 Finland 3.9 3.6
15 Israel 3.1 5.4
Example A: Analyses and Results

```r
> drinkmod = lm(cirrhosis ~ alcohol, data=drinking)
> summary(drinkmod)

Call:
lm(formula = cirrhosis ~ alcohol, data = drinking)

Residuals:
     Min       1Q   Median       3Q      Max
-8.5635  -2.3508   0.1415   2.6149   5.3674

Coefficients:
                    Estimate  Std. Error    t value  Pr(>|t|)
(Intercept)     -5.9958356   2.0976882  -2.857874   0.013404 *
alcohol          1.9779356   0.2011596   9.828947  < 2.2e-07 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.169 on 13 degrees of freedom
Multiple R-squared: 0.8814, Adjusted R-squared: 0.8723
F-statistic: 96.61 on 1 and 13 DF,  p-value: 2.197e-07
```
Example A: Manual Calculations

```r
> X = cbind(1, drinking$alcohol)
> y = drinking$cirrhosis
> XtX = crossprod(X)
> Xty = crossprod(X, y)
> XtXi = solve(XtX)
> bhat = XtXi %*% Xty
> yhat = X %*% bhat
> ehat = y - yhat
> sigsq = sum(ehat^2) / (nrow(X)-2)
> bhatse = sqrt(sigsq*diag(XtXi))
> tval = bhat / bhatse
> pval = 2*(1-pt(abs(tval),nrow(X)-2))
> data.frame(bhat=bhat, se=bhatse, t=tval, p=pval)
```

<table>
<thead>
<tr>
<th></th>
<th>bhat</th>
<th>se</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-5.995</td>
<td>2.098</td>
<td>-2.858</td>
<td>1.34443e-02</td>
</tr>
<tr>
<td>2</td>
<td>1.978</td>
<td>0.201</td>
<td>9.829</td>
<td>2.19651e-07</td>
</tr>
</tbody>
</table>
Example A: Visualization

```
plot(drinking$alcohol, drinking$cirrhosis, type="n",
     xlab="yearly alcohol (liters/person)", ylab="cirrhosis deaths (per 100,000)"
) text(drinking$alcohol, drinking$cirrhosis, drinking$country)
abline(drinkmod$coef[1], drinkmod$coef[2])
```
Example A: Prediction

Suppose we have the following data from four countries

```r
> drinknew
  country alcohol cirrhosis
1 Lithuania  12.6      NA
2  Romania  12.7      NA
3    Latvia  13.2      NA
4 Luxembourg 15.3      NA
```

To get the associated \hat{y}_h values use the `predict` function:

```r
> predict(drinkmod, newdata=drinknew)
1 2 3 4
 18.92599 19.12378 20.11274 24.26636
```
Example A: Prediction (continued)

You can use the `predict` function to make CIs around $E(\hat{y}_h)$:

```r
> predict(drinkmod, newdata=drinknew, interval="confidence", level=0.9)
   fit  lwr  upr
1 18.92599 16.61708 21.23489
2 19.12378 16.79459 21.45296
3 20.11274 17.67686 22.54861
4 24.26636 21.30626 27.22645
```

Or you can use the `predict` function to make PIs around \hat{y}_h:

```r
> predict(drinkmod, newdata=drinknew, interval="prediction", level=0.9)
   fit  lwr  upr
1 18.92599 11.18828 26.66369
2 19.12378 11.38000 26.86755
3 20.11274 12.33620 27.88927
4 24.26636 16.31003 32.22269
```
Example A: Alcohol Consumption

Example A: Visualization (revisited)

- CI
- CB
- PI

Nathaniel E. Helwig (U of Minnesota)
Example A: Alcohol Consumption

```
drng = range(drinking$alcohol)
drinkseq = data.frame(alcohol=seq(drng[1],drrng[2],length.out=100))
civals = predict(drinkmod,newdata=drinkseq,interval="confidence")
pivals = predict(drinkmod,newdata=drinkseq,interval="prediction")
sevals = predict(drinkmod,newdata=drinkseq,se.fit=T)
plot(drinking$alcohol,drinking$cirrhosis,ylim=c(-5,55),
    xlab="yearly alcohol (liters/person)",
    ylab="cirrhosis deaths (per 100,000)")
abline(drinkmod$coef[1],drinkmod$coef[2])
W = sqrt(2*qf(.95,2,13))
lines(drinkseq$alcohol,civals[,2],lty=2,col="blue",lwd=2)
lines(drinkseq$alcohol,civals[,3],lty=2,col="blue",lwd=2)
lines(drinkseq$alcohol,sevals$fit+W*sevals$se.fit,
    lty=3,col="green3",lwd=2)
lines(drinkseq$alcohol,sevals$fit-W*sevals$se.fit,
    lty=3,col="green3",lwd=2)
lines(drinkseq$alcohol,pivals[,2],lty=4,col="red",lwd=2)
lines(drinkseq$alcohol,pivals[,3],lty=4,col="red",lwd=2)
legend("topleft",c("CI","CB","PI"),lty=2:4,cex=2,
    lwd=rep(2,3),col=c("blue","green3","red"),bty="n")
```
Example B: GPA Data

This example uses the GPA data set that we examined before.

Y: student’s university grade point average.

X: student’s high school grade point average.

Have data from $n = 105$ different students.
Example B: GPA Data (continued)

GPAs for the first 10 students in data set:

```r
> gpa[1:10,]
  high_GPA  math_SAT  verb_SAT  comp_GPA  univ_GPA
1    3.45       643       589      3.76      3.52
2    2.78       558       512      2.87      2.91
3    2.52       583       503      2.54      2.40
4    3.67       685       602      3.83      3.47
5    3.24       592       538      3.29      3.47
6    2.10       562       486      2.64      2.37
7    2.82       573       548      2.86      2.40
8    2.36       559       536      2.03      2.24
9    2.42       552       583      2.81      3.02
10   3.51       617       591      3.41      3.32
```
Example B: Analyses and Results

```r
> gpamod = lm(univ_GPA ~ high_GPA, data=gpa)
> summary(gpamod)
```

Call:
```
lm(formula = univ_GPA ~ high_GPA, data = gpa)
```

Residuals:
```
  Min     1Q   Median     3Q    Max
-0.69040 -0.11922  0.03274  0.17397  0.91278
```

Coefficients:
```
                Estimate Std. Error t value  Pr(>|t|)
(Intercept)  1.09682    0.16663   6.583 1.98e-09 ***
high_GPA    0.67483    0.05342  12.632  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
```

Residual standard error: 0.2814 on 103 degrees of freedom
Multiple R-squared: 0.6077, Adjusted R-squared: 0.6039
F-statistic: 159.6 on 1 and 103 DF, p-value: < 2.2e-16
Example B: Manual Calculations

```r
> X = cbind(1, gpa$high_GPA)
> y = gpa$univ_GPA
> XtX = crossprod(X)
> Xty = crossprod(X,y)
> XtXi = solve(XtX)
> bhat = XtXi %*% Xty
> yhat = X %*% bhat
> ehat = y - yhat
> sigsq = sum(ehat^2) / (nrow(X)-2)
> bhatse = sqrt(sigsq*diag(XtXi))
> tval = bhat / bhatse
> pval = 2*(1-pt(abs(tval),nrow(X)-2))
> data.frame(bhat=bhat, se=bhatse, t=tval, p=pval)

  bhat   se      t    p
1 1.096823 0.166627 6.58251 1.97668e-09
2 0.674830 0.053422 12.63197 0.00000e+00
```
Example B: Visualization

```
par(mar=c(5,5.4,4,2)+0.1)
plot(gpa$high_GPA, gpa$univ_GPA, xlab="High School GPA",
    ylab="University GPA", cex.lab=2, cex.axis=2)
abline(a=gpamod$coef[1], gpamod$coef[2])
```
Example B: Prediction

Predicted university GPA for data from five new students

```r
> gpanew = data.frame(high_GPA=c(2.4,3,3.1,3.3,3.9),
                      + univ_GPA=rep(NA,5))
> gpanew
   high_GPA univ_GPA
 1     2.4        NA
 2     3.0        NA
 3     3.1        NA
 4     3.3        NA
 5     3.9        NA
> predict(gpamod, newdata=gpanew)
 1  2  3  4  5
2.716415 3.121313 3.188796 3.323762 3.728660
```
Example B: Visualization (revisited)
Example B: Visualization (R code)

drng = range(gpa$high_GPA)
gpaseq = data.frame(high_GPA=seq(drng[1],drng[2],length.out=100))
civals = predict(gpamod,newdata=gpaseq,interval="confidence")
pivals = predict(gpamod,newdata=gpaseq,interval="prediction")
sevals = predict(gpamod,newdata=gpaseq,se.fit=T)
plot(gpa$high_GPA, gpa$univ_GPA, ylim=c(2,5),
 xlab="High School GPA", ylab="University GPA")
abline(gpamod$coef[1],gpamod$coef[2])
W = sqrt(2*qf(.95,2,103))
lines(gpaseq$high_GPA,civals[,2],lty=2,col="blue",lwd=2)
lines(gpaseq$high_GPA,civals[,3],lty=2,col="blue",lwd=2)
lines(gpaseq$high_GPA,sevals$fit+W*sevals$se.fit,
 lty=3,col="green3",lwd=2)
lines(gpaseq$high_GPA,sevals$fit-W*sevals$se.fit,
 lty=3,col="green3",lwd=2)
lines(gpaseq$high_GPA,pivals[,2],lty=4,col="red",lwd=2)
lines(gpaseq$high_GPA,pivals[,3],lty=4,col="red",lwd=2)
legend("topleft",c("CI","CB","PI"),lty=2:4,cex=2,
 lwd=rep(2,3),col=c("blue","green3","red"),bty="n")
Appendix
OLS Problem (revisited)

The OLS problem is to find the $b_0, b_1 \in \mathbb{R}$ that minimize

$$SSE = \|y - Xb\|^2$$

$$= \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i)^2$$

$$= \sum_{i=1}^{n} \left\{ y_i^2 - 2y_i(b_0 + b_1 x_i) + (b_0 + b_1 x_i)^2 \right\}$$

$$= \sum_{i=1}^{n} \left\{ y_i^2 - 2y_i(b_0 + b_1 x_i) + b_0^2 + 2b_0 b_1 x_i + b_1^2 x_i^2 \right\}$$
Taking the derivative of the SSE with respect to b_0 gives

\[
\frac{\partial SSE}{\partial b_0} = \sum_{i=1}^{n} \{-2y_i + 2b_0 + 2b_1x_i\} = -2n\bar{y} + 2nb_0 + 2nb_1\bar{x}
\]

and setting to zero and solving for b_0 gives

\[
\hat{b}_0 = \bar{y} - b_1\bar{x}
\]
Solving for Slope

Taking the derivative of the SSE with respect to b_1 gives

$$\frac{\partial \text{SSE}}{\partial b_1} = \sum_{i=1}^{n} \left\{ -2y_i x_i + 2b_0 x_i + 2b_1 x_i^2 \right\}$$

$$= \sum_{i=1}^{n} \left\{ -2y_i x_i + 2(\bar{y} - b_1 \bar{x})x_i + 2b_1 x_i^2 \right\}$$

$$= -2 \sum_{i=1}^{n} y_i x_i + 2n\bar{x}\bar{y} - 2nb_1 \bar{x}^2 + 2b_1 \sum_{i=1}^{n} x_i^2$$

$$= -2 \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) + 2b_1 \sum_{i=1}^{n} (x_i - \bar{x})^2$$

and setting to zero and solving for b_1 gives

$$\hat{b}_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$
Given $A = \{a_{ij}\}_{n \times p}$ and $b = \{b_j\}_{p \times 1}$, we have that

$$\frac{\partial \mathbf{Ab}}{\partial \mathbf{b}'} = \begin{pmatrix}
\frac{\partial \sum_{j=1}^{p} a_{1j}b_j}{\partial b_1} & \frac{\partial \sum_{j=1}^{p} a_{1j}b_j}{\partial b_2} & \cdots & \frac{\partial \sum_{j=1}^{p} a_{1j}b_j}{\partial b_p} \\
\frac{\partial \sum_{j=1}^{p} a_{2j}b_j}{\partial b_1} & \frac{\partial \sum_{j=1}^{p} a_{2j}b_j}{\partial b_2} & \cdots & \frac{\partial \sum_{j=1}^{p} a_{2j}b_j}{\partial b_p} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial \sum_{j=1}^{p} a_{nj}b_j}{\partial b_1} & \frac{\partial \sum_{j=1}^{p} a_{nj}b_j}{\partial b_2} & \cdots & \frac{\partial \sum_{j=1}^{p} a_{nj}b_j}{\partial b_p}
\end{pmatrix}_{n \times p} = A$$
Vector Calculus: Derivative of Quadratic Form

Given $\mathbf{A} = \{a_{ij}\}_{p \times p}$ and $\mathbf{b} = \{b_i\}_{p \times 1}$, we have that

$$\frac{\partial \mathbf{b}' \mathbf{A} \mathbf{b}}{\partial \mathbf{b}'} = \left(\frac{\partial \sum_{i=1}^{p} \sum_{j=1}^{p} b_i b_j a_{ij}}{\partial b_1}, \frac{\partial \sum_{i=1}^{p} \sum_{j=1}^{p} b_i b_j a_{ij}}{\partial b_2}, \ldots, \frac{\partial \sum_{i=1}^{p} \sum_{j=1}^{p} b_i b_j a_{ij}}{\partial b_p} \right)_{1 \times p}$$

$$= \left(2 \sum_{i=1}^{p} b_i a_{i1}, 2 \sum_{i=1}^{p} b_i a_{i2}, \ldots, 2 \sum_{i=1}^{p} b_i a_{ip} \right)_{1 \times p}$$

$$= 2\mathbf{b}' \mathbf{A}$$
Solving for Intercept and Slope Simultaneously

Note that we can write the OLS problem as

\[SSE = \| y - Xb \|^2 \]
\[= (y - Xb)'(y - Xb) \]
\[= y'y - 2y'Xb + b'X'Xb \]

Taking the first derivative of \(SSE \) with respect to \(b \) produces

\[\frac{\partial SSE}{\partial b'} = -2y'X + 2b'X'X \]

Setting to zero and solving for \(b \) gives

\[\hat{b} = (X'X)^{-1}X'y \]
To show that $\sum_{i=1}^{n} (\hat{y}_i - \bar{y})\hat{e}_i = 0$, note that

$$\sum_{i=1}^{n} (\hat{y}_i - \bar{y})\hat{e}_i = (Hy - n^{-1}1_n1'_n y)'(y - Hy)$$

$$= y'Hy - y'H^2y - n^{-1}y'1_n1'_ny + n^{-1}y'1_n1'_nHy$$

$$= y'Hy - y'H^2y - n^{-1}y'1_n1'_ny + n^{-1}y'H1_n1'_ny$$

$$= 0$$

given that $H^2 = H$ (because H is idempotent) and $H1_n1'_n = 1_n1'_n$ (because $1_n1'_n$ is within the column space of X and H is the projection matrix for the column space of X).
Proof MSE is Unbiased

First note that we can write \(SSE \) as

\[
\|(I_n - H)y\|^2 = y'y - 2y'Hy + y'H^2y \\
= y'y - y'Hy
\]

Now define \(\tilde{y} = y - Xb \) and note that

\[
\tilde{y}'\tilde{y} - \tilde{y}'H\tilde{y} = y'y - 2y'Xb + b'X'Xb - y'Hy + 2y'HXb - b'X'HXb \\
= y'y - y'Hy \\
= SSE
\]

given that \(HX = X \) (note \(H \) is projection matrix for column space of \(X \)).

Now use the trace trick

\[
\tilde{y}'\tilde{y} - \tilde{y}'H\tilde{y} = \operatorname{tr}(\tilde{y}'\tilde{y}) - \operatorname{tr}(\tilde{y}'H\tilde{y}) \\
= \operatorname{tr}(\tilde{y}\tilde{y}') - \operatorname{tr}(H\tilde{y}\tilde{y}')
\]
Proof MSE is Unbiased (continued)

Plugging in the previous results and taking the expectation gives

\[
E(\hat{\sigma}^2) = \frac{E[\text{tr}(\tilde{y}\tilde{y}')]}{n-2} - \frac{E[\text{tr}(H\tilde{y}\tilde{y}')]}{n-2}
\]

\[
= \frac{\text{tr}(E[\tilde{y}\tilde{y}'])}{n-2} - \frac{\text{tr}(HE[\tilde{y}\tilde{y}'])}{n-2}
\]

\[
= \frac{\text{tr}(\sigma^2I_n)}{n-2} - \frac{\text{tr}(H\sigma^2I_n)}{n-2}
\]

\[
= \frac{n\sigma^2}{n-2} - \frac{2\sigma^2}{n-2}
\]

\[
= \sigma^2
\]

which completes the proof; to prove that \(\text{tr}(H) = 2\), note that

\[
\text{tr}(H) = \text{tr} \left(X(X'X)^{-1}X' \right) = \text{tr} \left((X'X)^{-1}X'X \right) = \text{tr}(I_2) = 2
\]
ML Estimate of σ^2: Overview

Remember that the pdf of y has the form

$$f(y|x, b, \sigma^2) = (2\pi)^{-n/2}(\sigma^2)^{-n/2}e^{-\frac{1}{2\sigma^2}(y-Xb)'(y-Xb)}$$

As a result, the log-likelihood of σ^2 given (y, x, \hat{b}) is

$$\ln\{L(\sigma^2|y, x, \hat{b})\} = -\frac{n\ln(\sigma^2)}{2} - \frac{\hat{e}'\hat{e}}{2\sigma^2} + d$$

where d is a constant that does not depend on σ^2.
Solving for Error Variance

The MLE of σ^2 is the estimate satisfying

$$\max_{\sigma^2 \in \mathbb{R}^+} -\frac{n \ln(\sigma^2)}{2} - \frac{\hat{e}'\hat{e}}{2\sigma^2}$$

Taking the first derivative with respect to σ^2 gives

$$\frac{\partial}{\partial \sigma^2} \left\{ -\frac{n \ln(\sigma^2)}{2} - \frac{\hat{e}'\hat{e}}{2\sigma^2} \right\} = -\frac{n}{2\sigma^2} + \frac{\hat{e}'\hat{e}}{2\sigma^4}$$

Setting to zero and solving for σ^2 gives

$$\bar{\sigma}^2 = \frac{\hat{e}'\hat{e}}{n}$$