Regression with Polynomials and Interactions

Nathaniel E. Helwig

Assistant Professor of Psychology and Statistics
University of Minnesota (Twin Cities)

Updated 04-Jan-2017

Copyright

Copyright © 2017 by Nathaniel E. Helwig

Outline of Notes

1) Polynomial Regression:

- Polynomials review
- Model form
- Model assumptions
- Ordinary least squares
- Orthogonal polynomials
- Example: MPG vs HP

2) Interactions in Regression:

- Overview
- Nominal*Continuous
- Example \#1: Real Estate
- Example \#2: Depression
- Continuous*Continuous
- Example \#3: Oceanography

Polynomial Regression

Polynomial Function: Definition

Reminder: a polynomial function has the form

$$
\begin{aligned}
f(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots+a_{n} x^{n} \\
& =\sum_{j=0}^{n} a_{j} x^{j}
\end{aligned}
$$

where $a_{j} \in \mathbb{R}$ are the coefficients and x is the indeterminate (variable).

Note: x^{j} is the j-th order polynomial term

- x is first order term, x^{2} is second order term, etc.
- The degree of a polynomial is the highest order term

Polynomial Function: Simple Regression

$>x=\operatorname{seq}(-1,1$, length $=50)$
$>y=2+2 *\left(x^{\wedge} 2\right)$
> plot(x,y,main="Quadratic")
$>q m o d=\operatorname{lm}(\mathrm{y} \sim \mathrm{x})$
> abline(qmod)

Quadratic

$>x=\operatorname{seq}(-1,1$, length $=50)$
$>y=2+2 *\left(x^{\wedge} 3\right)$
> plot (x,y,main="Cubic")
$>c m o d=\operatorname{lm}(y \sim x)$
> abline(cmod)

Cubic

Model Form (scalar)

The polynomial regression model has the form

$$
y_{i}=b_{0}+\sum_{j=1}^{p} b_{j} x_{i}^{j}+e_{i}
$$

for $i \in\{1, \ldots, n\}$ where

- $y_{i} \in \mathbb{R}$ is the real-valued response for the i-th observation
- $b_{0} \in \mathbb{R}$ is the regression intercept
- $b_{j} \in \mathbb{R}$ is the regression slope for the j-th degree polynomial
- $x_{i} \in \mathbb{R}$ is the predictor for the i-th observation
- $e_{i} \stackrel{\text { iid }}{\sim} \mathrm{N}\left(0, \sigma^{2}\right)$ is a Gaussian error term

Model Form (matrix)

The polynomial regression model has the form

$$
\mathbf{y}=\mathbf{X b}+\mathbf{e}
$$

or

$$
\left(\begin{array}{c}
y_{1} \\
y_{2} \\
y_{3} \\
\vdots \\
y_{n}
\end{array}\right)=\left(\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{p} \\
1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{p} \\
1 & x_{3} & x_{3}^{2} & \cdots & x_{3}^{p} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{p}
\end{array}\right)\left(\begin{array}{c}
b_{0} \\
b_{1} \\
b_{2} \\
\vdots \\
b_{p}
\end{array}\right)+\left(\begin{array}{c}
e_{1} \\
e_{2} \\
e_{3} \\
\vdots \\
e_{n}
\end{array}\right)
$$

Note that this is still a linear model, even though we have polynomial terms in the design matrix.

PR Model Assumptions (scalar)

The fundamental assumptions of the PR model are:
(1) Relationship between X and Y is polynomial
(2) x_{i} and y_{i} are observed random variables (known constants)
(3) $e_{i} \stackrel{\text { iid }}{\sim} \mathrm{N}\left(0, \sigma^{2}\right)$ is an unobserved random variable
(9) $b_{0}, b_{1}, \ldots, b_{p}$ are unknown constants
(9) $\left(y_{i} \mid x_{i}\right) \stackrel{\text { ind }}{\sim} \mathrm{N}\left(b_{0}+\sum_{j=1}^{p} b_{j} x_{i}^{j}, \sigma^{2}\right)$ note: homogeneity of variance

Note: focus is estimation of the polynomial curve.

PR Model: Assumptions (matrix)

In matrix terms, the error vector is multivariate normal:

$$
\mathbf{e} \sim \mathrm{N}\left(\mathbf{0}_{n}, \sigma^{2} \mathbf{I}_{n}\right)
$$

In matrix terms, the response vector is multivariate normal given \mathbf{X} :

$$
(\mathbf{y} \mid \mathbf{X}) \sim \mathrm{N}\left(\mathbf{X b}, \sigma^{2} \mathbf{I}_{n}\right)
$$

Polynomial Regression: Properties

Some important properties of the PR model include:
(1) Need $n>p$ to fit the polynomial regression model
(2) Setting $p=1$ produces simple linear regression
(3) Setting $p=2$ is quadratic polynomial regression
(9) Setting $p=3$ is cubic polynomial regression
(0) Rarely set $p>3$; use cubic spline instead

Polynomial Regression: OLS Estimation

The ordinary least squares (OLS) problem is

$$
\min _{\mathbf{b} \in \mathbb{R}^{p+1}}\|\mathbf{y}-\mathbf{X b}\|^{2}
$$

where $\|\cdot\|$ denotes the Frobenius norm.

The OLS solution has the form

$$
\hat{\mathbf{b}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}
$$

which is the same formula from SLR and MLR!

Fitted Values and Residuals

SCALAR FORM:

Fitted values are given by

$$
\hat{y}_{i}=\hat{b}_{0}+\sum_{j=1}^{p} \hat{b}_{j} x_{i}^{j}
$$

and residuals are given by

$$
\hat{e}_{i}=y_{i}-\hat{y}_{i}
$$

MATRIX FORM:

Fitted values are given by

$$
\hat{\mathbf{y}}=\mathbf{X} \hat{\mathbf{b}}=\mathbf{H y}
$$

and residuals are given by

$$
\hat{\mathbf{e}}=\mathbf{y}-\hat{\mathbf{y}}=\left(\mathbf{I}_{n}-\mathbf{H}\right) \mathbf{y}
$$

Estimated Error Variance (Mean Squared Error)

The estimated error variance is

$$
\begin{aligned}
\hat{\sigma}^{2} & =S S E /(n-p-1) \\
& =\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2} /(n-p-1) \\
& =\left\|\left(\mathbf{I}_{n}-\mathbf{H}\right) \mathbf{y}\right\|^{2} /(n-p-1)
\end{aligned}
$$

which is an unbiased estimate of error variance σ^{2}.

The estimate $\hat{\sigma}^{2}$ is the mean squared error (MSE) of the model.

Distribution of Estimator, Fitted Values, and Residuals

Just like in SLR and MLR, the PR assumptions imply that

$$
\begin{aligned}
& \hat{\mathbf{b}} \sim \mathrm{N}\left(\mathbf{b}, \sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right) \\
& \hat{\mathbf{y}} \sim \mathrm{N}\left(\mathbf{X} \mathbf{b}, \sigma^{2} \mathbf{H}\right) \\
& \hat{\mathbf{e}} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2}\left(\mathbf{I}_{n}-\mathbf{H}\right)\right)
\end{aligned}
$$

Typically σ^{2} is unknown, so we use the MSE $\hat{\sigma}^{2}$ in practice.

Multicollinearity: Problem

Note that $x_{i}, x_{i}^{2}, x_{i}^{3}$, etc. can be highly correlated with one another, which introduces multicollinearity problem.

```
> set.seed(123)
> x = runif(100)*2
> X = cbind(x, xsq=x^2, xcu=x^3)
> cor(X)
\begin{tabular}{lrrr} 
& X & XSq & XCu \\
X & 1.0000000 & 0.9703084 & 0.9210726 \\
XSq & 0.9703084 & 1.0000000 & 0.9866033 \\
xCu & 0.9210726 & 0.9866033 & 1.0000000
\end{tabular}
```


Multicollinearity: Partial Solution

You could mean-center the x_{i} terms to reduce multicollinearity.

```
> set.seed(123)
> x = runif(100)*2
> x = x - mean(x)
> X = cbind(x, xsq=x^2, xcu=x^^3)
> cor(X)
```

	x	$X S q$	XCu
X	1.00000000	0.03854803	0.91479660
XSq	0.03854803	1.00000000	0.04400704
xCu	0.91479660	0.04400704	1.00000000

But this doesn't fully solve our problem...

Orthogonal Polynomials: Definition

To deal with multicollinearity, define the set of variables

$$
\begin{aligned}
& z_{0}=a_{0} \\
& z_{1}=a_{1}+b_{1} x \\
& z_{2}=a_{2}+b_{2} x+c_{2} x^{2} \\
& z_{3}=a_{3}+b_{3} x+c_{3} x^{2}+d_{3} x^{3}
\end{aligned}
$$

where the coefficients are chosen so that $z_{j}^{\prime} z_{k}=0$ for all $j \neq k$.

The transformed z_{j} variables are called orthogonal polynomials.

Orthogonal Polynomials: Orthogonal Projection

The orthogonal projection of
a vector $\mathbf{v}=\left\{v_{i}\right\}_{n \times 1}$ on to the line spanned by the vector $\mathbf{u}=\left\{u_{i}\right\}_{n \times 1}$ is

$$
\operatorname{proj}_{\mathbf{u}}(\mathbf{v})=\frac{\langle\mathbf{v}, \mathbf{u}\rangle}{\langle\mathbf{u}, \mathbf{u}\rangle} \mathbf{u}
$$

where $\langle\mathbf{u}, \mathbf{v}\rangle=\mathbf{u}^{\prime} \mathbf{y}$ and
$\langle\mathbf{u}, \mathbf{u}\rangle=\mathbf{u}^{\prime} \mathbf{u}$ denote the inner products.

http://thejuniverse.org/PUBLIC/LinearAlgebra/LOLA/dotProd/proj.html

Orthogonal Polynomials: Gram-Schmidt

Can use the Gram-Schmidt process to form orthogonal polynomials.

Start with a linearly independent design matrix $\mathbf{X}=\left[\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right]$ where $\mathbf{x}_{j}=\left(x_{1}^{j}, \ldots, x_{n}^{j}\right)^{\prime}$ is the j-th order polynomial vector.

Gram-Schmidt algorithm to form columnwise orthogonal matrix \mathbf{Z} that spans the same column space as \mathbf{X} :

$$
\begin{aligned}
& \mathbf{z}_{0}=\mathbf{x}_{0} \\
& \mathbf{z}_{1}=\mathbf{x}_{1}-\operatorname{proj}_{\mathbf{z}_{0}}\left(\mathbf{x}_{1}\right) \\
& \mathbf{z}_{2}=\mathbf{x}_{2}-\operatorname{pro}_{\mathbf{z}_{0}}\left(\mathbf{x}_{2}\right)-\operatorname{proj}_{\mathbf{z}_{1}}\left(\mathbf{x}_{2}\right) \\
& \mathbf{z}_{3}=\mathbf{x}_{3}-\operatorname{proj}_{\mathbf{z}_{0}}\left(\mathbf{x}_{3}\right)-\operatorname{proj}_{\mathbf{z}_{1}}\left(\mathbf{x}_{3}\right)-\operatorname{proj}_{\mathbf{z}_{2}}\left(\mathbf{x}_{3}\right)
\end{aligned}
$$

Orthogonal Polynomials: R Functions

Simple R function to orthogonalize an input matrix:

```
orthog <- function(X, normalize=FALSE){
    np}=\operatorname{dim}(X
    Z = matrix(0, np[1], np[2])
    Z[,1] = X[,1]
    for(k in 2:np[2]){
        Z [, k] = X [, k]
        for(j in 1:(k-1)){
        Z[,k] = Z[,k] - Z[,j]*sum(Z[,k]*Z[,j]) / sum(Z[,j]^2)
        }
    }
    if(normalize) {Z Z Z % % %% diag(colSums(Z^2)^-0.5) }
    Z
}
```


Orthogonal Polynomials: R Functions (continued)

```
> set.seed(123)
> X = cbind(1, runif(10), runif(10))
> crossprod(X)
    [,1] [,2] [,3]
    [1,] 10.000000 5.782475 5.233693
    [2,] 5.782475 4.125547 2.337238
    [3,] 5.233693 2.337238 3.809269
> Z = orthog(X)
> crossprod(Z)
\begin{tabular}{rrrr}
{\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} \\
{\([1]\),} & \(1.000000 e+01\) & \(-4.440892 e-16\) & \(-4.440892 e-16\) \\
{\([2]\),} & \(-4.440892 e-16\) & \(7.818448 e-01\) & \(-1.387779 e-17\) \\
{\([3]\),} & \(-4.440892 e-16\) & \(-1.387779 e-17\) & \(4.627017 e-01\)
\end{tabular}
> Z = orthog(X, norm=TRUE)
> crossprod(Z)
\begin{tabular}{rrrr}
{\([r, 1]\)} & {\([, 2]\)} & {\([, 3]\)} \\
{\([1]\),} & \(1.000000 e+00\) & \(-1.942890 \mathrm{e}-16\) & \(-2.220446 \mathrm{e}-16\) \\
{\([2]\),} & \(-1.942890 \mathrm{e}-16\) & \(1.000000 \mathrm{e}+00\) & \(1.387779 \mathrm{e}-17\) \\
{\([3]\),} & \(-2.220446 \mathrm{e}-16\) & \(1.387779 \mathrm{e}-17\) & \(1.000000 \mathrm{e}+00\)
\end{tabular}
```


Orthogonal Polynomials: R Functions (continued)

Can also use the default poly function in R.

```
> set.seed(123)
> x = runif(10)
> X = cbind(1, x, xSq=x^2, xcu=x^3)
> Z = orthog(X, norm=TRUE)
> z = poly(x, degree=3)
> Z[,2:4] = Z[,2:4] %*% diag(colSums(z^2)^0.5)
> Z[1:3,]
\begin{tabular}{rrrrr} 
& {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} & {\([, 4]\)} \\
{\([1]\),} & 0.3162278 & -0.3287304 & -0.07537277 & 0.5363745 \\
{\([2]\),} & 0.3162278 & 0.2375627 & -0.06651752 & -0.5097714 \\
{\([3]\),} & 0.3162278 & -0.1914349 & -0.26206273 & 0.2473705 \\
\(>\) cbind \((Z[1: 3,1], z[1: 3])\), & 2 & 3 \\
& & 1 & 2 & 0.5363745 \\
{\([1]\),} & 0.3162278 & -0.3287304 & -0.07537277 & 0.5 \\
{\([2]\),} & 0.3162278 & 0.2375627 & -0.06651752 & -0.5097714 \\
{\([3]\),} & 0.3162278 & -0.1914349 & -0.26206273 & 0.2473705
\end{tabular}
```


Real Polynomial Data

Auto-MPG data from the UCI Machine Learning repository: http://archive.ics.uci.edu/ml/datasets/Auto+MPG

Have variables collected from $n=398$ cars from years 1970-1982.
mpg miles per gallon
cylinder numer of cylinders
disp displacement
hp horsepower
weight weight
accel acceleration
year model year
origin origin
name make and model

Best Linear Relationship

Best linear relationship predicting mpg from hp.

```
> plot(hp,mpg)
> linmod = lm(mpg ~ hp)
> abline(linmod)
```


Best Quadratic Relationship

Best quadratic relationship predicting mpg from hp .

Best Cubic Relationship

Check for possible cubic relationship:

```
> cubmod = lm(mpg ~ hp + I (hp^2) +I(hp^3))
> summary(cubmod)
Call:
lm(formula = mpg ~ hp + I(hp^2) + I(hp^3))
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-14.7039 & -2.4491 & -0.1519 & 2.2035 & 15.8159
\end{tabular}
Coefficients:
\begin{tabular}{lrrrrr} 
& Estimate & Std. Error t value \(\operatorname{Pr}(>|t|)\) & \\
(Intercept) & \(6.068 \mathrm{e}+01\) & \(4.563 \mathrm{e}+00\) & 13.298 & \(<2 \mathrm{e}-16\) *** \\
hp & \(-5.689 \mathrm{e}-01\) & \(1.179 \mathrm{e}-01\) & -4.824 & \(2.03 \mathrm{e}-06\) *** \\
I (hp^2) & \(2.079 \mathrm{e}-03\) & \(9.479 \mathrm{e}-04\) & 2.193 & 0.0289 * \\
I (hp^3) & \(-2.147 \mathrm{e}-06\) & \(2.378 \mathrm{e}-06\) & -0.903 & 0.3673
\end{tabular}
Signif. codes: 0 `***' 0.001 `**' 0.01 '*' 0.05 `.' 0.1 ' ' 1
Residual standard error: 4.375 on 388 degrees of freedom
    (6 observations deleted due to missingness)
Multiple R-squared: 0.6882, Adjusted R-squared: 0.6858
F-statistic: 285.5 on 3 and 388 DF, p-value: < 2.2e-16
```


Orthogonal versus Raw Polynomials

Compare orthogonal and raw polynomials:

```
> quadomod = lm(mpg ~ poly(hp,degree=2))
> summary(quadomod) $coef
    Estimate Std. Error t value Pr(>|t|)
    (Intercept) 23.44592 0.2209163 106.13030 2.752212e-289
poly(hp, degree = 2)1 -120.13774 4.3739206 -27.46683 4.169400e-93
poly(hp, degree = 2)2 44.08953 4.3739206 10.08009 2.196340e-21
> summary(quadmod) $coef
    Estimate Std. Error t value Pr(>|t|)
    (Intercept) 56.900099702 1.8004268063 31.60367 1.740911e-109
hp -0.466189630 0.0311246171 -14.97816 2.289429e-40
I(hp^2) 0.001230536 0.0001220759 10.08009 2.196340e-21
```


Orthogonal Polynomials from Scratch

We can reproduce the same significance test results using orthog:

```
> widx = which(is.na(hp)==FALSE)
> hp = hp[widx]
> mpg = mpg[widx]
> X = orthog(cbind(1, hp, hp^2))
> quadomod = lm(mpg ~ X[,2] + X[,3])
> summary(quadomod) $coef
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 23.445918367 0.2209163488 106.13030 2.752212e-289
X[, 2] -0.157844733 0.0057467395 -27.46683 4.169400e-93
X[, 3] 0.001230536 0.0001220759 10.08009 2.196340e-21
```


Interactions in Regression

Interaction Term: Definition

MLR model with two predictors and an interaction

$$
y_{i}=b_{0}+b_{1} x_{i 1}+b_{2} x_{i 2}+b_{3} x_{i 1} x_{i 2}+e_{i}
$$

where

- $y_{i} \in \mathbb{R}$ is the real-valued response for the i-th observation
- $b_{0} \in \mathbb{R}$ is the regression intercept
- $b_{1} \in \mathbb{R}$ is the main effect of the first predictor
- $b_{2} \in \mathbb{R}$ is the main effect of the second predictor
- $b_{3} \in \mathbb{R}$ is the interaction effect
- $e_{i} \stackrel{\text { iid }}{\sim} \mathrm{N}\left(0, \sigma^{2}\right)$ is a Gaussian error term

Interaction Term: Interpretation

An interaction between X_{1} and X_{2} means that the relationship between X_{1} and Y differs depending on the value of X_{2} (and vice versa).

Pro: model is more flexible (i.e., we've added a parameter)

Con: model is (sometimes) more difficult to interpret.

Nominal Variables

Suppose that $X \in\left\{x_{1}, \ldots, x_{g}\right\}$ is a nominal variable with g levels.

- Nominal variables are also called categorical variables
- Example: sex $\in\{$ female, male $\}$ has two levels
- Example: drug $\in\{A, B, C\}$ has three levels

To code a nominal variable (with g levels) in a regression model, we need to include $g-1$ different variables in the model.

- Use dummy coding to absorb g-th level into intercept
- $x_{i j}= \begin{cases}1 & \text { if } i \text {-th observation is in } j \text {-th level } \\ 0 & \text { otherwise }\end{cases}$ for $j \in\{1, \ldots, g-1\}$

Nominal Interaction with Two Levels

Revisit the MLR model with two predictors and an interaction

$$
y_{i}=b_{0}+b_{1} x_{i 1}+b_{2} x_{i 2}+b_{3} x_{i 1} x_{i 2}+e_{i}
$$

and suppose that $x_{i 2} \in\{0,1\}$ is a nominal predictor.

If $x_{i 2}=0$, the model is: $\quad y_{i}=b_{0}+b_{1} x_{i 1}+e_{i}$

- b_{0} is expected value of Y when $x_{i 1}=x_{i 2}=0$
- b_{1} is expected change in Y for 1 -unit change in $x_{i 1}$ (if $x_{i 2}=0$)

If $x_{i 2}=1$, the model is: $\quad y_{i}=\left(b_{0}+b_{2}\right)+\left(b_{1}+b_{3}\right) x_{i 1}+e_{i}$

- $b_{0}+b_{2}$ is expected value of Y when $x_{i 1}=0$ and $x_{i 2}=1$
- $b_{1}+b_{3}$ is expected change in Y for 1 -unit change in $x_{i 1}$ (if $x_{i 2}=1$)

Real Estate Data Description

Using house price data from Kutner, Nachtsheim, Neter, and Li (2005).

Have three variables in the data set:

- price: price house sells for (thousands of dollars)
- value: house value before selling (thousands of dollars)
- corner: indicator variable (=1 if house is on corner of block)

Total of $n=64$ independent observations (16 corners).

Want to predict selling price from appraisal value, and determine if the relationship depends on the corner status of the house.

Real Estate Data Visualization

Real Estate Data Visualization (R Code)

```
> house=read.table("~/Desktop/notes/data/houseprice.txt",header=TRUE)
> house[1:3,]
    price value corner
1 78.8 76.4 0
2 73.8 74.3 0
364.6 69.6 0
4 76.2 73.6 0
57.2 76.8 0
6 70.6 72.7 1
76.0 79.2 0
83.1 75.6 0
> plot(house$value,house$price,pch=ifelse(house$corner==1,0,16),
+ xlab="Appraisal Value",ylab="Selling Price")
> legend("topleft",c("Corner","Non-Corner"),pch=c(0,16),bty="n")
```


Real Estate Regression: Fit Model

Fit model with interaction between value and corner
> hmod = lm(price ~ value*corner, data=house)
> hmod

Call:
lm(formula $=$ price \sim value * corner, data $=$ house)

Coefficients:

(Intercept)	value	corner	value:corner
-126.905	2.776	76.022	-1.107

Real Estate Regression: Significance of Terms

```
> summary(hmod)
Call:
lm(formula = price ~ value * corner, data = house)
Residuals:
    Min 1Q Median 3Q Max
-10.8470 -2.1639 0.0913 1.9348
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) -126.9052 14.7225 - 8.620 4.33e-12 ***
value 2.7759 0.1963 14.142< 2e-16 ***
corner 76.0215 30.1314 2.523 0.01430 *
value:corner -1.1075 0.4055 -2.731 0.00828 **
---
Signif. codes: 0 '\star**' 0.001 '\star*' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.893 on 60 degrees of freedom
Multiple R-squared: 0.8233, Adjusted R-squared: 0.8145
F-statistic: 93.21 on 3 and 60 DF, p-value: < 2.2e-16
```


Real Estate Regression: Interpreting Results

```
> hmod$coef
    (Intercept)
    -126.905171
```

value
2.775898
> corner value:corner
> 76.021532
> -1. 107482

- $\hat{b}_{0}=-126.90$ is expected selling price (in thousands of dollars) for non-corner houses that were valued at $\$ 0$.
- $\hat{b}_{0}+\hat{b}_{2}=-126.90+76.022=-50.878$ is expected selling price (in thousands of dollars) for corner houses that were valued at $\$ 0$.
- $\hat{b}_{1}=2.776$ is the expected increase in selling price (in thousands of dollars) corresponding to a 1 -unit $(\$ 1,000)$ increase in appraisal value for non-corner houses
- $\hat{b}_{1}+\hat{b}_{3}=2.775-1.107=1.668$ is the expected increase in selling price (in thousands of dollars) corresponding to a 1-unit $(\$ 1,000)$ increase in appraisal value for corner houses

Real Estate Regression: Plotting Results

Real Estate Regression: Plotting Results (R Code)

```
> plot(house$value, house$price, pch=ifelse(house$corner==1,0,16),
+ xlab="Appraisal Value", ylab="Selling Price")
> abline(hmod$coef[1],hmod$coef[2])
> abline(hmod$coef[1]+hmod$coef[3],hmod$coef[2]+hmod$coef[4],lty=2)
> legend("topleft",c("Corner","Non-Corner"),lty=2:1,pch=c(0,16),bty="n")
```

Note that if you input the (appropriate) coefficients, you can still use the abline function to draw the regression lines.

Depression Data Description

Using depression data from Daniel (1999) Biostatistics: A Foundation for Analysis in the Health Sciences.

Total of $n=36$ subjects participated in a depression study.

Have three variables in the data set:

- effect: effectiveness of depression treatment (high=effective)
- age: age of the participant (in years)
- method: method of treatment (3 levels: A, B, C)

Predict effectiveness from participant's age and treatment method.

Depression Data Visualization

Depression Data Visualization (R Code)

```
> depression=read.table("~/Desktop/notes/data/depression.txt",header=TRUE)
> depression[1:8,]
effect age method
    56 21 A
    41 23 B
    40 30 B
    28 19 C
    55 28 A
    25 23 C
    46 33 B
    71 67 C
> plot(depression$age,depression$effect,xlab="Age",ylab="Effect",type="n")
> text(depression$age,depression$effect,depression$method)
```


Depression Regression: Fit Model

Fit model with interaction between age and method

```
> dmod = lm(effect ~ age*method, data=depression)
> dmod$coef
\begin{tabular}{lrrrrr} 
(Intercept) & age & methodB & methodC & age: methodB & age:methodC \\
47.5155913 & 0.3305073 & \(-18.5973852-41.3042101\) & 0.1931769 & 0.7028836
\end{tabular}
```

Note that R creates two indicator variables for method:

- $x_{i B}= \begin{cases}1 & \text { if } i \text {-th observation is in treatment method } \mathrm{B} \\ 0 & \text { otherwise }\end{cases}$
- $x_{i C}= \begin{cases}1 & \text { if } i \text {-th observation is in treatment method } \mathrm{C} \\ 0 & \text { otherwise }\end{cases}$

Depression Regression: Significance of Terms

$>$ summary (dmod)

```
Call:
lm(formula = effect ~ age * method, data = depression)
```

Residuals:

Min	$1 Q$	Median	$3 Q$	Max
-6.4366	-2.7637	0.1887	2.9075	6.5634

Coefficients:

$$
\text { Estimate Std. Error } t \text { value } \operatorname{Pr}(>|t|)
$$

(Intercept)	47.51559	3.82523	12.422	$2.34 e-13$	$* * *$
age	0.33051	0.08149	4.056	0.000328	$* * *$
methodB	-18.59739	5.41573	-3.434	0.001759	$* *$
methodC	-41.30421	5.08453	-8.124	$4.56 e-09$	$* * *$
age:methodB	0.19318	0.11660	1.657	0.108001	
age:methodC	0.70288	0.10896	6.451	$3.98 e-07$	$* * *$

```
Signif. codes: 0 '***' 0.001 '**' 0.01 `*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 3.925 on 30 degrees of freedom
Multiple R-squared: 0.9143, Adjusted R-squared: 0.9001
F-statistic: 64.04 on 5 and 30 DF, p-value: 4.264e-15

Depression Regression: Interpreting Results

> dmod\$coef
(Intercept) age methodB methodC age:methodB age:methodC
$47.5155913 \quad 0.3305073-18.5973852-41.3042101 \quad 0.1931769 \quad 0.7028836$

- $\hat{b}_{0}=47.516$ is expected treatment effectiveness for subjects in method A who are $0 \mathrm{y} / \mathrm{o}$.
- $\hat{b}_{0}+\hat{b}_{2}=47.516-18.598=28.918$ is expected treatment effectiveness for subjects in method B who are 0 years old.
- $\hat{b}_{0}+\hat{b}_{3}=47.516-41.304=6.212$ is expected treatment effectiveness for subjects in method C who are 0 years old.
- $\hat{b}_{1}=0.331$ is the expected increase in treatment effectiveness corresponding to a 1-unit (1 year) increase in age for treatment method A
- $\hat{b}_{1}+\hat{b}_{4}=0.331+0.193=0.524$ is the expected increase in treatment effectiveness corresponding to a 1 -unit (1 year) increase in age for treatment method B
- $\hat{b}_{1}+\hat{b}_{5}=0.331+0.703=1.033$ is the expected increase in treatment effectiveness corresponding to a 1-unit (1 year) increase in age for treatment method C

Depression Regression: Plotting Results

Depression Regression: Plotting Results

```
> plot(depression$age,depression$effect,xlab="Age",ylab="Effect",type="n")
> text(depression$age, depression$effect, depression$method)
> abline(dmod$coef[1],dmod$coef[2])
> abline(dmod$coef[1]+dmod$coef[3],dmod$coef[2]+dmod$coef[5],1ty=2)
> abline(dmod$coef[1]+dmod$coef[4],dmod$coef[2]+dmod$coef[6],lty=3)
> legend("bottomright",c("A","B","C"), lty=1:3,bty="n")
```


Interactions between Continuous Variables

Revisit the MLR model with two predictors and an interaction

$$
y_{i}=b_{0}+b_{1} x_{i 1}+b_{2} x_{i 2}+b_{3} x_{i 1} x_{i 2}+e_{i}
$$

and suppose that $x_{i 1}, x_{i 2} \in \mathbb{R}$ are both continuous predictors.

In this case, the model terms can be interpreted as:

- b_{0} is expected value of Y when $x_{i 1}=x_{i 2}=0$
- $b_{1}+b_{3} x_{i 2}$ is expected change in Y corresponding to 1 -unit change in $x_{i 1}$ holding $x_{i 2}$ fixed (i.e., conditioning on $x_{i 2}$)
- $b_{2}+b_{3} x_{i 1}$ is expected change in Y corresponding to 1 -unit change in $x_{i 2}$ holding $x_{i 1}$ fixed (i.e., conditioning on $x_{i 1}$)

Visualizing Continuous*Continuous Interactions

Multiple regression (additive)
Multiple regression (interaction)

Oceanography Data Description

Data from UCI Machine Learning: http://archive.ics.uci.edu/ml/

- Data originally from TAO project: http://www.pmel.noaa.gov/tao/
- Note that I have preprocessed the data a bit before analysis.

Oceanography Data Description (continued)

Buoys collect lots of different data:

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & obs & year & month & day & date & latitude & longitude & zon.winds & mer.winds & humidity & air.temp & ss.temp \\
\hline 4297 & 4297 & 94 & 1 & 1 & 940101 & -0.01 & 250.01 & -4.3 & 2.6 & 89.9 & 23.21 & 23.37 \\
\hline 4298 & 4298 & 94 & 1 & 2 & 940102 & -0.01 & 250.01 & -4.1 & 1 & 90 & 23.16 & 23.45 \\
\hline 4299 & 4299 & 94 & 1 & 3 & 940103 & -0.01 & 250.01 & -3 & 1.6 & 87.7 & 23.14 & 23.71 \\
\hline 3300 & 4300 & 94 & 1 & 4 & 940104 & 0.00 & 250.00 & -3 & 2.9 & 85.8 & 23.39 & 24.29 \\
\hline
\end{tabular}
```

We will focus on predicting the sea surface temperatures (ss.temp) from the latitude and longitude locations of the buoys.

Oceanography Regression: Fit Additive Model

Fit additive model of latitude and longitude

```
> eladd = lm(ss.temp ~ latitude + longitude, data=elnino)
> summary(eladd)
Call:
lm(formula = ss.temp ~ latitude + longitude, data = elnino)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-7.6055 & -0.7229 & 0.1261 & 0.9039 & 5.0987
\end{tabular}
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 35.2636388 0.0305722 1153.45 <2e-16 ***
latitude 0.0257867 0.0010006 25.77 <2e-16 ***
longitude -0.0357496 0.0001445 -247.33 <2e-16 ***
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
Residual standard error: 1.48 on 86498 degrees of freedom
Multiple R-squared: 0.4184, Adjusted R-squared: 0.4184
F-statistic: 3.112e+04 on 2 and 86498 DF, p-value: < 2.2e-16
```


Oceanography Regression: Fit Interaction Model

Fit model with interaction between latitude and longitude

```
> elint = lm(ss.temp ~ latitude*longitude, data=elnino)
> summary(elint)
Call:
lm(formula = ss.temp ~ latitude * longitude, data = elnino)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & 3Q & Max \\
-7.5867 & -0.6496 & 0.1000 & 0.8127 & 5.0922
\end{tabular}
Coefficients:
\begin{tabular}{lrrrrr} 
& Estimate Std. Error t value Pr \((>|t|)\) \\
(Intercept) & \(3.541 \mathrm{e}+01\) & \(2.913 \mathrm{e}-02\) & 1215.61 & \(<2 \mathrm{e}-16\) & \(* * *\) \\
latitude & \(-5.245 \mathrm{e}-01\) & \(5.862 \mathrm{e}-03\) & -89.47 & \(<2 \mathrm{e}-16\) & \(* * *\) \\
longitude & \(-3.638 \mathrm{e}-02\) & \(1.377 \mathrm{e}-04\) & -264.22 & \(<2 \mathrm{e}-16\) & \(* * *\) \\
latitude: longitude & \(2.618 \mathrm{e}-03\) & \(2.752 \mathrm{e}-05\) & 95.13 & \(<2 \mathrm{e}-16 * * *\)
\end{tabular}
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.408 on }86497\mathrm{ degrees of freedom
Multiple R-squared: 0.4735, Adjusted R-squared: 0.4735
F-statistic: 2.593e+04 on 3 and 86497 DF, p-value: < 2.2e-16
```


Oceanography Regression: Visualize Results

Oceanography Regression: Visualize (R Code)

```
newdata=expand.grid(longitude=seq(min(elnino$longitude),max(elnino$longitude),length=50),
    latitude=seq(min(elnino$latitude),max(elnino$latitude),length=50))
yadd=predict(eladd, newdata)
image(seq(min(elnino$longitude),max(elnino$longitude), length=50),
    seq(min(elnino$latitude),max(elnino$latitude), length=50),
    matrix(yadd,50,50),col=rev(rainbow(100,end=3/4)),
    xlab="Longitude",ylab="Latitude",main="Additve Prediction")
yint=predict(elint,newdata)
image(seq(min(elnino$longitude),max(elnino$longitude),length=50),
    seq(min(elnino$latitude),max(elnino$latitude),length=50),
    matrix(yint,50,50),col=rev(rainbow(100,end=3/4)),
    xlab="Longitude",ylab="Latitude",main="Interaction Prediction")
```


Oceanography Regression: Smoothing Spline Solution

b) Main Effect: Temporal

c) Main Effect: Spatial

