Permutation Tests

Nathaniel E. Helwig

Assistant Professor of Psychology and Statistics
 University of Minnesota (Twin Cities)

Updated 04-Jan-2017

Copyright

Copyright © 2017 by Nathaniel E. Helwig

Outline of Notes

1) Introduction to Permutations

- What is a permutation?
- Permutations in R
- Inference via permutations

2) One-Sample Permutations

- Overview
- Monte Carlo procedure
- Examples

3) Two-Sample Permutations

- Overview
- Monte Carlo procedure
- Examples

4) Correlation Permutations

- Overview
- Monte Carlo procedure
- Examples

Introduction to Permutations

Permutation Defined

The word permutation refers to the arrangement of a set of objects into some specified order.

Each column is one possible permutation of the three colors:

From https://upload.wikimedia.org/wikipedia/commons/4/4c/Permutations_RGB.svg

Permuting a Data Vector

Given a data vector of length $n=3$, there are 6 possible permutations:

- $\mathbf{x}_{(1)}=\left(x_{1}, x_{2}, x_{3}\right)$
- $\mathbf{x}_{(2)}=\left(x_{1}, x_{3}, x_{2}\right)$
- $\mathbf{x}_{(3)}=\left(x_{2}, x_{1}, x_{3}\right)$
- $\mathbf{x}_{(4)}=\left(x_{2}, x_{3}, x_{1}\right)$
- $\mathbf{x}_{(5)}=\left(x_{3}, x_{1}, x_{2}\right)$
- $\mathbf{x}_{(6)}=\left(x_{3}, x_{2}, x_{1}\right)$

More generally, there are $n!$ permutations for a vector of length n.

Generate All Possible Permutations

```
permutations <- function(n) {
    if(n==1){
    return(matrix(1))
    } else {
    sp <- permutations(n-1)
    p <- nrow(sp)
    A <- matrix(nrow=n*p,ncol=n)
    for(i in 1:n){
        A[(i-1)*p+1:p,] <- cbind(i,sp+(sp>=i))
    }
    return(A)
    }
}
```

From http://stackoverflow.com/questions/11095992/generating-all-distinct-permutations-of-a-list-in-r

All Possible Permutations Examples

Generate a Random Permutation

```
> set.seed(1)
>n}=
>x = seq(0, 20,length=n)
> X
[1] 0 5 10}1015 2
> x[sample.int(n)]
[1] 5 20 15 10 0
> x[sample.int(n)]
    [1] 20 15 5 10
```

Note that the sample.int function returns a random permutation of the integers 1 to n , where n is the user-specified input.

Why are Permutations Useful for Statistics?

Classic statistical paradigm is:

- collect some data
- form null hypothesis H_{0}
- design test statistic
- derive sampling distribution of test statistic under H_{0}

In many cases, the null hypothesis is the nil hypothesis, i.e., no effect.

Under the nil hypothesis, all possible outcomes (permutations) are equally likely, so permutations relate to sampling distributions.

Achieved Significance Level

Suppose we have some test statistic $\hat{\theta}=s(\mathbf{x})$, and suppose that larger values of $\hat{\theta}$ provide more evidence against H_{0}.

Given $\hat{\theta}$, the achieved significance level (ASL) of our test is

$$
\text { ASL }=P\left(\hat{\theta}^{*} \geq \hat{\theta} \mid H_{0} \text { true }\right)
$$

which is the probability of observing a test statistic as or more extreme than $\hat{\theta}$ under the assumption that H_{0} is true.

- Can you think of another name for ASL?

One-Sample Permutation Tests

One-Sample (or Paired Sample) Problem

For the one-sample location problem, we have n observations

- $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} F$ if one-sample situation
- $Z_{1}, \ldots, Z_{n} \stackrel{\text { iid }}{\sim} F$ with $Z_{j}=X_{j}-Y_{j}$ if paired-sample situation

We want to make inferences about location of the data

- Let F denote the population distribution
- Let θ denote the median of F
- Null hypothesis is $H_{0}: \theta=\theta_{0}$
- Three possible alternatives: $H_{1}: \theta<\theta_{0}, H_{1}: \theta>\theta_{0}, H_{1}: \theta \neq \theta_{0}$,

Permutation Vector and Lemma (1-Sample)

Let $\mathbf{g}=\left(g_{1}, g_{2}, \ldots, g_{n}\right)$ denote the permutation vector denoting which observations are above $\theta_{0}\left(g_{i}=1\right)$ and which are below $\theta_{0}\left(g_{i}=-1\right)$.

- There are 2^{n} different possible \mathbf{g} vectors (each g_{i} can be 1 or -1)
- If $H_{0}: \theta=\theta_{0}$ is true, then $P\left(X<\theta_{0}\right)=0.5$ by definition

Permutation Lemma:

Under $H_{0}: \theta=\theta_{0}$, the vector \mathbf{g} has probability $1 / 2^{n}$ of equaling each of the 2^{n} different possible outcomes

Permutation Achieved Significance Level (1-Sample)

The permutation ASL is the permutation probability that $\hat{\theta}^{*}$ exceeds $\hat{\theta}$:

$$
\text { ASL }_{\text {perm }}=\#\left\{\left|\hat{\theta}_{b}^{*}\right| \geq|\hat{\theta}|\right\} / 2^{n}
$$

where $\left\{\hat{\theta}_{b}^{*}\right\}_{b=1}^{n}$ is the set of all possible test statistics under H_{0}.

Note that the above is for the two-sided alternative $H_{0}: \theta \neq \theta_{0}$

- For $H_{0}: \theta<\theta_{0}$, we have $\mathrm{ASL}_{\text {perm }}=\#\left\{\hat{\theta}_{b}^{*} \leq \hat{\theta}\right\} / 2^{n}$
- For $H_{0}: \theta>\theta_{0}$, we have $\mathrm{ASL}_{\text {perm }}=\#\left\{\hat{\theta}_{b}^{*} \geq \hat{\theta}\right\} / 2^{n}$

Problem: when 2^{n} is large, forming $\hat{\theta}_{b}^{*}$ for all 2^{n} possible \mathbf{g} vectors is computationally expensive.

- Solution: use a Monte Carlo approach!

One-Sample Permutation Test (Monte Carlo)

Procedure for approximating ASL $_{\text {perm }}$ using Monte Carlo approach:
(1) Randomly sample B permutation vectors $\mathbf{g}_{1}^{*}, \ldots, \mathbf{g}_{B}^{*}$
(2) Evaluate the permutation replication $\hat{\theta}_{b}^{*}=s\left(\mathbf{g}_{b}^{*}, \mathbf{x}\right)$ where $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ is the observed vector of data
(3) Approximate ASL $_{\text {perm }}$ using

$$
\widehat{\mathrm{ASL}}_{\text {perm }}=\#\left\{\left|\hat{\theta}_{b}^{*}\right| \geq|\hat{\theta}|\right\} / B
$$

This assumes that the statistic $\hat{\theta}=s(\mathbf{g}, \mathbf{x})$ is designed such that larger absolute values provide more evidence against H_{0}.

Some Possible Statistics

We want to design some statistic $\hat{\theta}$ such that larger absolute values provide more evidence against H_{0}.

If we assume that F is symmetric around θ_{0}, then...

- θ_{0} is both the median and mean of F under H_{0}
- Statistic 1: $\hat{\theta}=n^{-1} \sum_{i=1}^{n}\left|x_{i}-\theta_{0}\right| g_{i}=\bar{x}$
- Statistic 2: $\hat{\theta}=\sum_{i=1}^{n} R_{i} 1_{\left\{g_{i}=1\right\}}-\frac{n(n+1)}{4}$ where $R_{i}=\operatorname{rank}\left(\left|x_{i}-\theta_{0}\right|\right)$

If we drop the symmetry assumption θ_{0}, then...

- Statistic 3: $\hat{\theta}=\sum_{i=1}^{n} 1_{\left\{g_{i}=1\right\}}-\frac{n}{2}$

One-Sample Permutation Test: R Function

An R function for performing one-sample permutation tests:

```
perm1samp <- function(x,myfun=mean,mu=0,nsamp=10000,
                        alternative=c("two.sided","less","greater")) {
    x = x - mu
    n = length(x)
    theta.hat = myfun(x)
    gmat = replicate(nsamp,sample(x=c(1,-1),size=n,replace=TRUE))
    theta.mc = apply(gmat*abs(x),2,myfun)
    if(alternative[1]=="less") {
        aslperm = sum(theta.mc <= theta.hat) / nsamp
    } else if(alternative[1]=="greater"){
        aslperm = sum(theta.mc >= theta.hat) / nsamp
    } else{
        aslperm = sum(abs(theta.mc) >= abs(theta.hat)) / nsamp
    }
    list(theta.hat=theta.hat,theta.mc=theta.mc,asl=aslperm)
}
```


Example using Statistic 1 (sample mean)

```
> set.seed(1)
```

$>\mathrm{n}=50$
$>\mathrm{x}=\operatorname{rnorm}(\mathrm{n}$, mean $=1)$
$>$ mean (x)
[1] 1.100448
$>$ se $=(\operatorname{sd}(x) / \operatorname{sqrt}(n))$
$>\mathrm{CV}=\mathrm{qt}(.975, \mathrm{df}=\mathrm{n}-1)$
$>c(\operatorname{mean}(x)-c v * s e, \operatorname{mean}(x)+c v * s e)$
[1] 0.86416871 .3367278
$>\mathrm{mseq}=\operatorname{seq}(0.5,1.5, \mathrm{by}=0.1)$
$>$ pvals $=\operatorname{rep}(0$, length (mseq))
$>$ for(k in 1:length(mseq)) \{
$+\quad$ pvals[k] $=$ perm1samp (x,mu=mseq[k])

Example using Statistic 2 (signed rank)

```
> set.seed(1)
>n}=5
> x = rnorm(n,mean=1)
> mean(x)
[1] 1.100448
> median(x)
[1] 1.129104
> myfun <- function(x) {
+ n = length(x)
+ rx = rank(abs(x))
+ sum(rx[x>0]) - n*(n+1)/4
+ }
> mseq = seq(0.5,1.5,by=0.1)
> pvals = rep(0,length(mseq))
> for(k in 1:length(mseq)){
+ }
```

$+\quad$ pvals[k] = perm1samp(x,myfun,mu=mseq[k]) \$asl

Example using Statistic 3 (sign)

```
> set.seed(1)
>n}=5
> x = rnorm(n,mean=1)
mean(x)
[1] 1.100448
> median(x)
[1] 1.129104
> myfun <- function(x) {
+ n = length(x)
+ sum(x>0) - n/2
+ }
>mseq = seq(0.5,1.5,by=0.1)
> pvals = rep(0,length(mseq))
> for(k in 1:length(mseq)) {
```

Statistic 3: Sign


```
+ pvals[k] = perm1samp(x,myfun,mu=mseq[k]) $asl Median under H}\mp@subsup{H}{0}{
```


Comparing the Statistics

Note that as our test statistic uses less information, it becomes more robust (good thing) at the cost of losing power (bad thing):

Statistic 1: Sample Mean

Statistic 2: Signed Rank

Statistic 3: Sign

Two-Sample Permutation Tests

Two-Sample Problem

For the two-sample location problem, we have $N=m+n$ observations

- X_{1}, \ldots, X_{m} are iid random sample from population 1
- Y_{1}, \ldots, Y_{n} are iid random sample from population 2

We want to make inferences about difference in distributions

- Let F_{1} and F_{2} denote distributions of populations 1 and 2
- Null hypothesis is same distribution
$\Leftrightarrow H_{0}: F_{1}(z)=F_{2}(z)$ for all z
- Alternative hypothesis is different distribution $\Leftrightarrow H_{1}: F_{1}(z) \neq F_{2}(z)$ for some z

Permutation Vector and Lemma (2-Sample)

Let $\mathbf{g}=\left(g_{1}, g_{2}, \ldots, g_{N}\right)$ denote the permutation vector denoting which observation belongs to which group.

- Note that \mathbf{g} contains m X-group labels and n Y-group labels
- g_{i} denotes group membership of z_{i}, where z_{i} is i-th observation for combined sample of N observations
- There are $\binom{N}{n}$ different possible \mathbf{g} vectors

Permutation Lemma:

Under $H_{0}: F_{1}(z)=F_{2}(z) \forall z$, the vector \mathbf{g} has probability $1 /\binom{N}{n}=\frac{m!n!}{N!}$ of equaling each of the $\binom{N}{n}=\frac{N!}{m!n!}$ different possible outcomes

Permutation Achieved Significance Level (2-Sample)

The permutation ASL is the permutation probability that $\hat{\theta}^{*}$ exceeds $\hat{\theta}$:

$$
\mathrm{ASL}_{\mathrm{perm}}=\#\left\{\left|\hat{\theta}_{b}^{*}\right| \geq|\hat{\theta}|\right\} /\binom{N}{n}
$$

where $\left\{\hat{\theta}_{b}^{*}\right\}_{b=1}^{\binom{N}{n}}$ is the set of all possible test statistics under H_{0}.

Note that the above is for the two-sided alternative $H_{0}: \theta \neq \theta_{0}$

- For $H_{0}: \theta<\theta_{0}$, we have ASL ${ }_{\text {perm }}=\#\left\{\hat{\theta}_{b}^{*} \leq \hat{\theta}\right\} /\binom{N}{n}$
- For $H_{0}: \theta>\theta_{0}$, we have ASL $_{\text {perm }}=\#\left\{\hat{\theta}_{b}^{*} \geq \hat{\theta}\right\} /\binom{N}{n}$

Problem: when $\binom{N}{n}$ is large, forming $\hat{\theta}_{b}^{*}$ for all $\binom{N}{n}$ possible \mathbf{g} vectors is computationally expensive.

- Solution: use a Monte Carlo approach!

Two-Sample Permutation Test (Monte Carlo)

Procedure for approximating ASL ${ }_{\text {perm }}$ using Monte Carlo approach:
(1) Randomly sample B permutation vectors $\mathbf{g}_{1}^{*}, \ldots, \mathbf{g}_{B}^{*}$
(2) Evaluate the permutation replication $\hat{\theta}_{b}^{*}=s\left(\mathbf{g}_{b}^{*}, \mathbf{z}\right)$ where $\mathbf{z}=\left(z_{1}, \ldots, z_{N}\right)$ is the observed vector of combined data
(3) Approximate $\mathrm{ASL}_{\text {perm }}$ using

$$
\widehat{\mathrm{ASL}}_{\text {perm }}=\#\left\{\left|\hat{\theta}_{b}^{*}\right| \geq|\hat{\theta}|\right\} / B
$$

This assumes that the statistic $\hat{\theta}=s(\mathbf{g}, \mathbf{z})$ is designed such that larger absolute values provide more evidence against H_{0}.

- Statistic 1: $\hat{\theta}=\bar{x}-\bar{y}$
- Statistic 2: $\hat{\theta}=\sum_{i=1}^{N} R_{i} 1_{\left\{g_{i}=1\right\}}-\frac{m(N+1)}{2}$ where $R_{i}=\operatorname{rank}\left(\left|z_{i}-\theta_{0}\right|\right)$
- Statistic 3: $\hat{\theta}=\log \left(\hat{\sigma}_{x}^{2} / \hat{\sigma}_{y}^{2}\right)$

Two-Sample Permutation Test: R Function

An R function for performing two-sample permutation tests:

```
meandif <- function(x,y) mean(x) - mean(y)
perm2samp <- function(x,y,myfun=meandif,nsamp=10000,
    alternative=c("two.sided","less","greater")) {
    theta.hat = myfun(x,y)
    m = length(x)
    n = length(y)
    N = m + n
    z = c(x,y)
    gmat = replicate(nsamp,sample.int (N,m))
    theta.mc = apply(gmat,2,function(g,z){myfun(z[g],z[-g])},z=z)
    if(alternative[1]=="less") {
        aslperm = sum(theta.mc <= theta.hat) / nsamp
    } else if(alternative[1]=="greater") {
        aslperm = sum(theta.mc >= theta.hat) / nsamp
    } else{
        aslperm = sum(abs(theta.mc) >= abs(theta.hat)) / nsamp
    }
    list(theta.hat=theta.hat,theta.mc=theta.mc,asl=aslperm)
}
```


Example using Statistic 1 (mean difference)

```
```

> set.seed(1)

```
```

> set.seed(1)
>x = rnorm(15)
>x = rnorm(15)
>y = rnorm(20,mean=1)
>y = rnorm(20,mean=1)
> choose(35,15)
> choose(35,15)
[1] 3247943160
[1] 3247943160
> myfun=function (x,y) mean (x) -mean (y)
> myfun=function (x,y) mean (x) -mean (y)
> myfun (x,y)
> myfun (x,y)
[1] -0.9578472
[1] -0.9578472
mean(x) - mean(y)
mean(x) - mean(y)
[1] -0.9578472
[1] -0.9578472
> ptest = tsperm(x,y,myfun)
> ptest = tsperm(x,y,myfun)
> ptest$theta.hat
> ptest$theta.hat
[1] -0.9578472
[1] -0.9578472
> ptest$asl
> ptest$asl
[1] 0.0042
[1] 0.0042
> hist (ptest\$theta.mc)

```
> hist (ptest$theta.mc)
```

Histogram of ptest\$theta.mc

```

```

> lines(rep(ptest\$theta.hat, 2),c(0, 2000),col="red",lty=2)

```
```

> lines(rep(ptest\$theta.hat, 2),c(0, 2000),col="red",lty=2)

```

\section*{Example using Statistic 2 (rank sum)}
\(>\) set. seed (1)
\(>\mathrm{x}=\operatorname{rnorm}(15)\)
\(>y=\operatorname{rnorm}(20, \operatorname{mean}=1)\)
\(>\) choose \((35,15)\)
[1] 3247943160
\(>\) myfun \(=\) function \((x, y)\) \{
\(+\quad \mathrm{m}=\) length (x)
\(+\quad \mathrm{n}=\) length \((\mathrm{y})\)
\(+\quad r x=\operatorname{rank}(c(x, y))\)
\(+\operatorname{sum}(r x[\operatorname{seq}(a l o n g=x)])-m *(m+n+1)\)
\(+\quad\}\)
\(>\operatorname{myfun}(x, y)\)
[1] -85
\(>\) ptest \(=\) perm \(2 \operatorname{samp}(x, y, m y f u n)\)
\(>\) ptest\$theta.hat
[1] -85
Histogram of ptest\$theta.mc
> ptest\$asl
[1] 0.0039
> hist (ptest\$theta.mc)
\(>\) lines (rep (ptest\$theta.hat, 2) , c (0, 2000) , col="red", lty=2)

\section*{Example using Statistic 3 (log variance ratio)}
```

> set.seed(1)
Histogram of ptest\$theta.mc

```
```

> x = rnorm(15)

```
> x = rnorm(15)
> y = rnorm(20,sd=3)
> y = rnorm(20,sd=3)
> choose (35,15)
> choose (35,15)
[1] 3247943160
[1] 3247943160
> myfun=function(x,y) log(var(x)/var(y)
> myfun=function(x,y) log(var(x)/var(y)
> myfun(x,y)
> myfun(x,y)
[1] -1.867756
[1] -1.867756
> log(var(x)/var(y))
> log(var(x)/var(y))
[1] -1.867756
[1] -1.867756
> ptest = tsperm(x,y,myfun)
> ptest = tsperm(x,y,myfun)
> ptest$theta.hat
> ptest$theta.hat
[1] -1.867756
[1] -1.867756
> ptest$asl
> ptest$asl
[1] 0.01
[1] 0.01
> hist(ptest$theta.mc)
> hist(ptest$theta.mc)
ptest\$theta.mc
> lines (rep (ptest\$theta.hat, 2), c (0, 2000), col="red", lty=2)
```


Correlation Permutation Tests

Association/Correlation Problem

Suppose we have paired data $\left(X_{i}, Y_{i}\right) \stackrel{\text { iid }}{\sim} F$ for $i=1, \ldots, n$, where F is some bivariate distribution.

Question: are X and Y statistically associated with one another?

- X and Y are independent if and only if $F_{X Y}(x, y)=F_{X}(x) F_{Y}(y)$
- If X and Y are correlated/associated, they are dependent
- Null hypothesis is $H_{0}: \rho=0$ where $\rho=\operatorname{cor}(X, Y)$
- Different definitions of ρ measure different types of association

How can we use a permutation test to answer this question?

Permutation Vector and Lemma (Correlation)

Let $\mathbf{g}=\left(g_{1}, g_{2}, \ldots, g_{n}\right)$ denote the permutation vector which contains the integers $\{1, \ldots, n\}$ in some order.

- There are n ! different possible \mathbf{g} vectors (orderings of y_{i})
- If $H_{0}: \rho=0$ is true, then reordering of y_{i} doesn't affect correlation

Permutation Lemma:

Under $H_{0}: \rho=0$, the vector \mathbf{g} has probability $1 / n$! of equaling each of the n ! different possible outcomes

Permutation Achieved Significance Level (Correlation)

The permutation ASL is the permutation probability that $\hat{\rho}^{*}$ exceeds $\hat{\rho}$:

$$
\mathrm{ASL}_{\text {perm }}=\#\left\{\left|\hat{\rho}_{b}^{*}\right| \geq|\hat{\rho}|\right\} / n!
$$

where $\left\{\hat{\rho}_{b}^{*}\right\}_{b=1}^{n!}$ is the set of all possible test statistics under H_{0}.

Note that the above is for the two-sided alternative $H_{0}: \rho \neq 0$

- For $H_{0}: \rho<0$, we have ASL $_{\text {perm }}=\#\left\{\hat{\rho}_{b}^{*} \leq \hat{\rho}\right\} / n$!
- For $H_{0}: \rho>0$, we have ASL $_{\text {perm }}=\#\left\{\hat{\rho}_{b}^{*} \geq \hat{\rho}\right\} / n$!

Problem: when n ! is large, forming $\hat{\theta}_{b}^{*}$ for all $n!$ possible \mathbf{g} vectors is computationally expensive.

- Solution: use a Monte Carlo approach!

Correlation Permutation Test (Monte Carlo)

Procedure for approximating ASL perm using Monte Carlo approach:
(1) Randomly sample B permutation vectors $\mathbf{g}_{1}^{*}, \ldots, \mathbf{g}_{B}^{*}$
(2) Evaluate the permutation replication $\hat{\rho}_{b}^{*}=\operatorname{cor}\left(\mathbf{x}, \mathbf{y}_{b}\right)$ where \mathbf{x} is the observed vector and \mathbf{y}_{b} is b-th permuted copy of \mathbf{y}
(3) Approximate $\mathrm{ASL}_{\text {perm }}$ using

$$
\widehat{\mathrm{ASL}}_{\text {perm }}=\#\left\{\left|\hat{\rho}_{b}^{*}\right| \geq|\hat{\rho}|\right\} / B
$$

This assumes that the correlation statistic $\hat{\rho}=\operatorname{cor}(\mathbf{x}, \mathbf{y})$ is designed such that larger absolute values provide more evidence against H_{0}.

- Could use any reasonable correlation measure
- Popular choices include Pearson, Spearman, and Kendall

Correlation Permutation Test: R Function

An R function for performing correlation permutation tests:

```
permcor <- function(x,y,method="pearson",nsamp=10000,
    alternative=c("two.sided","less","greater")) {
    n = length(x)
    if(n!=length(y)) stop("lengths of x and y must match")
    theta.hat = cor(x,y,method=method)
    gmat = replicate(nsamp,sample.int(n))
    theta.mc = apply(gmat,2,function(g) cor(x,y[g],method=method))
    if(alternative[1]=="less") {
        aslperm = sum(theta.mc <= theta.hat) / nsamp
    } else if(alternative[1]=="greater") {
        aslperm = sum(theta.mc >= theta.hat) / nsamp
    } else{
        aslperm = sum(abs(theta.mc) >= abs(theta.hat)) / nsamp
        }
    list(theta.hat=theta.hat,theta.mc=theta.mc,asl=aslperm)
}
```


Example using Statistic 1 (Pearson)

$>$ set. seed (1)
$>\mathrm{n}=50$
$>x=\operatorname{rnorm}(n)$
$>\mathrm{y}=\operatorname{rnorm}(\mathrm{n})$
$>$ rho $=-0.2$
> Amat $=$ matrix(c (1, rho, rho, 1) , 2,2)
$>$ Aeig $=$ eigen (Amat, symmetric=TRUE)
> evec = Aeig\$vec
> evalsqrt $=$ diag (Aeig\$val^0.5)
$>$ Asqrt $=$ evec $\% * \%$ evalsqrt $\% * \% t($ evec $)$
$>z=c b i n d(x, y) \% * \%$ Asqrt
$>x=z[, 1]$
$>y=z[, 2]$
$>$ ptest $=$ permcor (x, y)
> ptest\$asl
[1] 0.0966
Histogram of ptest\$theta.mc
> hist (ptest\$theta.mc)
> lines (rep (ptest\$theta.hat, 2), c (0, 2000), col="red", lty=2)

Example using Statistic 2 (Spearman)

$>$ set. seed (1)
$>\mathrm{n}=50$
$>x=\operatorname{rnorm}(n)$
$>y=r n o r m(n)$
$>$ rho $=-0.2$
$>$ Amat $=$ matrix (c (1, rho, rho, 1) , 2, 2)
$>$ Aeig $=$ eigen (Amat, symmetric=TRUE)
> evec $=$ Aeig\$vec
> evalsqrt $=$ diag (Aeig\$val^0.5)
$>$ Asqrt $=$ evec $\% * \%$ evalsqrt $\% * \% t($ evec $)$
$>z=\operatorname{cbind}(x, y) \% * \%$ Asqrt
$>x=z[, 1]$
$>y=z[, 2]$
> ptest $=$ permcor $(x, y, m e t h o d=" s p e a r m a n ")^{\circ}$
> ptest\$asl
[1] 0.0338
Histogram of ptest\$theta.mc
> hist (ptest\$theta.mc)
> lines (rep (ptest\$theta.hat, 2), c (0, 2000), col="red", lty=2)

Example using Statistic 3 (Kendall)

$>$ set. seed (1)
$>\mathrm{n}=50$
$>x=\operatorname{rnorm}(n)$
$>y=r n o r m(n)$
$>$ rho $=-0.2$
> Amat $=$ matrix(c (1, rho, rho, 1) , 2,2)
$>$ Aeig $=$ eigen (Amat, symmetric=TRUE)
> evec = Aeig\$vec
> evalsqrt $=$ diag (Aeig\$val^0.5)
$>$ Asqrt $=$ evec $\% * \%$ evalsqrt $\% * \% t($ evec $)$
$>z=c b i n d(x, y) \% * \% A s q r t$
$>x=z[, 1]$
$>y=z[, 2]$
> ptest $=$ permcor $(x, y, m e t h o d=" k e n d a l l ")$
> ptest\$asl
[1] 0.0247
Histogram of ptest\$theta.mc
> hist (ptest\$theta.mc)
> lines (rep (ptest\$theta.hat, 2), c (0, 2000), col="red", lty=2)

