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Background
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Overview of Principal Components Analysis
Definition and Purposes of PCA

Principal Components Analysis (PCA) finds linear combinations of
variables that best explain the covariation structure of the variables.

There are two typical purposes of PCA:

@ Data reduction: explain covariation between p variables using
r < p linear combinations

©@ Data interpretation: find features (i.e., components) that are
important for explaining covariation
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Data Matrix

The data matrix refers to the array of numbers

X1 X2 o Xip
X291 Xop - Xop
X=|X31 Xzx2 -+ X3p
Xm Xp2 0 Xnp

where X; is the j-th variable collected from the /-th item (e.g., subject).
@ items/subjects are rows
@ variables are columns

X is a data matrix of order n x p (# items by # variables).
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Background Data, Covariance, and Correlation Matrix

Population Covariance Matrix

The population covariance matrix refers to the symmetric array

011 012 013
021 022 023
> = | 031 032 033

where

Opp

@ o = E([X; — 14j]?) is the population variance of the j-th variable

@ ojx = E([X; — 1j][Xk — 1k]) is the population covariance between

the j-th and k-th variables

@ 1; = E(X;) is the population mean of the j-th variable
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Background Data, Covariance, and Correlation Matrix

Sample Covariance Matrix

The sample covariance matrix refers to the symmetric array

312 Si2 S§13 -+ St1p
S21 SS So3 -+ Spp
S—| S31 Sa32 S% o S3p
Spt Spz Spz - S2
p1  Sp2  Sp3 P
where
o s = 15371, (x; — X)? is the sample variance of the j-th variable

@ S = ,ﬂj S (xj — X)) (xik — Xx) is the sample covariance
between the j- th and k-th variables
@ X = (1/n)> L, xj is the sample mean of the j-th variable
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Background Data, Covariance, and Correlation Matrix

Covariance Matrix from Data Matrix

We can calculate the (sample) covariance matrix such as

S= %X’ Xc
where Xc =X —1,X' = CX with
= (X , Xp) denoting the vector of variable means

° C =1,- n—11,,1’ denoting a centering matrix

Note that the centered matrix X. has the form

XC:
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X1 — X4
Xo1 — X4
X31 — X4
Xn1 — X4
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Background Data, Covariance, and Correlation Matrix

Population Correlation Matrix

The population correlation matrix refers to the symmetric array

1 p12 p13 - pip
p2t 1 p23 - p2p
P=|p3t p2 1 - p3p
Ppl  Pp2 Pp3 - 1
where
pik = —2_
T ook

is the Pearson correlation coefficient between variables X; and Xk.
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Background Data, Covariance, and Correlation Matrix

Sample Correlation Matrix

The sample correlation matrix refers to the symmetric array

1 n2 n3 - np
rpr 1 3 - ryp
R=|f1 R 1 - r3p
rp‘] rp2 rp3 ce 1
where
Sk SO (X5 — X)) (Xik — Xk)

ik =

55k \/Z/ 1(Xj — X)) \/Z/ 1 (Xik — Xk )?

is the Pearson correlation coefficient between variables x; and X.
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Background Data, Covariance, and Correlation Matrix

Correlation Matrix from Data Matrix

We can calculate the (sample) correlation matrix such as
1

where Xs = CXD~" with
@ C =1, n"1,1/ denoting a centering matrix
@ D =diag(sy, ..., Sp) denoting a diagonal scaling matrix

Note that the standardized matrix X5 has the form

(X11 —X1)/s1 (X12—X2)/S2 -+ (X1p— Xp)/Sp
(X1 —X1)/S1 (X2 —X2)/S2 --+ (Xep — Xp)/Sp
Xs = | (X1 —X1)/s1 (X2 —X2)/S2 -+ (X3p —Xp)/Sp
(Xm —.)_(1)/31 (Xn2 —.)_(2)/32 o (Xnp _-)_(p)/sp

Nathaniel E. Helwig (U of Minnesota) Principal Components Analysis Updated 16-Mar-2017 : Slide 12



Background Orthogonal Rotation

Rotating Points in Two Dimensions

Suppose we have z = (x, y)’ € R?, i.e., points in 2D Euclidean space.

A 2 x 2 orthogonal rotation of (x, y) of the form

()= (2 ) ()

rotates (x, y) counter-clockwise around the origin by an angle of § and

x*\ _ ([ cos(d) sin(d)\ (x
y*) \—sin(d) cos(h)) \y
rotates (x, y) clockwise around the origin by an angle of 6.
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Visualization of 2D Clockwise Rotation
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Background Orthogonal Rotation

Visualization of 2D Clockwise Rotation (R Code)

rotmat2d <- function (theta) {
matrix (c(cos(theta),sin(theta), -sin(theta), cos(theta)),2,2)
}
x <- seq(-2,2,length=11)
y <— 4dxexp (-x"2) - 2
xy <— cbind(x,vVy)
rang <- c(30,45,60,90,180)
dev.new (width=12, height=8, noRStudioGD=TRUE)
par (mfrow=c(2,3))
plot (x,vy,xlim=c(-3,3),ylim=c(-3,3),main="No Rotation")
text (x,y, labels=letters[1l:11],cex=1.5)
for(j in 1:5){
rmat <- rotmat2d(rang[j]l*2xpi/360)
xyrot <- xy$x%rmat
plot (xyrot,xlim=c(-3,3),ylim=c (-3,3))
text (xyrot, labels=letters[1:11],cex=1.5)
title (paste(rang[j]," degrees"))
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Background Orthogonal Rotation

Orthogonal Rotation in Two Dimensions

Note that the 2 x 2 rotation matrix

_<cos(6) sin(9)>
~ \sin(d) cos(6)

is an orthogonal matrix for all 6:

o [ €0s(d) sin(d)) [cos(f) —sin(f)
RIR = <— sin(0) cos(9)> <sin(9) cos(0)>

_ < cos?(f) + sin?(6) cos(6) sin(f) — cos(&)sm( )>
~ \cos(#)sin(#) — cos(f) sin() cos?(f) + sin?(h)

(9
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Background Orthogonal Rotation

Orthogonal Rotation in Higher Dimensions

Suppose we have a data matrix X with p columns.

@ Rows of X are coordinates of points in p-dimensional space
@ Note: when p = 2 we have situation on previous slides

A p x p orthogonal rotation is an orthogonal linear transformation.
@ R'R = RR’ =1, where |, is p x p identity matrix
@ If X = XR is rotated data matrix, then XX’ = XX’
@ Orthogonal rotation preserves relationships between points
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Population Principal Components

Population Principal
Components
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Population Principal Components Definition

Linear Combinations of Random Variables

X = (Xi,...,Xp) is arandom vector with covariance matrix X, where
A1 > --- > Ap > 0 are the eigenvalues of X.

Consider forming new variables Y4, ..., Y, by taking p different linear
combinations of the X; variables:

Y = qu: b1 X1+ b1 Xo+ -+ +bp1Xp
Yo = b/ZX = b12 X1 + bop Xo + - - + bpa Xp

where b = (bik, . .., bpk) is the k-th linear combination vector.
@ by are called the loadings for the k-th principal component
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Population Principal Components Definition

Defining Principal Components in the Population

Note that the random variable Yy = b} X has the properties:

Var(Yy) = b) Zby
Cov( Y, Y;) = bj,Ehy

The principal components are the uncorrelated linear combinations
Yi,..., Yp whose variances are as large as possible.

by = argmax{Var(b’ X)}

I |=1

b, = argmax{Var(b,X)} subjectto Cov(b;X,b,X) =0
bz =1

b, = argmax {Var(b;X)} subjectto Cov(b,X,b,X)=0V k </
[[bel|=1
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Population Principal Components Definition

Visualizing Principal Components for Bivariate Normal

for]
A
¥ = ex
¥y, = &%
L x=¢?
6
r‘l,
Figure 8.1 The constant density
ellipse x' 3 "'x = ¢? and the principal
p=0 companents y;, y, for a bivariate
p=1715 normal random vector X having
mean 0.

Figure: Figure 8.1 from Applied Multivariate Statistical Analysis, 6th Ed
(Johnson & Wichern). Note that e; and e, denote the eigenvectors of X.
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Population Principal Components Calculation

PCA Solution via the Eigenvalue Decomposition

We can write the population covariance matrix X such as

P
X = VAV =) M\vevg
k=1

where
@ V = [vq,...,Vp] contains the eigenvectors (V'V = VV' =1,)
@ A =diag()1,...,\p) contains the (non-negative) eigenvalues

The PCA solution is obtained by setting by = v, fork =1,...,p:
@ Var(Yy) = Var(vi X) = v Zv, = Vi, VAV'v, = )\«
@ Cov( Yk, Yy) = Cov(Vi X, v;,X) =viZv, =V,VAV'v, =0 if k £ (
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Population Principal Components Properties

Variance Explained by Principal Components

Yi,..., Yp has the same total variance as X, ..., Xp:
p
D Var(X)) = t(X) = u(VAV') = Z Var( Y
j=1

The proportion of the total variance accounted for by the k-th PC is

Ak

RZ = %
2521 )\é

If S"4_4 R2 =~ 1 for some r < p, we do not lose much transforming the
original variables into fewer new (principal component) variables.
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Population Principal Components Properties

Covariance of Variables and Principal Components

The covariance between X; and Y has the form
COV()(I', Yk) = COV(e}X, V;(X) = e}ka = e}(VI\V’)vk = ej/-vk/\k = ij/\k

where
@ e, is a vector of zeros with a one in the j-th position
® Vi = (Vik, ..., Vpk) is the k-th eigenvector of

This implies that the correlation between X; and Yj has the form

Cov(X;, Yk) VA Vkv

Cor(X;. Yie) = VVar(X)Var(Ye) oA VT
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Sample Principal Components

Sample Principal
Components
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Linear Combinations of Observed Random Variables

Xj = (Xi1,...,Xjp)" is an observed random vector and x; by (i, X).
Consider forming new variables y;1, ..., yj, by taking p different linear

combinations of the x;; variables:

it = biX; = by1Xit + bayXig + - - + bp1 Xip
Yiz = boXj = bioXit + baoXip + -+ + bpaXjp

Yip = bpX; = bipXit + bapXiz + - - - 4 bppXip

where bj = (bik, . .., bpk) is the k-th linear combination vector.
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Sample Principal Components Definition

Sample Properties of Linear Combinations

Note that the sample mean and variance of the yj, variables are:

1 }
Yk = Ezyik = b X
i=
n

1 n _ 1 _ i
S = g 2 = J0 = 1 D (bl — BB (Bjox — biX)
i=1 i=1

1 < _ _
p— E b} (x; — X)(x; — X)'bx = b Sby
i=1

and the sample covariance between yj and yj, is given by

1< _ _
Syve = 71 > ik — V) (Vie — ¥e) = b} Sby
e
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Sample Principal Components Definition

Defining Principal Components in the Sample

The principal components are the uncorrelated linear combinations

Yi1,--.,Yip Whose sample variances are as large as possible.
b, = argmax{b’Sb;}
[Ib]|=1
b, = argmax{b,Sb,} subjectto b’;Sb, =0
[[b||=1

b, = argmax {b;Sb,} subjectto b}Sb, =0V k </
[[bell=1
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Sample Principal Components Calculation

PCA Solution via the Eigenvalue Decomposition

We can write the sample covariance matrix S such as

p
Z VAV = 3 R4,
k=1

where
o V=[0y,... ,Vp] contains the eigenvectors V=W = Ip)
A = diag(}1, ..., \p) contains the (non-negative) eigenvalues

The PCA solution is obtained by setting by =V, fork =1,...,p:
o 7 = U, S¥ = U VAV, = &y
® Sy = \7;(3\% = VZV/A\VI\,U =0ifk#/¢
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Sample Principal Components Properties

Variance Explained by Principal Components

{yit,--.,Yip}i4 has the same total variance as {X;1,..., Xjp}7 4:

If S°_4 A2 ~ 1 for some r < p, we do not lose much transforming the
original variables into fewer new (principal component) variables.

Nathaniel E. Helwig (U of Minnesota) Principal Components Analysis Updated 16-Mar-2017 : Slide 30



Sample Principal Components Properties

Covariance of Variables and Principal Components

The sample covariance between x; and yj has the form

1 & _ _
Cov(xj, yik) = n_1 Z(Xij — X)) (Vik — Yx)
i=1
1 n
= —— D ej(x; — X)(x; — X)' Uk
i=1
= e;'S\?k = e}flkj\k = \7/'/(5\;(
where
@ e; is a vector of zeros with a one in the j-th position
@ Vi = (V4x, ..., Vpk)' is the k-th eigenvector of S

This implies that the (sample) correlation between x; and yj is

ooa o s1/2
Cov(Xi, Vik Vik Ak VigA
Cor(Xij,Yik) = ( £ ) = /A1/2 = k
VVar(xp) v/ Var(yi) - s;5, §j
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Sample Principal Components Properties

Large Sample Properties

Assume that x; - N(u, X) and that the eigenvalues of X are strictly
positive and unique: Ay > --- > X\p > 0.

As n — oo, we have that

Vn(X — A) ~ N(0, 2A?)
V(¥ — Vi) =~ N(0, Vi)

where Vi = A\ 3 Wfigk)zvgv’é
Furthermore, as n — oo, we have that A\, and v, are independent.

Nathaniel E. Helwig (U of Minnesota) Principal Components Analysis Updated 16-Mar-2017 : Slide 32



Principal Components Analysis in Practice

Principal Components
Analysis in Practice
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Covariance or Correlation Matrix?
PCA Solution is Related to SVD (Covariance Matrix)

Let OBV’ denote the SVD of X, = CX.

The PCA (covariance) solution is directly related to the SVD of X.:

Y=-0D and B-=V

Note that columns of V are the. ..
@ Right singular vectors of the mean-centered data matrix X,
e Eigenvectors of the covariance matrix S = -1 XX, = VAV’ where

A A~ A A A2 N PN N
A = diag(Rs, ..., %p) with 3, = 2 and D = diag(&h1, . .., dpp).-

n—1
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Covariance or Correlation Matrix?
PCA Solution is Related to SVD (Correlation Matrix)

Let UDV’ denote the SVD of X, = CXD~" with D = diag(sy, .. - , Sp).
The PCA (correlation) solution is directly related to the SVD of X,,:

Y=UD and B=V

Note that columns of V are the. ..
@ Right singular vectors of the centered and scaled data matrix X;
e Eigenvectors of the correlation matrix R = -1-X/X, = VAV’ where

~ ~ ~ ~ ~2 ~ ~ ~
A = diag(Xs, ..., Xp) with X4 = J and B = diag(dh1, . .. , Opp)-
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Principal Components Analysis in Practice Covariance or Correlation Matrix?

Covariance versus Correlation Considerations

Problem: there is no simple relationship between SVDs of X. and X;.

@ No simple relationship between PCs obtained from S and R
@ Rescaling variables can fundamentally change our results

Note that PCA is trying to explain the variation in S or R

@ If units of p variables are comparable, covariance PCA may be
more informative (because units of measurement are retained)

@ If units of p variables are incomparable, correlation PCA may be
more appropriate (because units of measurement are removed)
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Men’s Olympic Decathlon Data from 1988

Data from men’s 1988 Olympic decathlon
@ Total of n = 34 athletes
@ Have p = 10 variables giving score for each decathlon event
@ Have overall decathlon score also (score)

> decathlon[1:9,]
run100 long.jump shot gh.jump run400 hurdle discus pole.vault javelin runl5

.25

190

i
[
DN NP

1
10.
11.
on 10.
11.
10.
11.
1
1

9 © & G
[ e =gy
1 s
15
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Principal Components Analysis in Practice Decathlon Example

Resigning Running Events

For the running events (run100, run400, run1500, and hurdle),
lower scores correspond to better performance, whereas higher scores
represent better performance for other events.

To make interpretation simpler, we will resign the running events:

> decathlon[,c(1,5,6,10)] <- (-1)=xdecathlon([,c(1,5,6,10)]

> decathlon[1:9,]
run ong.jump shot high.jump run400 rdle discus pole.vault jave
-11.25

.02

1
-1 1
1 1
1 1
1 1
10.83 . 13.58
11.1 7.05 14.12
11. 6.95 15
11. 1
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Principal Components Analysis in Practice Decathlon Example

PCA on Covariance Matrix

# PCA on covariance matrix (default)

> pcaCOV <- princomp (x=decathlon([,1:10])

> names (pcaCoVv)

[1] "sdev" "loadings" "center" "scale" "n.obs"
[6] "scores" "call"

# resign PCA solution

> pcsign <- sign(colSums (pcaCOV$loadings”™3))

> pcaCOV$loadings <- pcaCOV$loadings %$x% diag(pcsign)
> pcaCOV$scores <- pcaCOV$scores %$+% diag(pcsign)

# Note: R uses MLE of covariance matrix

> n <- nrow (decathlon)

> sum( (pcaCOV$sdev - sqgrt (eigen((n-1)/nxcov(decathlon[,1:10]))S$values))"2)
[1] 8.861398e-28
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Principal Components Analysis in Practice Decathlon Example

PCA on Correlation Matrix

# PCA on correlation matrix

> pcaCOR <- princomp (x=decathlon([,1:10], cor=TRUE)

> names (pcaCOR)

[1] "sdev" "loadings" "center" "scale" "n.obs
[6] "scores" "call"

resign PCA solution

pcsign <- sign(colSums (pcaCOR$loadings”3))
pcaCORS$loadings <- pcaCORS$loadings %*% diag(pcsign)
pcaCOR$scores <- pcaCOR$scores %$*% diag(pcsign)

vV V V =#*

Note: PC standard deviations are sqrts correlation matrix eigenvalues
> sum( (pcaCOR$sdev — sqrt (eigen (cor (decathlon[,1:10])) $values)) "2)
[1] 2.249486e-30

+=
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Principal Components Analysis in Practice Decathlon Example

Plot Covariance and Correlation PCA Results

PCA of Covariance Matrix PCA of Correlation Matrix
N
“ <
© | run1500
e
- < | run400
© javelin ©
IS
0 oo
° ® S loagdGop
T o | 5 hurdle
] ]
S o |discus S o high.jump
S © 7 S pole.vault
a a
o~ 5 —
c shot g el
run1500 javelin
S | e 3
© g dis&t
N
e T T T T T T T T T T
-02 00 02 04 06 08 10 12 0.1 0.2 0.3 0.4
PC1 Loaings PC1 Loaings

dev.new (width=10, height=5, noRStudioGD=TRUE)
par (mfrow=c(1,2))
plot (pcaCOV$loadings[,1:2], xlab="PCl Loaings", ylab="PC2 Loadings",

type="n", main="PCA of Covariance Matrix", xlim=c(-0.15, 1.15), ylim=c(-0.15, 1.15))
text (pcaCOV$loadings[,1:2], labels=colnames (decathlon)
plot (pcaCOR$loadings[,1:2], xlab="PCl Loaings", ylab="PC2 Loadings",

type="n", main="PCA of Correlation Matrix", xlim=c(0.05, 0.45), ylim=c(-0.5,0.6))
text (pcaCOR$1loadings[,1:2], labels=colnames (decathlon)

>
>
>
+
>
>
+
>
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Principal Components Analysis in Practice Decathlon Example

Correlation of PC Scores and Overall Decathlon Score

Decathlon Score

PCA of Covariance Matrix

PCA of Correlation Matrix

8 8
n ° n °
© o oy %0 o U{; s
o % o
i °o e i £
o o o ®o
o o9 o wo ©°
8 o © 8 oo
0 7 % 2 B H
~ o, g ~ o
o 3 0
- o c - °
° oS °
£
8 g 8 |
o ) o
© a ©
=3 o
(=3 [=3
mn mn
wn ) wn )
T T T T T T T T T T T
-20 -10 0 10 -10 -8 -6 -4 -2 0 2
PC2 Score PC1 Score

> round (cor (decathlon$score,

(1,1

[,1] 21 [,31 [,4]
0.214 0.792 0.297 0.395

> round (cor (decathlon$score,

(1,1

Nathaniel E. Helwig (U of Minnesota)

11 L2l 0,31 [,4]
0.991 0.017 0.079 0.064

pcaCOV$scores), 3)

[,51 [,6] [,71 [,8] [,91 [,10]
0.113 0.207 0.06 0.061 0.01l6 0.127
pcaCOR$scores), 3)

[,5] [,6] [,71] [,8] [,91 [,10]
-0.04 -0.025 0.013 -0.009 0.011 -0.002
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Dimensionality Problem

In practice, the optimal number of components is often unknown.

In some cases, possible/feasible values may be known a priori from
theory and/or past research.

In other cases, we need to use some data-driven approach to select a
reasonable number of components.
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Principal Components Analysis in Practice Choosing the Number of Components

Scree Plots

A scree plot displays the variance explained by each component.

Example Scree Plot

s We look for the “elbow” of the

g | plot, i.e., point where line bends.
g Could do formal test on derivative

=N of scree line, but common sense

g | approach often works fine.

T T T T T
2 4 6 8 10

# Components (q)
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Choosing the Number of Components
Scree Plots For Decathlon PCA

PCA of Covariance Matrix PCA of Correlation Matrix
o w o
o
3 4
— < —
[§) [§)
o o
5 8 4 5
o @
S S
c c
g s o .
s s
2 4 °
\ -
°—o
~
°~ e —o—o
o — 0o—o0—o0—o0—o0—o0—o o - o
T T T T T T T T T T
2 4 6 8 10 2 4 6 8 10
#PCs #PCs

dev.new (width=10, height=5, noRStudioGD=TRUE)

par (mfrow=c(1,2))

plot (1:10, pcaCOV$sdev"2, type="b", xlab="# PCs", ylab="Variance of PC",
main="PCA of Covariance Matrix")

plot (1:10, pcaCORS$sdev”2, type="b", xlab="# PCs", ylab="Variance of PC",
main="PCA of Correlation Matrix")
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