Introduction to Nonparametric Regression

Nathaniel E. Helwig
Assistant Professor of Psychology and Statistics
University of Minnesota (Twin Cities)

Updated 04-Jan-2017
Copyright © 2017 by Nathaniel E. Helwig
Outline of Notes

1) Need for NP Reg
 - Motivating example
 - Nonparametric regression

2) Local Averaging
 - Overview
 - Examples

3) Local Regression:
 - Overview
 - Examples

4) Kernel Smoothing:
 - Overview
 - Examples
Need for Nonparametric Regression
Results From Four Hypothetical Studies

Study 1: $\hat{y} = 3 + 0.5x$

Study 2: $\hat{y} = 3 + 0.5x$

Study 3: $\hat{y} = 3 + 0.5x$

Study 4: $\hat{y} = 3 + 0.5x$

Figure: Estimated linear relationship from four hypothetical studies.
What do the results on the previous slide imply?

Can we conclude that there is a linear relationship between X and Y?

Is the reproducibility of the finding indicative of a valid discovery?

What have we learned about the data from these results?
Let’s Look at the Data

Study 1: $\hat{y} = 3 + 0.5x$

Study 2: $\hat{y} = 3 + 0.5x$

Study 3: $\hat{y} = 3 + 0.5x$

Study 4: $\hat{y} = 3 + 0.5x$

Figure: Estimated linear relationship with corresponding data.
Anscombe’s (1973) Quartet

```
> anscombe
     x1  x2  x3  x4     y1   y2   y3   y4
 1  10  10  10  8  8.04  9.14  7.46  6.58
 2   8   8   8  8  6.95  8.14  6.77  5.76
 3  13  13  13  8  7.58  8.74 12.74  7.71
 4   9   9   9  8  8.81  8.77  7.11  8.84
 5  11  11  11  8  8.33  9.26  7.81  8.47
 6  14  14  14  8  9.96  8.10  8.84  7.04
 7   6   6   6  8  7.24  6.13  6.08  5.25
 8   4   4   4 19  4.26  3.10  5.39 12.50
 9  12  12  12  8 10.84  9.13  8.15  5.56
10  7   7   7  8  4.82  7.26  6.42  7.91
11  5   5   5  8  5.68  4.74  5.73  6.89
```
The general linear model is a form of **parametric regression**, where the relationship between X and Y has some predetermined form.

- Parameterizes relationship between X and Y, e.g., $\hat{Y} = \beta_0 + \beta_1 X$
- Then estimates the specified parameters, e.g., β_0 and β_1
- Great if you know the form of the relationship (e.g., linear)

In contrast, **nonparametric regression** tries to estimate the form of the relationship between X and Y.

- No predetermined form for relationship between X and Y
- Great for discovering relationships and building prediction models
Problem of Interest

Smoothers (aka nonparametric regression) try to estimate functions from noisy data.

Suppose we have n pairs of points (x_i, y_i) for $i \in \{1, \ldots, n\}$, and WLOG assume that $x_1 \leq x_2 \leq \cdots \leq x_n$.

Also, suppose the following assumptions hold:

(A1) There is a functional relationship between x and y of the form

$$y_i = \eta(x_i) + \epsilon_i; \quad i \in \{1, \ldots, n\}$$

(A2) The ϵ_i are iid from some distribution $f(x)$ with zero mean
Local Averaging
Friedman’s (1984) Local Averaging

To estimate η at the point x_i, we could calculate the average of the y_j values corresponding to x_j values that are “near” x_i.

Friedman (1984) defined “near” as the smallest symmetric window around x_i that contains s observations.

- Note that s is called the *span*
- Size of averaging window can differ for each x_i
- But always use s points in averaging window
Selecting the Span

Friedman proposed using a cross-validation approach to select span s.

For a given span s, leave-one-out cross-validation:

- Let $\hat{y}_{(i)}$ denote the local averaging estimate of η at the point x_i obtained by holding out the i-th pair (x_i, y_i)
- Define CV residuals $e_i(s) = y_i - \hat{y}_{(i)}$; note residual is function of s
- $\hat{s} = \min_{s \in S} (1/n) \sum_{i=1}^{n} e_i^2(s)$
Local Averaging Example 1: sunspots data

Raw Data

span=0.01

span=0.05

span=cv
Local Averaging Example 1: R code

data(sunspots)
yrs=start(sunspots)
yre=end(sunspots)
dev.new(width=8,height=6,noRStudioGD=TRUE)
par(mfrow=c(2,2))
plot(years,sunspots,type="l",main="Raw Data")
sunlocavg=supsmu(years,sunspots,span=0.01)
plot(sunlocavg,type="l",main="span=0.01")
sunlocavg=supsmu(years,sunspots,span=0.05)
plot(sunlocavg,type="l",main="span=0.05")
sunlocavg=supsmu(years,sunspots)
plot(sunlocavg,type="l",main="span=cv")
Local Averaging Example 2: simulated data
Local Averaging Example 2: R code

```r
> set.seed(1)
> x=seq(0,1,length=50)
> y=sin(2*pi*x)+rnorm(50,sd=0.5)
> locavg=supsmu(x,y)
> dev.new(width=6,height=6,noRStudioGD=TRUE)
> plot(x,y)
> lines(locavg$x,locavg$y)
> lines(locavg$x,sin(2*pi*x),lty=2)
> legend("bottomleft",c(expression(hat(eta)),
+ expression(eta)),lty=1:2,bty="n")
```
Cleveland’s (1979) Local Regression

To estimate η at the point x_i, we could calculate the local linear regression line using the (x_j, y_j) points “near” x_i.

- LOWESS: LOcally WEighted Scatterplot Smoothing
- LOESS: LOcal regrESSion

Cleveland (1979) proposed using weighted regression with weights related to distance of x_j points to x_i.

- Weight function is scaled so only proportion of (x_j, y_j) points are used in each regression
- Size of regression window can differ for each x_i
- But use αn points in each regression where $\alpha \in (0, 1]$
Weighted Local Regression

Cleveland proposed using a weight function W such that

\[
W(x) = \begin{cases}
> 0, & |x| < 1 \\
= 0, & |x| \geq 1
\end{cases}
\]

Then W is modified for each index $i \in \{1, \ldots, n\}$ by . . .
- Centering W at x_i
- Scaling W such that αn values are nonzero

R’s \texttt{loess} uses tricube function: $W(x) = (1 - |x|^3)^3$ for $|x| < 1$
Let \(\{w_j^i\}_{j=1}^n \) denote the weights for a particular point \(x_i \).

The weighted local regression problem minimizes

\[
\sum_{j=1}^n w_j^i(y_j - \beta_0^i - \beta_1^i x_j)^2
\]

where \(\beta_0^i \) and \(\beta_1^i \) are intercept and slope between \(x \) and \(y \) in neighborhood around \(x_i \).
Robust Weighted Local Regression

To reduce effect of outliers, we can perform another regression with weights based on the residuals \(\hat{\epsilon}_i = y_i - \hat{y}_i \) where \(\hat{y}_i = \hat{\beta}_0^i + \hat{\beta}_1^i x_i \).

- **Bisquare weight function:** \(B(x) = (1 - x^2)^2 \), \(|x| < 1\)
- **Residual-based weights:** \(\delta_i = B\left(\frac{\hat{\epsilon}_i}{(6\text{median}_{1 \leq j \leq n}|\hat{\epsilon}_j|)}\right)\)

The robust weighted local regression problem minimizes

\[
\sum_{j=1}^{n} \delta_j w_j^i (y_j - \beta_0^{i''} - \beta_1^{i''} x_j)^2
\]

where \(\beta_0^{i''} \) and \(\beta_1^{i''} \) are the robust (i.e., residual corrected) intercept and slope between \(x \) and \(y \) in neighborhood around \(x_i \).
Selecting the Span

Want to minimize the leave-one-out cross-validation criterion:

\[\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_{(i)})^2 \]

where \(\hat{y}_{(i)} \) is the LOESS estimate of \(y_i \) obtained by holding out \((x_i, y_i)\).

Rewrite the leave-one-out cross-validation criterion as

\[\frac{1}{n} \sum_{i=1}^{n} \frac{(y_i - \hat{y}_i)^2}{(1 - h_{ii})^2} \]

where \(h_{ii} \) are diagonal entries of the hat matrix \(H \) that determines \(\hat{y}_i \).

- Replace \(h_{ii} \) with \(\frac{1}{n} \sum_{i=1}^{n} h_{ii} = \text{tr}(H)/n \) for generalized CV
Local Regression Example 1: sunspots data

Raw Data

span=0.01

span=0.05

span=gcv
Local Regression Example 1: R code

```r
library(fANCOVA)

data(sunspots)

yrs=start(sunspots)
yre=end(sunspots)


dev.new(width=8,height=6,noRStudioGD=TRUE)

par(mfrow=c(2,2))

plot(years,sunspots,type="l",main="Raw Data")

sunlocreg=loess(sunspots~years,span=0.01)

plot(sunlocreg$x,sunlocreg$fitted,type="l",main="span=0.01")

sunlocreg=loess(sunspots~years,span=0.05)

plot(sunlocreg$x,sunlocreg$fitted,type="l",main="span=0.05")

sunlocreg=loess.as(years,sunspots,criterion="gcv")

plot(sunlocreg$x,sunlocreg$fitted,type="l",main="span=gcv")
```
Local Regression Example 2: simulated data
Local Regression Example 2: R code

```r
> library(fANCOVA)
> set.seed(55455)
> x=seq(0,1,length=50)
> y=sin(2*pi*x)+rnorm(50,sd=0.5)
> locreg=loess.as(x,y)
> dev.new(width=6,height=6,noRStudioGD=TRUE)
> plot(x,y)
> lines(locreg$x,locreg$fitted)
> lines(locreg$x,sin(2*pi*x),lty=2)
> legend("bottomleft",c(expression(hat(eta)),
+ expression(eta)),lty=1:2,bty="n")
```
Kernel Smoothing
Kernel Smoothing for General Functions

Kernel smoothing extends KDE idea to estimation a general function η.

Nadaraya (1964) and Watson (1964) independently introduced the kernel regression estimate

$$\hat{\eta}(x) = \frac{\sum_{i=1}^{n} y_i K \left(\frac{x-x_i}{h} \right)}{\sum_{i=1}^{n} K \left(\frac{x-x_i}{h} \right)} = \sum_{i=1}^{n} y_i w_i$$

where weights $w_i = \frac{K \left(\frac{x-x_i}{h} \right)}{\sum_{i=1}^{n} K \left(\frac{x-x_i}{h} \right)}$ are dependent on chosen K and h.

CV, GCV, or AIC to select bandwidth in kernel regression problems.
Kernel Smoothing Example 1: sunspots data

Raw Data

bw=0.01

bws=0.05

bws=cv (0.09)
Kernel Smoothing Example 1: R code

library(np)
data(sunspots)
yrs=start(sunspots)
yre=end(sunspots)
sunspots=as.vector(sunspots)
dev.new(width=8,height=6,noRStudioGD=TRUE)
par(mfrow=c(2,2))
plot(years,sunspots,type="l",main="Raw Data")
sunkerreg=npreg(bws=0.01,txdat=years,tydat=sunspots)
plot(years,fitted(sunkerreg),type="l",main="bw=0.01")
sunkerreg=npreg(bws=0.05,txdat=years,tydat=sunspots)
plot(years,fitted(sunkerreg),type="l",main="bws=cv (0.09)")
Kernel Smoothing Example 2: simulated data
Kernel Smoothing Example 2: R code

```r
> library(np)
> set.seed(55455)
> x=seq(0,1,length=50)
> y=sin(2*pi*x)+rnorm(50,sd=0.5)
> kerreg=npreg(txdat=x,tydat=y)

> dev.new(width=6,height=6,noRStudioGD=TRUE)
> plot(x,y)
> lines(x,fitted(kerreg))
> lines(x,sin(2*pi*x),lty=2)
> legend("bottomleft",c(expression(hat(eta)),
                   expression(eta)),lty=1:2,bty="n")
```