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Wilcoxon’s Rank Sum Test

Wilcoxon’s Rank Sum Test
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Wilcoxon’s Rank Sum Test Overview

Problem of Interest

For the two-sample location problem, we have N = m+ n observations
@ Xj,...,Xn are iid random sample from population 1
@ Yi,..., Y, areiid random sample from population 2

We want to make inferences about difference in distributions
@ Let F; and F, denote distributions of populations 1 and 2
@ Null hypothesis is same distribution < Hy : F1(z) = F»(z) for all z

Using the location-shift model, we have
@ Fi(z) = Fa(z— &) where 6 = E(Y) — E(X) is treatment effect
@ Null hypothesis is no treatment effect < Hy : 6 =0
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Wilcoxon’s Rank Sum Test Overview

Typical Assumptions

Within sample independence assumption
@ Xj,...,Xny are iid random sample from population 1
@ Yy,..., Y, areiid random sample from population 2

Between sample independence assumption
@ Samples {X;}!", and {Y;}7_, are mutually independent

Continuity assumption: both F; and F, are continuous distributions
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Assumptions and Hypothesis

Assumes independence (within and between sample) and continuity.

The null hypothesis about § (treatment effect) is
Hy:0=0

and we could have one of three alternative hypotheses:
@ One-Sided Upper-Tail: H; : 6 >0
@ One-Sided Lower-Tail: H;: 6 <0
@ Two-Sided: H;:6#0
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Test Statistic

Ry denotes the rank of the combined sample (Xi,..., Xm, Y1,..., Yn)
fork=1,...,N,where N=m+n

Defining the indicator variable

bk = 1 if from 2nd population
k=1 0 otherwise

the Wilcoxon rank sum test statistic W is defined as
N n
W=> Rax=)5
k=1 j=1

where §; is the (combined) rank associated with Y forj=1,...,n
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Wilcoxon’s Rank Sum Test Hypothesis Testing

Distribution of Test Statistic under Hg

Under Hy all (',\,’) arrangements of Y-ranks occur with equal probability

e Given (N, n), calculate W for all (V) possible outcomes

@ Each outcome has probability 1/ (™) under Hy

Example null distribution with m =3 and n = 2:

Y-ranks W  Probability under Hy
1,2 3 1/10
1,3 4 1/10
1,4 5 1/10
1,5 6 1/10
2,3 5 1/10 Note: there are (3) = 10 possibilities
2,4 6 1/10
2,5 7 110
34 7 1/10
3,5 8 1/10
4,5 9 1/10
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Hypothesis Testing

One-Sided Upper Tail Test:
@ Hy:6=0versus H; : 6 >0
@ Reject Hy if W > w,, where P(W > w,,) = «

One-Sided Lower Tail Test:
@ Hy:5=0versus H; : 6 <0
@ Reject Hhif W< n(m+n+1)—w,

Two-Sided Test:
@ Hy:6=0versus H; : § #0
@ Reject Ho if W > w,por W<n(m+n+1)—w,
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Wilcoxon’s Rank Sum Test Hypothesis Testing

Large Sample Approximation

Under Hp, the expected value and variance of W are
+n+1
° E(W) = %
° V(W)= %

We can create a standardized test statistic W* of the form
_ W-EW)
VW)

*

which asymptotically follows a N(0, 1) distribution.
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Wilcoxon’s Rank Sum Test Hypothesis Testing

Derivation of Large Sample Approximation

Note that we have W = >~7 ; S;, which implies that
@ W/nis the average of the (combined) Y-ranks

@ W/n has same distribution as sample mean of size n drawn
without replacement from finite population {1,..., N}

Using some basic results of finite population theory, we have

° E(W/n):u,WhereM:‘Nzi’\;/:%

° V(W/n) =02 =05, where 02 = (4 TN, 2) — 2 = (=D

Putting things together, we have that

° E(W):nuzw

o V(W) =rPo? iy = m(N 1)
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Wilcoxon’s Rank Sum Test Hypothesis Testing

Handling Ties

If Z; = Z; for any two observations from combined sample
(X1,...,Xm, Y1,..., Yn), then use the average ranking procedure.

@ W is calculated in same fashion (using average ranks)

@ Average ranks with null distribution is approximate level « test
@ Can still obtain an exact level « test via conditional distribution
@ Need to adjust variance term for large sample approximation
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Wilcoxon’s Rank Sum Test Hypothesis Testing

Example 4.2: Description

SST = Social Skills Training program for alcoholics
@ Supplement to traditional treatment program (Control)

N = 23 total patients (m = 12 Control and n = 11 SST).

Table 4.2 gives post-treatment alcohol intake for each patient group, as
well as the overall rank of the combined sample (Ry)

Want to test if the SST program reduced alcohol intake
@ Hy:6=0versus H; : 6 <O.
@ J is treatment effect (location difference)
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Example 4.2: Data

Nonparametric Statistical Methods, 3rd Ed. (Hollander et al., 2014)

Table 4.2 Alcohol Intake for 1 Year (Centiliter of Pure Alcohol)

Control Ry SST R«
1042 (13) | 874 9)
1617 (23) | 389 @)
1180 (18) | 612 (4)

973 (12) | 798 (7)
1552  (22) | 1152 (17)
1251 (19) | 893 (10)
1151 (16) | 541 (3)
1511 (21) | 741 (6)
728 (5) | 1064 (14)
1079 (15) | 862 (8)
951 (11) | 213 (1)
1319 (20)

Source: L. Eriksen, S. Bjérnstad, and K. G. Gétestam (1986).
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Wilcoxon’s Rank Sum Test Hypothesis Testing

Example 4.2: By Hand

Control Ry SST R«
1042 (13) | 874 (9)
1617 (23) | 389 @)
1180 (18) | 612 (4)
973 (12) | 798 (7)
1552 (22) | 1152 (17)
1251 (19) | 893 (10)
1151 (16) | 541 (3)
1511 (21) | 741 (6)
728 (5) | 1064 (14)
1079 (15) | 862 (8)
951 (11) | 213 (1)
1319 (20)

> 195 > 81

W=y =8t
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Example 4.2: Using R (Hard Way)

library (NSM3)
data (alcohol.intake)
alcohol.intake

vV V V

o

X
[1] 1042 1617 1180 973 1552 1251 1151 1511 728 1079 951 1319

Sy
[1] 874 389 612 798 1152 893 541 741 1064 862 213

r = rank(c(alcohol.intake$x,alcohol.intakeSy))
sum(r([1:12])
1] 195
sum(r
11 81

[13:23])

— VvV — VvV V
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Example 4.2: Using R (Easy Way)

> control = alcohol.intake$x
> sst = alcohol.intakeS$y
> wilcox.test (control, sst,alternative="greater")

Wilcoxon rank sum test
data: control and sst

W =117, p-value = 0.0004904
alternative hypothesis: true location shift is greater than 0

We reject Hp : 6 = 0 and conclude that SST program results in
reduced alcohol intake in recovering alcoholic patients.

Note: w value output by wilcox.test is NOT W =377, S; = 81
ew=mn—W+n(n+1)/2=12x11-81+11%12/2 = 117
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An Estimator of §
To estimate the treatment effect ¢, first form the mn differences
Dj= Y- X

fori=1,....mandj=1,...,n.

The estimate of ¢ corresponding to Wilcoxon’s rank sum test is
o =median(Dy; i=1,...,mj=1,....,n)

which is the median of the differences.

N

Motivation: make mean of (Xi,...,Xm, Y5 —94,..., Y, — ) as close as
possible to E(W) =n(m+n+1)/2.
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Wilcoxon’s Rank Sum Test Confidence Intervals

Symmetric Two-Sided Confidence Interval for ¢

Define the following terms
e Let UM < U®B < ... < U™ denote the ordered D scores
® w,» is the critical value such that P(W > w,,») = o/2 under Hj

o C,="Cmrtl) | 1 _ w,, is the transformed critical value

A symmetric (1 — a)100% confidence interval for § is given by

5L — U(Ca)
Sy = U(mn+1—Ca)
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Wilcoxon’s Rank Sum Test Confidence Intervals

One-Sided Confidence Intervals for ¢

Define the following additional terms
@ w, is the critical value such that P(W > w,,) = « under Hy

o C; = Memintl) | 1 _ w, transformed critical value

An asymmetric (1 — «)100% upper confidence bound for ¢ is

0 = —00
5U _ U(mn+1—C§;)

An asymmetric (1 — «)100% lower confidence bound for ¢ is

5, = UG
dy = ©

Nathaniel E. Helwig (U of Minnesota) Nonparametric Location Tests: k-Sample Updated 03-Jan-2017 :

Slide 21



Example 4.2: Estimate ¢

Get UM < UB < ... < UM) and 4 for previous example:

> d = as.vector (outer (control,sst,"-"))
> sort (d)

[1] -424 -336 -201 -179 -165 -146 -134 -113 -110 -91 =73 =70
[13] -22 -13 -1 15 28 58 77 80 87 89 99 99
[25] 111 116 116 149 153 167 168 175 180 186 187 187
[37] 205 210 217 232 244 255 258 277 281 287 289 301
[49] 306 318 338 339 339 353 358 359 361 377 382 389
[61] 400 410 410 426 430 432 439 445 447 453 457 465
[73] 467 488 501 510 515 521 538 539 553 562 568 578
[85] 584 610 618 637 639 639 649 653 659 678 690 690
[97] 707 710 713 724 738 743 754 755 760 762 770 778

[109] 791 811 819 829 862 866 876 899 930 938 940 967
[121] 970 1005 1011 1038 1076 1106 1122 1163 1228 1298 1339 1404
> median (d)

[1] 435.5
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Example 4.2: Confidence Interval for §

> wilcox.test (control, sst,alternative="greater",conf.int=TRUE)
Wilcoxon rank sum test

data: control and sst
W =117, p-value = 0.0004904
alternative hypothesis: true location shift is greater than O
95 percent confidence interval:
217 Inf
sample estimates:
difference in location

435.5
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Wilcoxon’s Rank Sum Test Confidence Intervals

Efficiency of Wilcoxon Rank Sum Test

Efficiency of W relative to two-sample t test:

F Normal Uniform Logistic Double Exp Cauchy Exp

E(W,t) 0.955 1.000 1.097 1.500 00 3.000

Interpreting the table:
@ If Fis normal, W is almost as efficient as t (4.5% efficiency loss)
@ If Fis non-normal, W is more efficient than t
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Mann-Whitney U-Test

Mann-Whitney U-Test
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Mann-Whitney U-Test Overview

Assumptions and Hypothesis

Same assumptions and hypotheses as Wilcoxon Rank Sum Test.
Assumes independence (within and between sample) and continuity.

The null hypothesis about § (treatment effect) is
Hy:6=0

and we could have one of three alternative hypotheses:
@ One-Sided Upper-Tail: H; : 6 >0
@ One-Sided Lower-Tail: H;: 6 <0
@ Two-Sided: H;:6#0
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Test Statistic

Defining the indicator function

oy [ 1 iEX<Y
9(Xi. ¥)) = { 0 otherwise

the Mann-Whitney test statistic U is defined as

i=1 j=1

which counts the number of times X is before Y in combined sample.
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Mann-Whitney U-Test Relation to Wilcoxon’s Test

Relation to Wilcoxon’s Rank Sum Test Statistic

It was shown by Mann and Whitney that

n(n+1)
2

where W and U are the Wilcoxon and Mann-Whitney test statistics.

W=U+

For a fixed sample size N = m + n, this implies that tests based on the
W and U test statistics are equivalent.

@ For afixed N= m+ n, we have W = U + constant
@ Adding constant only changes location of distribution
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Kruskal-Wallis ANOVA

Kruskal-Wallis ANOVA
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Kruskal-Wallis ANOVA Overview

Problem of Interest

For the k-sample location problem, we have N = Z}; n;
@ Xij,...,Xp;are iid random sample from population j
@ k > 2is the number of sampled populations

We want to make inferences about difference in locations
@ Let F; denote distribution of population j
@ Assume Fj(z) = F(z — 7;) where 7; is j-th treatment effect

Using the location-shift model, we have
@ Xj =0+ 7+ ej where 0 is median and g; is error (0 median)
@ Null hypothesis is no treatment difference < Hy : 7y = - - - = 7%
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Kruskal-Wallis ANOVA Hypothesis Testing

Assumptions and Hypothesis

Within sample independence assumption
® Xij, ..., Xp; are iid random sample from population j

Between sample independence assumption
o Samples {X;}, and {X;/}", are mutually independent 7} # J/

Continuity and form assumption
@ F;is continuous and has the form Fj(z) = F(z — ;) for all j, z

The null and alternative hypotheses are
@ Hy:m =--- =7, versus Hj: 7 # 7 forsomej,j
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Test Statistic

Let r; denote the rank of Xj; in the combined sample of size
N = Y"1, nj observations

Defining the sum and average of the joint ranks for each group
Rj = 27/:1 r,-j and R.j = Rj/nj

the Kruskall-Wallis test statistic H is defined as
k

12 N+1\2
H‘N(N+1)§”’(R‘1_ 2 >

12 KR
- (N(N+1)2n§) —3(N+1)

where N1 = (Z/’-‘:1 U . ri/N) is the average of the joint rankings
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Hypothesis Testing & Large Sample Approximation

One-Sided Upper Tail Test:
@ Hy:7=---=1, versus Hy:1; # 7 forsomej,j
@ Reject H, if H > h, where P(H > h,) = «

This is the only appropriate test here. ..
@ As (R, — %)2 increases, we have more evidence against Hy
@ We only reject Hj if test statistic H is too large

Under Hp and as min;(n;) — oo, we have that H ~ X%k—ﬂ
) ka_ﬂ denotes a chi-squared distribution with k — 1 df

@ Reject Hy if H > X(Zk—1) where P(X%k_” > X%k—1);a) .

3
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Handling Ties

When there are ties, we need to replace H with

H

H* =
T N9 (13
1 — o i (B = 4)

where
@ His computed using averaged ranks
@ g is the number of tied groups
@ 1 is the size of the tied group
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Kruskal-Wallis ANOVA Example

Example: Description

Visual and auditory cues example from Hays (1994) Statistics.

@ Does lack of visual/auditory synchrony affect memory?

Total of n = 30 college students participate in memory experiment.
@ Watch video of person reciting 50 words
@ Try to remember the 50 words (record number correct)

Randomly assign n; = 10 subjects to one of g = 3 video conditions:
@ fast: sound precedes lip movements in video
@ normal: sound synced with lip movements in video
@ slow: lip movements in video precede sound
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Kruskal-Wallis ANOVA Example

Example: Data

From Statistics (Hays, 1994)

Number of correctly remembered words:

Fast (j =1) | Normal (j = 2) | Slow (j = 3)

Sublect () | X; () | X () | X ()
1 23 (15.5) | 27 (23.0) | 23 (15.5)

2 22 (12.5) | 28 (24.0) | 24 (18.5)

3 18  (5.0) | 33 (29.0) | 21 (10.5)

4 15 (1.0) | 19 (7.0) | 25 (20.5)

5 29 (25.5) | 25 (20.5) | 19 (7.0)

6 30 (27.5) | 29 (25.5) | 24 (18.5)

7 23 (15.5) | 36 (30.0) | 22  (12.5)

8 16 (2.0) | 30 (27.5) | 17 (3.5)

9 19 (7.0) | 26 (22.0) | 20 (9.0)

10 17 (3.5) | 21 (10.5) | 23  (15.5)

R = Z, 1 T 115 219 131
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Example: By Hand

There are N = 30 subjects, so Kruskal-Wallis test statistic is

H= <301(§1) [1152+2192+1312} /10) —3(31)

= 8.092903
but this needs to be corrected for the ties.

There are g = 9 groups of ties with group sizes
(t,...,5)=1(2,3,2,2,4,2,2,2,2)
so the corrected test statistic value is

. H
1~ goatgs S (£ = 1)
8.092903

~0.9953281 8.13089
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Example: Using R (Hard Way)

sync = c(23,27,23,22,28,24,18,33,21,15,
19,25,29,25,19,30,29,24,23, 36,
22,16,30,17,19,26,20,17,21,23)

cond = factor(rep(c("fast","normal", "slow"),10))

N = 30

Rj = tapply (rank (sync), cond, sum)

H = (12/(N%(N+1)))*sum(Rj*2) /10 — 3% (N+1)

H

1] 8.092903

= tapply (sync, sync, length)

> tj = tjlti>1]

> t]

— VvV V. V V V + + V

\%
t
[N

17 19 21 22 23 24 25 29 30
2 3 2 2 4 2 2 2 2
> Hstar = H/(l-sum(tj”3-tj)/ (N"3-N))

> Hstar

[1] 8.13089

> 1 - pchisg(Hstar, 2)
[1] 0.01715536
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Example: Using R (Easy Way)

vV V. + + V

Nathaniel E. Helwig (U of Minnesota)
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sync = c(23,27,23,22,28,24,18,33,21,15,
19,25,29,25,19,30,29,24,23,36,
22,16,30,17,19,26,20,17,21,23)
cond = factor(rep(c("fast","normal","slow"),10))
kruskal.test (sync, cond)
Kruskal-Wallis rank sum test
data: sync and cond
Kruskal-Wallis chi-squared = 8.1309, df =

p-value = 0.
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Friedman Test

Friedman Test
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Friedman Test Overview

Problem of Interest

For two-way layout, we have N = nk observations
@ Xi1,..., Xy is i-th block of data
@ k > 2is the number of treatments

We want to make inferences about difference in locations
@ Let F; denote distribution of i-th block and j-th treatment

@ Assume Fjj(z) = F(z — 3; — 7;) where f3; is the i-th block effect and
7; is the j-th treatment effect

Using the location-shift model, we have
@ Xj =0+ B+ 7+ e; where 0 is median and e; is error (0 median)
@ Null hypothesis is no treatment difference < Hy : 7 = --- = 7%
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Assumptions and Hypothesis

Within block independence assumption
@ Xji,...,Xj are administered in random order

Between block independence assumption
@ Blocks {X,-j}j’-‘:1 and {X,-,j}j’.‘:1 are mutually independent Vi # i’

Continuity and form assumption
@ Fj is continuous and has form Fj(z) = F(z — B; — 7;) forall /,j, z

The null and alternative hypotheses are
@ Hy: 7 =---=7k versus Hy:1; # 7 forsomej,j
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Test Statistic

ri € {1,...,k} denotes the rank of Xjy, ..., Xj within the /-th block

Defining the sum and average of the joint ranks for each group
Rj = 2?21 rij and R.j = Rj/n

the Friedman test statistic S is defined as

k 2
12n k+ 1
S_k(k+1)j§_;(ﬂ'/_ 2 )

( zkjﬂ)snkH)

/:1

where k“ =, Z/’-‘:1 ri/N) is average of within-block rankings
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Hypothesis Testing & Large Sample Approximation

One-Sided Upper Tail Test:
@ Hy:7=---=1, versus Hy:1; # 7 forsomej,j
@ Reject Hy if S > s, where P(S > s,) =«

This is the only appropriate test here..
@ As (R, — k+1) increases, we have more evidence against Hy
@ We only reject Hj if test statistic S is too large

Under Hy and as n — oo, we have that S ~ X%k—ﬂ
° ka_ﬂ denotes a chi-squared distribution with k — 1 df

@ Reject Hy iszX%k_U; where P(x? XGk_1) > X(k a) =

Nathaniel E. Helwig (U of Minnesota) Nonparametric Location Tests: k-Sample Updated 03-Jan-2017 :

Slide 44



Handling Ties

When there are ties, we need to replace S with

125°F (Rj - @)2
S* = R n 9 43\ _
nk(k +1) — 525 2_i [( j=1 ti/) k}

where
@ g;is the number of tied groups in i-th block
@ fj is the size of the j-th tied group in /-th block
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Example 7.1: Description

n = 22 baseball players
participated in a base-
running study

Second base

Compared k = 3 methods
to round first base: Third base

@ Round out (diamond)
@ Narrow angle (asterisk)
@ Wide angle (solid)

First base

Home plate

: . . From Nonparametric Statistical Methods, 3rd Ed. (Hollander et al., 2014)
Response variable is time to

run to 2nd base
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Example 7.1: Data

Nonparametric Statistical Methods, 3rd Ed. (Hollander et al., 2014)

Table 7.1 Rounding-First-Base Times

Round Out (j = 1)

Narrow Angle (j = 2)

Wide Angle (j = 3)

Player (i) Xji rij Xjj T Xii T
1 5.40 1.0 5.50 2.0 5.55 3
2 5.85 3.0 5.70 1.0 5.75 2
3 5.20 1.0 5.60 3.0 5.50 2
4 5.55 3.0 5.50 2.0 5.40 1
5 5.90 3.0 5.85 2.0 5.70 1
6 5.45 1.0 5.55 2.0 5.60 3
7 5.40 25 5.40 25 5.35 1
8 5.45 2.0 5.50 3.0 5.35 1
9 5.25 3.0 5.15 2.0 5.00 1
10 5.85 3.0 5.80 2.0 5.70 1
11 5.25 3.0 5.20 2.0 5.10 1
12 5.65 3.0 5.55 2.0 5.45 1
13 5.60 3.0 5.35 1.0 5.45 2
14 5.05 3.0 5.00 2.0 4.95 1
15 5.50 25 5.50 25 5.40 1
16 5.45 1.0 5.55 3.0 5.50 2
17 5.55 25 5.55 25 5.35 1
18 5.45 1.0 5.50 2.0 5.55 3
19 5.50 3.0 5.45 2.0 5.25 1
20 5.65 3.0 5.60 2.0 5.40 1
21 5.70 3.0 5.65 2.0 5.55 1
22 6.30 2.5 6.30 2.5 6.25 1

R = > rij 53 47 32

Source: W. F. Woodward (1970).
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Example: By Hand

There are ties in blocks i € {7,15,17,22} such that
th =2 and tp =1

because there is one tied group of size 2 and one tied group of size 1
for each block = (-7 ) — k = (2% 4 1%) — 3 = 6 for each block.

The corrected test statistic value is

12[(53 — 44)% + (47 — 44)% + (32 — 44)?]
22x3%x4 —0.5%(6x4)
= 11.14286

St =
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Example: Using R (Enter Data)

rounding.times = matrix(c(5.40,

Nathaniel E. Helwig (U of Minnesota)

.85,
.20,
.55,
.90,
.45,
.40,
.45,
.25,
.85,
.25,
.65,
.60,
.05,
.50,
.45,
.55,
.45,
.50,
.65,
.70,
.30,

[ NNCINC, BN I C B G B C B G B C EC BN C RC B G RN C, BN G, RN, B, BN C ) B B ) ]
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[S)NNC, RNC, BC, BE, BN E B G, B C, R C, N, BN G, RN G, INC, BNC, BC, B, B G, B G B C, B BN C, NG, )

.50,
.70,
.60,
.50,
.85,
.55,
.40,
.50,
.15,
.80,
.20,
.55,
.35,
.00,
.50,
.55,
.55,
.50,
.45,
.60,
.65,
.30,

[© )G, NG, BN RNE NG BN, BN G, I -G B G NG, BN BN G BN G BN C BN C, BN C BN C BN C B C BN Gy

.55,
.75,
.50,
.40,
.70,
.60,
.35,
.35,
.00,
.70,
.10,
.45,
.45,
.95,
.40,
.50,
.35,
.55,
.25,
.40,
.55,
.25) ,ncol=3, byrow=TRUE)
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Example: Using R (Hard Way)

> rtrank = t(apply(rounding.times, 1, rank))
> n = 22

>k =3

> vrt = as.vector (rtrank)

> tj = tapply(vrt,list (rep(l:n,k),vrt),

> cval = 0

> for(i in 1:n){

+ tidx = which(is.na(tj[i,])==FALSE)

+ tij = tjl[i,tidx]

+ if (length(tij)<k) {cval=cval+sum(tij”~3) -k}
+ 1}

> top = 12xsum((colSums (rtrank)-n«* (k+1)/2)
> bot = n*k=* (k+1)-(1/(k-1))=*cval

> Sc = top/bot

> Sc

[1] 11.14286

>

[

1 - pchisqg(Sc,2)
]

1] 0.003805041
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Example: Using R (Easy Way)

> friedman.test (rounding.times)
Friedman rank sum test

data: rounding.times
Friedman chi-squared = 11.1429, df = 2, p-value = 0.003805
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