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Background Information

Background Information
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Background Information Hypothesis Testing

Neyman-Pearson Hypothesis Testing Procedure

Hypothesis testing procedure (by Jerzy Neyman & Egon Pearson1):
(a) Start with a null and alternative hypothesis (H0 and H1) about θ
(b) Calculate some test statistic T from the observed data
(c) Calculate p-value; i.e., probability of observing a test statistic as or

more extreme than T under the assumption H0 is true
(d) Reject H0 if the p-value is below some user-determined threshold

Typically we assume observed data are from some known probability
distribution (e.g., Normal, t , Poisson, binomial, etc.).

1Egon Pearson was the son of Karl Pearson (very influential statistician).
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Background Information Hypothesis Testing

Confidence Intervals

In addition to testing H0, we may want to know how confident we can
be in our estimate of the unknown population parameter θ.

A symmetric 100(1− α)% confidence interval (CI) has the form:

θ̂ ± T ∗1−α/2σθ̂

where θ̂ is our estimate of θ, σθ̂ is the standard error of θ̂, and T ∗1−α/2 is
the critical value of the test statistic, i.e., P(T ≤ T ∗1−α/2) = 1− α/2.

Interpreting Confidence Intervals:
Correct: through repeated samples, e.g., 99 out of 100 confidence
intervals would be expected to contain true θ with α = .01
Wrong: through one sample; e.g., there is a 99% chance the
confidence interval around my θ̂ contains the true θ (with α = .01)
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Background Information Location Tests

Definition of “Location Test”

Allow us to test hypotheses about mean or median of a population.

There are one-sample tests and two-sample tests.
One-Sample: H0 : µ = µ0 vs. H1 : µ 6= µ0

Two-Sample: H0 : µ1 − µ2 = µ0 vs. H1 : µ1 − µ2 6= µ0

There are one-sided tests and two-sided tests.

One-Sided: H0 : µ = µ0 vs. H1 : µ < µ0 or H1 : µ > µ0

Two-Sided: H0 : µ = µ0 vs. H1 : µ 6= µ0
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Background Information Location Tests

Problems with Parametric Location Tests

Typical parametric location tests (e.g., Student’s t tests) focus on
analyzing mean differences.

Robustness: sample mean is not robust to outliers
Consider a sample of data x1, . . . , xn with expectation µ <∞
Suppose we fix x1, x2, . . . , xn−1 and let xn →∞
Note x̄ = 1

n
∑n

i=1 xi →∞, i.e., one large outlier ruins sample mean

Generalizability: parametric tests are meant for particular distributions
Assume data are from some known distribution
Parametric inferences are invalid if assumption is wrong
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Background Information Order and Rank Statistics

Order Statistics

Given a sample of data

X1, X2, X3, . . . ,Xn

from some cdf F , the order statistics are typically denoted by

X(1), X(2), X(3), . . . ,X(n)

where X(1) ≤ X(2) ≤ X(3) ≤ · · · ≤ X(n) are the ordered data

Note that. . .
the 1st order statistic X(1) is the sample minimum
the n-th order statistic X(n) is the sample maximum
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Background Information Order and Rank Statistics

Rank Statistics

Given a sample of data

X1, X2, X3, . . . ,Xn

from some cdf F , the rank statistics are typically denoted by

R1, R2, R3, . . . ,Rn

where Ri ∈ [1,n] for all i ∈ {1, . . . ,n} are the data ranks

If there are no ties (i.e., if Xi 6= Xj ∀i , j), then Ri ∈ {1, . . . ,n}
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Background Information Order and Rank Statistics

Order and Rank Statistics: Example (No Ties)

Given a sample of data

X1 = 3, X2 = 12, X3 = 11, X4 = 18, X5 = 14, X6 = 10

from some cdf F , the order statistics are

X(1) = 3, X(2) = 10, X(3) = 11, X(4) = 12, X(5) = 14, X(6) = 18

and the ranks are given by

R1 = 1, R2 = 4, R3 = 3, R4 = 6, R5 = 5, R6 = 2
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Background Information Order and Rank Statistics

Order and Rank Statistics: Example (With Ties)

Given a sample of data

X1 = 3, X2 = 11, X3 = 11, X4 = 14, X5 = 14, X6 = 11

from some cdf F , the order statistics are

X(1) = 3, X(2) = 11, X(3) = 11, X(4) = 11, X(5) = 14, X(6) = 14

and the ranks are given by

R1 = 1, R2 = 3, R3 = 3, R4 = 5.5, R5 = 5.5, R6 = 3

This is fractional ranking where we use average ranks:
Replace Ri ∈ {2,3,4} with the average rank 3 = (2 + 3 + 4)/3
Replace Ri ∈ {5,6} with the average rank 5.5 = (5 + 6)/2
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Background Information Order and Rank Statistics

Order and Rank Statistics: Examples (in R)

Revisit example with no ties:
> x = c(3,12,11,18,14,10)
> sort(x)
[1] 3 10 11 12 14 18
> rank(x)
[1] 1 4 3 6 5 2

Revisit example with ties:
> x = c(3,11,11,14,14,11)
> sort(x)
[1] 3 11 11 11 14 14
> rank(x)
[1] 1.0 3.0 3.0 5.5 5.5 3.0
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Background Information Order and Rank Statistics

Summation of Integers (Carl Gauss)

Carl Friedrich Gauss was a German mathematician who made
amazing contributions to all areas of mathematics (including statistics).

According to legend, when Carl was in primary school (about 8 y/o) the
teacher asked the class to sum together all integers from 1 to 100.

This was supposed to occupy the students for several hours

After a few seconds, Carl wrote down the correct answer of 5050!
Carl noticed that 1 + 100 = 101, 2 + 99 = 101, 3 + 98 = 101, etc.
There are 50 pairs that sum to 101 =⇒

∑100
i=1 i = 5050
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Background Information Order and Rank Statistics

General Summation Formulas

Summation of Integers:
∑n

i=1 i = n(n + 1)/2
From pattern noticed by Carl Gauss

Summation of Squares:
∑n

i=1 i2 = n(n + 1)(2n + 1)/6
Can prove using difference approach (similar to Carl Gauss idea)

These formulas relate to test statistics that we use for rank data.
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Background Information One-Sample Problem

Problem(s) of Interest

For the one-sample location problem, we could have:
Paired-replicates data: (Xi ,Yi) are independent samples
One-sample data: Zi are independent samples

We want to make inference about:
Paired-replicates data: difference in location (treatment effect)
One-sample data: single population’s location
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Background Information One-Sample Problem

Typical Assumptions

Independence assumption:
Paired-replicates data: Zi = Yi − Xi are independent samples
One-sample data: Zi are independent samples

Symmetry assumption:
Paired-replicates data: Zi ∼ Fi which is continuous and symmetric
around θ (common median)
One-sample data: Zi ∼ Fi which is continuous and symmetric
around θ (common median)
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Wilcoxon’s Signed Rank Test

Wilcoxon’s Signed Rank Test
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Wilcoxon’s Signed Rank Test Overview

Assumptions and Hypothesis

Assumes both independence and symmetry.

The null hypothesis about θ (common median) is

H0 : θ = θ0

and we could have one of three alternative hypotheses:
One-Sided Upper-Tail: H1 : θ > θ0

One-Sided Lower-Tail: H1 : θ < θ0

Two-Sided: H1 : θ 6= θ0
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Wilcoxon’s Signed Rank Test Hypothesis Testing

Test Statistic

Let Ri for i ∈ {1, . . . ,n} denote the ranks of |Zi − θ0|.

Defining the indicator variable

ψi =

{
1 if Zi − θ0 > 0
0 if Zi − θ0 < 0

the Wilcoxon signed rank test statistic T+ is defined as

T+ =
n∑

i=1

Riψi

where Riψi is the positive signed rank of Zi − θ0
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Wilcoxon’s Signed Rank Test Hypothesis Testing

Distribution of Test Statistic under H0

Assume no ties, let B denote the number of Zi − θ0 values that are
greater than 0, and let r1 < r2 < · · · < rB denote the (ordered) ranks of
the positive Zi − θ0 values

Note that T+ =
∑B

i=1 ri

Under H0 : θ = θ0 we have that Zi − θ0 ∼ F̃i , which is continuous and
symmetric around 0.

All 2n possible outcomes for (r1, r2, . . . , rB) occur with equal probability.
For given n, form all 2n possible outcomes with corresponding T+

Each outcome has probability 1
2n under H0
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Wilcoxon’s Signed Rank Test Hypothesis Testing

Null Distribution Example

Suppose we have n = 3 observations (Z1,Z2,Z3) with no ties.

The 23 = 8 possible outcomes for (r1, r2, . . . , rB) are
B (r1, r2, . . . , rB) T+ =

∑B
i=1 ri Probability under H0

0 0 1/8
1 r1 = 1 1 1/8
1 r1 = 2 2 1/8
1 r1 = 3 3 1/8
2 r1 = 1, r2 = 2 3 1/8
2 r1 = 1, r2 = 3 4 1/8
2 r1 = 2, r2 = 3 5 1/8
3 r1 = 1, r2 = 2, r3 = 3 6 1/8

Example probability calculation: P(T+ < 2) =
∑1

i=0 P(T+ = i) = 0.25
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Wilcoxon’s Signed Rank Test Hypothesis Testing

Hypothesis Testing

One-Sided Upper Tail Test:
H0 : θ = θ0 versus H1 : θ > θ0

Reject H0 if T+ ≥ tα where P(T+ > tα) = α

One-Sided Lower Tail Test:
H0 : θ = θ0 versus H1 : θ < θ0

Reject H0 if T+ ≤ n(n+1)
2 − tα

Two-Sided Test:
H0 : θ = θ0 versus H1 : θ 6= θ0

Reject H0 if T+ ≥ tα/2 or T+ ≤ n(n+1)
2 − tα/2
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Wilcoxon’s Signed Rank Test Hypothesis Testing

Large Sample Approximation

Under H0, the expected value and variance of T+ are

E(T+) = n(n+1)
4

V (T+) = n(n+1)(2n+1)
24

We can create a standardized test statistic T ∗ of the form

T ∗ =
T+ − E(T+)√

V (T+)

which asymptotically follows a N(0,1) distribution.
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Wilcoxon’s Signed Rank Test Hypothesis Testing

Derivation of Large Sample Approximation

Note that we have T+ =
∑n

i=1 Ui where
Ui = Riψi are independent variables for i = 1, . . . ,n
P(Ui = i) = P(Ui = 0) = 1/2

Using the independence of the Ui variables we have
E(T+) =

∑n
i=1 E(Ui)

V (T+) =
∑n

i=1 V (Ui)

Using the distribution of Ui we have

E(Ui) = i 1
2 + 01

2 = i
2 =⇒ E(T+) = 1

2
∑n

i=1 i = n(n+1)
4

V (Ui) = E(U2
i )− [E(Ui)]2 = i2

2 −
i2
4 = i2

4 =⇒
V (T+) = 1

4
∑n

i=1 i2 = n(n+1)(2n+1)
24
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Wilcoxon’s Signed Rank Test Hypothesis Testing

Handling Zeros and Ties

If Zi = θ0, then discard Zi and redefine ñ as the number of
observations that do not equal θ0.

If Zi = Zj for two (non-zero) observations, then use the average
ranking procedure to handle ties.

T+ is calculated in same fashion (using average ranks)
No longer an exact level α test
Need to adjust variance term for large sample approximation
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Wilcoxon’s Signed Rank Test Hypothesis Testing

Example 3.1: Description

Hamilton Depression Scale Factor IV measures suicidal tendencies.
Higher scores mean more suicidal tendencies

Nine psychiatric patients were treated with a tranquilizer drug.

X and Y are pre- and post-treatment Hamilton Depression Scale
Factor IV scores

Want to test if the tranquilizer significantly reduced suicidal tendencies
H0 : θ = 0 versus H1 : θ < 0.
θ is median of Z = Y − X
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Wilcoxon’s Signed Rank Test Hypothesis Testing

Example 3.1: Data

Nonparametric Statistical Methods, 3rd Ed. (Hollander et al., 2014)

Table 3.1 The Hamilton Depression Scale Factor IV Values
Patient i Xi Yi

1 1.83 0.878
2 0.50 0.647
3 1.62 0.598
4 2.48 2.050
5 1.68 1.060
6 1.88 1.290
7 1.55 1.060
8 3.06 3.140
9 1.30 1.290

Source: D. S. Salsburg (1970).
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Wilcoxon’s Signed Rank Test Hypothesis Testing

Example 3.1: By Hand

Patient i Xi Yi Zi Ri ψi
1 1.83 0.878 −0.952 8 0
2 0.50 0.647 0.147 3 1
3 1.62 0.598 −1.022 9 0
4 2.48 2.050 −0.430 4 0
5 1.68 1.060 −0.620 7 0
6 1.88 1.290 −0.590 6 0
7 1.55 1.060 −0.490 5 0
8 3.06 3.140 0.080 2 1
9 1.30 1.290 −0.010 1 0

Note. Zi = Yi − Xi and Ri is rank of |Zi |

T+ =
∑n

i=1 Riψi = 3 + 2 = 5
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Wilcoxon’s Signed Rank Test Hypothesis Testing

Example 3.1: Using R

> pre = c(1.83,0.50,1.62,2.48,1.68,1.88,1.55,3.06,1.30)
> post = c(0.878,0.647,0.598,2.050,1.060,1.290,1.060,3.140,1.290)
> z = post - pre
> wilcox.test(z,alternative="less")

Wilcoxon signed rank test

data: z
V = 5, p-value = 0.01953
alternative hypothesis: true location is less than 0

> wilcox.test(post,pre,alternative="less",paired=TRUE)

Wilcoxon signed rank test

data: post and pre
V = 5, p-value = 0.01953
alternative hypothesis: true location shift is less than 0
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Wilcoxon’s Signed Rank Test Estimating Location

An Estimator of θ

To estimate the median (or median difference) θ, first form the
M = n(n + 1)/2 average values

Wij = (Zi + Zj)/2

for i ≤ j = 1, . . . ,n, which are known as Walsh averages.

The estimate of θ corresponding to Wilcoxon’s signed rank test is

θ̂ = median(Wij ; i ≤ j = 1, . . . ,n)

which is the median of the Walsh averages.

Motivation: make mean of Zi − θ̂ as close as possible to n(n + 1)/4.
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Wilcoxon’s Signed Rank Test Confidence Intervals

Symmetric Two-Sided Confidence Interval for θ

Define the following terms
M = n(n + 1)/2 is the number of Walsh averages
W (1) ≤W (2) ≤ · · · ≤W (M) are the ordered Walsh averages
tα/2 is the critical value such that P(T+ > tα/2) = α/2 under H0

Cα = M + 1− tα/2 is the transformed critical value

A symmetric (1− α)100% confidence interval for θ is given by

θL = W (Cα)

θU = W (M+1−Cα) = W (tα/2)
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Wilcoxon’s Signed Rank Test Confidence Intervals

One-Sided Confidence Intervals for θ

Define the following additional terms
tα is the critical value such that P(T+ > tα) = α under H0

C∗α = M + 1− tα transformed critical value

An asymmetric (1− α)100% upper confidence bound for θ is

θL = −∞
θU = W (M+1−C∗

α) = W (tα)

An asymmetric (1− α)100% lower confidence bound for θ is

θL = W (C∗
α)

θU =∞
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Wilcoxon’s Signed Rank Test Confidence Intervals

Example 3.1: Estimate θ

Get W (1) ≤W (2) ≤ · · · ≤W (M) and θ̂ for previous example:

> require(NSM3) # use install.packages("NSM3") to get NSM3
> owa(pre,post)
$owa
[1] -1.0220 -0.9870 -0.9520 -0.8210 -0.8060 -0.7860 -0.7710
[8] -0.7560 -0.7260 -0.7210 -0.6910 -0.6200 -0.6050 -0.5900

[15] -0.5550 -0.5400 -0.5250 -0.5160 -0.5100 -0.4900 -0.4810
[22] -0.4710 -0.4600 -0.4375 -0.4360 -0.4300 -0.4025 -0.3150
[29] -0.3000 -0.2700 -0.2550 -0.2500 -0.2365 -0.2215 -0.2200
[36] -0.2050 -0.1750 -0.1715 -0.1415 -0.0100 0.0350 0.0685
[43] 0.0800 0.1135 0.1470

$h.l
[1] -0.46
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Wilcoxon’s Signed Rank Test Confidence Intervals

Example 3.1: Confidence Interval for θ

> wilcox.test(z,alternative="less",conf.int=TRUE)

Wilcoxon signed rank test

data: z
V = 5, p-value = 0.01953

alternative hypothesis: true location is less than 0
95 percent confidence interval:

-Inf -0.175
sample estimates:
(pseudo)median

-0.46
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Fisher’s Sign Test

Fisher’s Sign Test
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Fisher’s Sign Test Overview

Assumptions and Hypothesis

Assumes only independence (no symmetry assumption).

The null hypothesis about θ (common median) is

H0 : θ = θ0

and we could have one of three alternative hypotheses:
One-Sided Upper-Tail: H1 : θ > θ0

One-Sided Lower-Tail: H1 : θ < θ0

Two-Sided: H1 : θ 6= θ0
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Fisher’s Sign Test Hypothesis Testing

Test Statistic

Defining the indicator variable

ψi =

{
1 if Zi − θ0 > 0
0 if Zi − θ0 < 0

the sign test statistic B is defined as

B =
n∑

i=1

ψi

which is the number of positive Zi − θ0 values.
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Fisher’s Sign Test Hypothesis Testing

Distribution of Test Statistic under H0

If θ0 is the true median, ψi has a 50% chance of taking each value:
P(ψ = 0|θ = θ0) = P(ψ = 1|θ = θ0) = 1/2

Thus, the sign statistic follows a binomial distribution under H0

B ∼ Binom(n,1/2)
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Fisher’s Sign Test Hypothesis Testing

Hypothesis Testing

One-Sided Upper Tail Test:
H0 : θ = θ0 versus H1 : θ > θ0

Reject H0 if B ≥ bα where P(B > bα) = α

One-Sided Lower Tail Test:
H0 : θ = θ0 versus H1 : θ < θ0

Reject H0 if B ≤ n − bα

Two-Sided Test:
H0 : θ = θ0 versus H1 : θ 6= θ0

Reject H0 if B ≥ bα/2 or B ≤ n − bα/2
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Fisher’s Sign Test Hypothesis Testing

Large Sample Approximation

Under H0, B ∼ Binom(n,1/2) so the expected value and variance are
E(B) = np = n

2

V (B) = np(1− p) = n
4

We can create a standardized test statistic B∗ of the form

B∗ =
B − E(B)√

V (B)

which asymptotically follows a N(0,1) distribution.
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Fisher’s Sign Test Hypothesis Testing

Example 3.1: Revisited (By Hand)

Patient i Xi Yi Zi ψi
1 1.83 0.878 −0.952 0
2 0.50 0.647 0.147 1
3 1.62 0.598 −1.022 0
4 2.48 2.050 −0.430 0
5 1.68 1.060 −0.620 0
6 1.88 1.290 −0.590 0
7 1.55 1.060 −0.490 0
8 3.06 3.140 0.080 1
9 1.30 1.290 −0.010 0

B =
∑n

i=1 ψi = 2 and p-value = P(B < 2|H0 is true) = 0.0898
> pbinom(2,9,1/2)
[1] 0.08984375
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Fisher’s Sign Test Hypothesis Testing

Example 3.1: Revisited (Using R, one-sample)

> library(BSDA)
> z = post - pre
> SIGN.test(z,alternative="less")

One-sample Sign-Test

data: z
s = 2, p-value = 0.08984
alternative hypothesis: true median is less than 0
95 percent confidence interval:
-Inf 0.041

sample estimates:
median of x

-0.49

Conf.Level L.E.pt U.E.pt
Lower Achieved CI 0.9102 -Inf -0.010
Interpolated CI 0.9500 -Inf 0.041
Upper Achieved CI 0.9805 -Inf 0.080
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Fisher’s Sign Test Hypothesis Testing

Example 3.1: Revisited (Using R, paired-samples)

> library(BSDA)
> SIGN.test(post,pre,alternative="less")

Dependent-samples Sign-Test

data: post and pre
S = 2, p-value = 0.08984
alternative hypothesis: true median difference is less than 0
95 percent confidence interval:
-Inf 0.041

sample estimates:
median of x-y

-0.49

Conf.Level L.E.pt U.E.pt
Lower Achieved CI 0.9102 -Inf -0.010
Interpolated CI 0.9500 -Inf 0.041
Upper Achieved CI 0.9805 -Inf 0.080
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Fisher’s Sign Test Estimating Location

A Different Estimator of θ

To estimate the median (or median difference) θ, calculate

θ̃ = median(Zi ; i = 1, . . . ,n)

which is the median of observed sample (or paired differences).
> median(z)
[1] -0.49

Motivation: make mean of Zi − θ̃ as close as possible to n/2.
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Fisher’s Sign Test Confidence Intervals

Symmetric Two-Sided Confidence Interval for θ

Define the following terms
bα/2 is the critical value such that P(B > bα/2) = α/2 under H0

Cα = n + 1− bα/2 is the transformed critical value

A symmetric (1− α)100% confidence interval for θ is given by

θL = Z (Cα)

θU = Z (n+1−Cα) = Z (bα/2)

where Z (i) is the i-th order statistic of the sample {Zi}ni=1.
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Fisher’s Sign Test Confidence Intervals

One-Sided Confidence Intervals for θ

Define the following additional terms
bα is the critical value such that P(B > bα) = α under H0

C∗α = n + 1− bα transformed critical value

An asymmetric (1− α)100% upper confidence bound for θ is

θL = −∞
θU = Z (n+1−C∗

α) = Z (bα)

An asymmetric (1− α)100% lower confidence bound for θ is

θL = Z (C∗
α)

θU =∞
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Fisher’s Sign Test Confidence Intervals

Example 3.1: Revisited Confidence Interval for θ

> zs = sort(z)
> zs
[1] -1.022 -0.952 -0.620 -0.590 -0.490
[6] -0.430 -0.010 0.080 0.147
> round(pbinom(0:9,9,1/2),4)
[1] 0.0020 0.0195 0.0898 0.2539 0.5000
[6] 0.7461 0.9102 0.9805 0.9980 1.0000
> zs[7:8]

[1] -0.01 0.08
> zs[7]+(zs[8]-zs[7])*(0.95-0.9102)/(0.9805-0.9102)
[1] 0.04095306

The asymmetric 95% upper confidence bound is (−∞,0.041).
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Some Considerations
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Some Considerations Choosing a Location Test

Which Location Test Should You Choose?

Answer depends on your data and what assumptions you are willing to
make about the population distribution.

If observed data are normally distributed, then. . .
t-test is most powerful test
Wilcoxon’s signed rank test is slightly less powerful than t test
(4.5% efficiency loss)
Fisher’s sign test is less powerful than others
(36.3% efficiency loss compared to t test)

If observed data are NOT normally distributed, then. . .
Signed rank test is typically as or more efficient than t test
Sign test should be preferred if data population is asymmetric
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Some Considerations Univariate Symmetry Test

Assumptions and Hypotheses

Assumes zi
iid∼ F where θ is the median of F , i.e., F (θ) = 1/2

The null hypothesis is that F is symmetric around θ, i.e.,

H0 : F (θ − b) + F (θ + b) = 1 ∀b

and we could have one of three alternative hypotheses:
One-Sided Left-Skew: H1 : F (θ + b) ≥ 1− F (θ − b) ∀b > 0
One-Sided Right-Skew: H1 : F (θ + b) ≤ 1− F (θ − b) ∀b > 0
Two-Sided: F (θ − b) + F (θ + b) 6= 1 for any b
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Some Considerations Univariate Symmetry Test

Test Statistic

For every triple of observations (Zi ,Zj ,Zk ), 1 ≤ i < j < k ≤ n, define

f ∗(Zi ,Zj ,Zk ) = sign(Zi +Zj−2Zk )+sign(Zi +Zk−2Zj)+sign(Zj +Zk−2Zi)

and note that there are n(n− 1)(n− 2)/6 distinct triples in the sample.
(Zi ,Zj ,Zk ) is a left triple (skewed to left) if f ∗(Zi ,Zj ,Zk ) = −1
(Zi ,Zj ,Zk ) is a right triple (skewed to right) if f ∗(Zi ,Zj ,Zk ) = 1
If f ∗(Zi ,Zj ,Zk ) = 0, then (Zi ,Zj ,Zk ) is neither left nor right

Define the unstandardized test statistic

T =
∑

1≤i<j<k≤n

f ∗(Zi ,Zj ,Zk )

= {# of right triples} − {# of left triples}
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Some Considerations Univariate Symmetry Test

Test Statistic (continued)

Define the standardized test statistic

V = T/σ̂ asy∼ N(0,1)

where the variance estimate is given by

σ̂2 =
(n − 3)(n − 4)

(n − 1)(n − 2)

n∑
t=1

B2
t +

(n − 3)

(n − 4)

n−1∑
s=1

n∑
t=s+1

B2
s,t

+
n(n − 1)(n − 2)

6
−
[
1− (n − 3)(n − 4)(n − 5)

n(n − 1)(n − 2)

]
T 2

and the Bt and Bst terms are defined as

Bt = {# right triples involving Zt} − {# left triples involving Zt}
Bst = {# right triples involving Zs,Zt} − {# left triples involving Zs,Zt}
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Some Considerations Univariate Symmetry Test

Hypothesis Testing

One-Sided Left-Skew Test:
H0 : F is symmetric versus H1 : F is left-skewed
Reject H0 if V ≤ −Zα where P(Z > Zα) = α

One-Sided Right-Skew Test:
H0 : F is symmetric versus H1 : F is right-skewed
Reject H0 if V ≥ Zα

Two-Sided Test:
H0 : F is symmetric versus H1 : F is not symmetric
Reject H0 if |V | ≥ Zα/2
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Some Considerations Univariate Symmetry Test

Example 1: Symmetric

> set.seed(1)
> x = rnorm(50)
> hist(x)
> require(NSM3)
> test = RFPW(x)
> c(test$obs.stat, test$p.val)
[1] -1.4572415 0.1450497

# two-sided
> 2*(1 - pnorm(abs(test$obs.stat)))
[1] 0.1450497
# left-skew
> pnorm(test$obs.stat)
[1] 0.07252486
# right-skew
> 1 - pnorm(test$obs.stat)
[1] 0.9274751
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Some Considerations Univariate Symmetry Test

Example 2: Asymmetric

> set.seed(1)
> x = rchisq(50,df=3)
> hist(x)
> require(NSM3)
> test = RFPW(x)
> c(test$obs.stat, test$p.val)
[1] 1.70708892 0.08780553

# two-sided
> 2*(1 - pnorm(abs(test$obs.stat)))
[1] 0.08780553
# left-skew
> pnorm(test$obs.stat)
[1] 0.9560972
# right-skew
> 1 - pnorm(test$obs.stat)
[1] 0.04390276
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Some Considerations Bivariate Symmetry Test

Exchangeability

Components of a random vector (X ,Y ) are exchangeable if the
vectors (X ,Y ) and (Y ,X ) have the same distribution.

Permuting components does not change distribution
Implies FX ≡ FY and FX |Y ≡ FY |X and FZ ≡ F−Z with Z = Y − X
FZ ≡ F−Z implies that FZ is symmetric about 0

More generally, if components of (X + θ,Y ) are exchangeable, then

Z − θ = Y − (X + θ)

has the same distribution as

θ − Z = (X + θ)− Y

implies that FZ is symmetric about θ
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Some Considerations Bivariate Symmetry Test

Assumptions and Hypotheses

Assumes (xi , yi)
iid∼ F (x , y) where F is some bivariate distribution.

The null hypothesis is that F is exchangeable, i.e.,

H0 : F (x , y) = F (y , x) ∀x , y

and there is only one possible alternative hypothesis

H1 : F (x , y) 6= F (y , x) for some x , y
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Some Considerations Bivariate Symmetry Test

Test Statistic

For each pair (xi , yi) let ai = min(xi , yi) and bi = max(xi , yi), and define

ri =

{
1, if xi = ai < bi = yi
0, if xi = bi ≥ ai = yi

so that ri = 1 if xi < yi and ri = 0 otherwise.

Next, define the n2 values dij , for i , j = 1, . . . ,n, as

dij =

{
1, if aj < bi ≤ bj and ai ≤ aj
0, otherwise

Nathaniel E. Helwig (U of Minnesota) Nonparametric Location Tests: One-Sample Updated 04-Jan-2017 : Slide 59



Some Considerations Bivariate Symmetry Test

Test Statistic (continued)

For each j = 1, . . . ,n calculate the signed summation of dij as

Tj =
n∑

i=1

sidij

where si = 2ri − 1. Note that si = 1 if ri = 1 and si = −1 if ri = 0.

Finally, calculate the observed test statistic

Aobs =
1
n2

n∑
j=1

T 2
j
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Some Considerations Bivariate Symmetry Test

Distribution of Test Statistic under H0

In addition to observed (r1, . . . , rn), there are 2n−1 other possibilities.
ri can be 0 or 1, so there are 2n total configurations
Each configuration is equally likely under H0

Let A(1) ≤ A(2) ≤ · · · ≤ A(2n) denote the 2n values of the test statistic.
Need to form all possible A(k) values for make null distribution
Note that dij is same for all A(k) values (by definition of dij )
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Some Considerations Bivariate Symmetry Test

Hypothesis Testing

Two-Sided Test:
H0 : F is exchangeable versus H1 : F is not exchangeable
Reject H0 if Aobs > A(m) where m = 2n − b2nαc

If you are unlucky and Aobs = A(m), use a randomized decision.
Reject H0 with probability q = 2nα−M1

M2

M1 =
∑2n

k=1 1{A(k)>A(m)} is the # of A(k) values greater than A(m)

M2 =
∑2n

k=1 1{A(k)=A(m)} is the # of A(k) values equal to A(m)
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Some Considerations Bivariate Symmetry Test

Example 3.1: Exchangeability Test

> pre = c(1.83,0.50,1.62,2.48,1.68,1.88,1.55,3.06,1.30)
> post = c(0.878,0.647,0.598,2.050,1.060,1.290,1.060,3.140,1.290)
> require(NSM3)
> HollBivSym(pre,post)
[1] 0.6666667
> set.seed(1)
> pHollBivSym(pre,post)
Number of X values: 9 Number of Y values: 9
Hollander A Statistic: 0.6667
Monte Carlo (Using 10000 Iterations) upper-tail probability: 0.0321
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