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Model Selection

Model Selection
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Model Selection Overview of Problem

The Problem: Which Variables??

The problem of model selection asks the question: which variables
should be included in a multiple regression model?

We do not want to include too many predictors.
Problem of over-fitting data
Solution may not cross-validate

We do not want to include too few predictors.
Miss important relationships in data
Misinterpret relationships in data
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Model Selection Overview of Problem

All Possible Models

We need to consider ALL possible models that could be formed.

If we have p predictors, then (according to binomial theorem) there are

p∑
j=1

(
p
j

)
= 2p

possible models we could choose.
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Model Selection Overview of Problem

Model Selection Strategies

We can use different statistical model selection strategies to choose
which predictors to include.

There are a variety of strategies we can use:
p value based methods (not so good)
Adjusted R2 (better)
Information criteria (best)
Prediction/cross-validation (best)
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Model Selection p Value Model Selection

Overview of p Value Model Selection

p value model selection strategies choose which terms to include
based on the significance of the terms (i.e., p-values of F tests).

There are three popular p-value based selection strategies:
Backwards elimination
Forward selection
Stepwise selection

There is no guarantee that these selection strategies will produce a
reasonable (or the same) model!
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Model Selection p Value Model Selection

Backwards Elimination Algorithm

Given a threshold α∗, backwards elimination algorithm is:
1 Begin with all possible predictors in model
2 Remove predictor with largest p-value above α∗

3 Refit and repeat step 2 until all p-values below α∗

Note that α∗ doesn’t have to be the magical 0.05; typically set α∗ larger
(e.g., 0.10 or 0.15) if ultimately interested in prediction.

Do not want to miss important predictors
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Model Selection p Value Model Selection

Forward Selection Algorithm

Given a threshold α∗, forward selection algorithm is:
1 Begin with no predictors in model
2 Add predictor with smallest p-value below α∗

3 Refit and repeat step 2 until no new p-values below α∗

Note that α∗ doesn’t have to be the magical 0.05; typically set α∗ larger
(e.g., 0.10 or 0.15) if ultimately interested in prediction.

Do not want to miss important predictors
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Model Selection p Value Model Selection

Stepwise Selection Algorithm

Given thresholds α∗F and α∗B, stepwise selection algorithm is:
1 Begin with no predictors in model
2 Forward step: add predictor with smallest p-value below α∗F
3 Backward step: remove predictor with largest p-value above α∗B
4 Repeat steps 2–3 until convergence (or max steps reached)

Note that α∗F and α∗B do not have to be the magical 0.05; typically set
α∗ larger (e.g., 0.10 or 0.15) if ultimately interested in prediction.

α∗F and α∗B do not have to be equal
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Model Selection Adjusted R2

Coefficient of Multiple Determination (revisited)

Consider the MLR model yi = b0 +
∑p

j=1 bjxij + ei with ei
iid∼ N(0, σ2).

Remember: the coefficient of multiple determination is defined as

R2 =
SSR
SST

= 1− SSE
SST

and gives the amount of variation in yi that is explained by the linear
relationships with xi1, . . . , xip.
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Model Selection Adjusted R2

Adjusted R2 (revisited)

Including more predictors in a MLR model can artificially inflate R2:
Capitalizing on spurious effects present in noisy data
Phenomenon of over-fitting the data

The adjusted R2 is a relative measure of fit:

R2
a = 1− SSE/dfE

SST/dfT

= 1− σ̂2

s2
Y

where s2
Y =

∑n
i=1(yi−ȳ)2

n−1 is the sample estimate of the variance of Y .
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Model Selection Adjusted R2

Adjusted R2 for Model Selection

If p is not too large, could calculate R2
a for all 2p possible models.

Pick model with largest R2
a .

Implemented in leaps function (leaps package).
Branch-and-bound search through all possible subsets
Use method="adjr2" option to select via adjusted R2
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Model Selection Information Criteria

Likelihood Function (revisited)

Remember that (y|X) ∼ N(Xb, σ2In), which implies that y has pdf

f (y|X,b, σ2) = (2π)−n/2(σ2)−n/2e−
1

2σ2 (y−Xb)′(y−Xb)

As a result, the log-likelihood of (b, σ2) given (y,X) is

ln{L(b, σ2|y,X)} = −n
2

ln(2π)− n
2

ln(σ2)− 1
2σ2 (y− Xb)′(y− Xb)
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Model Selection Information Criteria

Maximized Likelihood Functions

Remember that the MLEs of b and σ2 are

b̂ = (X′X)−1X′y

σ̃2 = SSE/n

where SSE = (y− Xb̂)′(y− Xb̂) is the sum-of-squared errors.

As a result, the maximized log-likelihood of (b, σ2) given (y,X) is

ln{L(b̂, σ̃2|y,X)} = −n
2

ln(2π)− n
2

ln(σ̃2)− 1
2σ̃2 (y− Xb̂)′(y− Xb̂)

= −n
2

ln(2π)− n
2

ln(σ̃2)− n
2
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Model Selection Information Criteria

Likelihoods and Information Criteria

Information criteria define model fit using maximized likelihoods that
are penalized according to model complexity.

Defining L̂ = ln{L(b̂, σ̃2|y,X)}, Akaike’s (1974) AIC is defined as

AIC = −2L̂+ 2k

where k is number of parameters; note that AIC stands for An
Information Criterion, but people typically refer to it as Akaike’s.

The Bayesian Information Criterion (BIC; Schwarz, 1978) is

BIC = −2L̂+ ln(n)k
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Model Selection Information Criteria

Information Criteria in Regression

Using the definition L̂ = −n
2 ln(2π)− n

2 ln(σ̃2)− n
2 , we have that

AIC = n + n ln(2π) + n ln(σ̃2) + 2k

BIC = n + n ln(2π) + n ln(σ̃2) + ln(n)k

where k = p + 1 is the number of columns of the model design matrix.

In some cases the constant n + n ln(2π) is dropped, such as

AIC∗ = n ln(σ̃2) + 2k

BIC∗ = n ln(σ̃2) + ln(n)k
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Model Selection Information Criteria

Information Criteria and Model Selection

AIC and BIC are theoretical optimal criteria for model selection.
Smaller AIC (or BIC) means better model.
AIC < BIC whenever n ≥ 8 =⇒ AIC tends to pick larger models

AIC is optimal model selection criterion if trying to find model that best
describes data among possible candidate models

True model is unknown and not one of candidate models

BIC is optimal model selection criterion if trying to find true model
among possible candidate models

True model is one of candidate models
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Model Selection Information Criteria

AIC and BIC Model Selection in R

You can perform AIC and BIC model selection using step function.

Default is stepwise AIC selection (direction="both" and k=2)

Use direction="backward" or direction="forward" to
change selection algorithm
Set k=log(n) to perform BIC selection
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Model Selection Prediction Based Methods

Prediction and Model Selection

If we are ultimately interested in prediction, we can use prediction-
based criteria to select our model.

Idea: minimize prediction SSE (instead of SSE for given data).

Most implementations do exhaustive (or branch-and-bound) searches,
but you could use these criterion in a stepwise fashion too.
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Model Selection Prediction Based Methods

Mallow’s Cp

Consider the model y = Xb + e where X is n ×m and e ∼ N(0, σ2I).

If we want to estimate the mean-squared prediction error (MSPE)

1
σ2

n∑
i=1

E
{

[ŷi − E(yi |xi)]2
}

we can use Mallow’s (1973) Cp

Cp =
SSEp

σ̂2 − n + 2p

where
SSEp is the SSE with p < m columns of X used in fit
σ̂2 = SSE/(n −m) is the MSE of full model
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Model Selection Prediction Based Methods

Mallow’s Cp in R

Implemented in leaps function (leaps package).
Branch-and-bound search through all possible subsets
Use default method="Cp" option to select via Mallow’s Cp

We could also use the drop1 and add1 functions
These functions drop/add one predictor to a model
If sumF=summary(Fmod) where Fmod is the full model, then use
the input scale=sumF$sigma^2 to get Mallow’s Cp
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Model Selection Prediction Based Methods

Predicted Residual Sum-of-Squares (PRESS)

The Predicted Residual Sum-of-Squares (PRESS) statistic is

PRESS =
n∑

i=1

(
yi − ŷ[−i]

)2
=

n∑
i=1

(
êi

1− hii

)2

where
ŷ[−i] = xi b̂[−i] and b̂[−i] is estimate of b without i-th observation
êi is i-th estimated residual from full model
hii is i-th leverage score from full model
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Model Selection Prediction Based Methods

PRESS Statistic in R

getpress <- function(ix,y,x){
if(any(ix)){
linmod=lm(y~.,data=as.data.frame(x[,ix]))

} else {
linmod=lm(y~1)

}
sum((linmod$residuals/(1-hatvalues(linmod)))^2)

}

presslm <- function(x,y){
x=as.data.frame(x)
np=ncol(x)
xlist=vector("list",np)
for(j in 1:np){xlist[[j]]=c(TRUE,FALSE)}
xall=expand.grid(xlist)
allpress=apply(xall,1,getpress,y=y,x=x)
list(which=as.matrix(xall),press=allpress)

}
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Model Selection Example: States Facts

R State Facts Data

The state.x77 matrix contains 8 variables (columns) collected from
the 50 states (rows) during the early-to-mid 1970s

Population: estimate of state population (1975)
Income: per capita income (1974)
Illiteracy: percent illiterate (1970)
Life Exp: life expectancy (1969–1971)
Murder: murder rate per 100,000 people (1976)
HS.Grad: percent high-school graduates (1970)
Frost: mean number of days with minimum temperature below
freezing (1931–1960)
Area: land area in square miles
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Model Selection Example: States Facts

Look at State Facts Data

> states = data.frame(state.x77, row.names=state.abb)
> states[1:15,]

Population Income Illiteracy Life.Exp Murder HS.Grad Frost Area
AL 3615 3624 2.1 69.05 15.1 41.3 20 50708
AK 365 6315 1.5 69.31 11.3 66.7 152 566432
AZ 2212 4530 1.8 70.55 7.8 58.1 15 113417
AR 2110 3378 1.9 70.66 10.1 39.9 65 51945
CA 21198 5114 1.1 71.71 10.3 62.6 20 156361
CO 2541 4884 0.7 72.06 6.8 63.9 166 103766
CT 3100 5348 1.1 72.48 3.1 56.0 139 4862
DE 579 4809 0.9 70.06 6.2 54.6 103 1982
FL 8277 4815 1.3 70.66 10.7 52.6 11 54090
GA 4931 4091 2.0 68.54 13.9 40.6 60 58073
HI 868 4963 1.9 73.60 6.2 61.9 0 6425
ID 813 4119 0.6 71.87 5.3 59.5 126 82677
IL 11197 5107 0.9 70.14 10.3 52.6 127 55748
IN 5313 4458 0.7 70.88 7.1 52.9 122 36097
IA 2861 4628 0.5 72.56 2.3 59.0 140 55941
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Model Selection Example: States Facts

State Data: Full Model

> fullmod = lm(Murder ~ . , data=states)
> summary(fullmod) # I deleted some output

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.222e+02 1.789e+01 6.831 2.54e-08 ***
Population 1.880e-04 6.474e-05 2.905 0.00584 **
Income -1.592e-04 5.725e-04 -0.278 0.78232
Illiteracy 1.373e+00 8.322e-01 1.650 0.10641
Life.Exp -1.655e+00 2.562e-01 -6.459 8.68e-08 ***
HS.Grad 3.234e-02 5.725e-02 0.565 0.57519
Frost -1.288e-02 7.392e-03 -1.743 0.08867 .
Area 5.967e-06 3.801e-06 1.570 0.12391
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.746 on 42 degrees of freedom
Multiple R-squared: 0.8083, Adjusted R-squared: 0.7763
F-statistic: 25.29 on 7 and 42 DF, p-value: 3.872e-13
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Model Selection Example: States Facts

State Data: Adjusted R2 Selection
> X = states[,-5]
> arsqmod = leaps(x=X, y=states$Murder, method="adjr2")
> widx = which.max(arsqmod$adjr2)
> xidx = (1:ncol(X))[arsqmod$which[widx,]]
> Xin = data.frame(X[,xidx])
> arsqmod = lm(states$Murder ~ . , data=Xin)
> summary(arsqmod) # I deleted some output

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.202e+02 1.718e+01 6.994 1.17e-08 ***
Population 1.780e-04 5.930e-05 3.001 0.00442 **
Illiteracy 1.173e+00 6.801e-01 1.725 0.09161 .
Life.Exp -1.608e+00 2.324e-01 -6.919 1.50e-08 ***
Frost -1.373e-02 7.080e-03 -1.939 0.05888 .
Area 6.804e-06 2.919e-06 2.331 0.02439 *

---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.712 on 44 degrees of freedom
Multiple R-squared: 0.8068, Adjusted R-squared: 0.7848
F-statistic: 36.74 on 5 and 44 DF, p-value: 1.221e-14
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Model Selection Example: States Facts

State Data: Stepwise AIC Selection

> smod = lm(states$Murder ~ . , data=states)
> aicmod = step(smod, trace=0)
> summary(aicmod) # I deleted some output

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.202e+02 1.718e+01 6.994 1.17e-08 ***
Population 1.780e-04 5.930e-05 3.001 0.00442 **
Illiteracy 1.173e+00 6.801e-01 1.725 0.09161 .
Life.Exp -1.608e+00 2.324e-01 -6.919 1.50e-08 ***
Frost -1.373e-02 7.080e-03 -1.939 0.05888 .
Area 6.804e-06 2.919e-06 2.331 0.02439 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.712 on 44 degrees of freedom
Multiple R-squared: 0.8068, Adjusted R-squared: 0.7848
F-statistic: 36.74 on 5 and 44 DF, p-value: 1.221e-14
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Model Selection Example: States Facts

State Data: Stepwise BIC Selection

> smod = lm(states$Murder ~ . , data=states)
> bicmod = step(smod, k=log(50), trace=0)
> summary(bicmod) # I deleted some output

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.387e+02 1.369e+01 10.136 3.40e-13 ***
Population 1.581e-04 5.944e-05 2.660 0.010778 *
Life.Exp -1.837e+00 1.946e-01 -9.442 3.04e-12 ***
Frost -2.204e-02 5.299e-03 -4.160 0.000141 ***
Area 7.387e-06 2.962e-06 2.494 0.016374 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.75 on 45 degrees of freedom
Multiple R-squared: 0.7937, Adjusted R-squared: 0.7754
F-statistic: 43.28 on 4 and 45 DF, p-value: 7.106e-15
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Model Selection Example: States Facts

State Data: Mallow’s Cp Selection

> X = states[,-5]
> cpmod = leaps(x=X, y=states$Murder, method="Cp")
> widx = which.min(cpmod$Cp)
> xidx = (1:ncol(X))[cpmod$which[widx,]]
> Xin = data.frame(X[,xidx])
> cpmod = lm(states$Murder ~ . , data=Xin)
> summary(cpmod) # I deleted some output

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.202e+02 1.718e+01 6.994 1.17e-08 ***
Population 1.780e-04 5.930e-05 3.001 0.00442 **
Illiteracy 1.173e+00 6.801e-01 1.725 0.09161 .
Life.Exp -1.608e+00 2.324e-01 -6.919 1.50e-08 ***
Frost -1.373e-02 7.080e-03 -1.939 0.05888 .
Area 6.804e-06 2.919e-06 2.331 0.02439 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.712 on 44 degrees of freedom
Multiple R-squared: 0.8068, Adjusted R-squared: 0.7848
F-statistic: 36.74 on 5 and 44 DF, p-value: 1.221e-14
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Model Selection Example: States Facts

State Data: PRESS Selection

> X = states[,-5]
> prmod = presslm(x=X, y=states$Murder)
> widx = which.min(prmod$press)
> xidx = (1:ncol(X))[prmod$which[widx,]]
> Xin = as.data.frame(X[,xidx])
> prmod = lm(states$Murder ~ . , data=Xin)
> summary(prmod) # I deleted some output

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.259e+02 1.777e+01 7.083 8.64e-09 ***
Population 1.946e-04 6.078e-05 3.202 0.00254 **
Illiteracy 1.912e+00 7.620e-01 2.509 0.01587 *
Life.Exp -1.757e+00 2.491e-01 -7.053 9.57e-09 ***
HS.Grad 7.626e-02 4.369e-02 1.746 0.08786 .
Frost -1.011e-02 7.199e-03 -1.404 0.16719
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.755 on 44 degrees of freedom
Multiple R-squared: 0.797, Adjusted R-squared: 0.7739
F-statistic: 34.54 on 5 and 44 DF, p-value: 3.565e-14
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Model Selection Example: States Facts

State Data: Summary of Results

> xnames = colnames(states)[-5]
> xtab = matrix(0,5,7)
> rownames(xtab) = c("Ra^2","AIC","BIC","Cp","PRESS")
> colnames(xtab) = xnames
> xlist = list(arsqmod, aicmod, bicmod, cpmod, prmod)
> for(j in 1:5){
+ ix = match(names(attr(xlist[[j]]$terms,"dataClasses"))[-1],xnames)
+ xtab[j,ix] = 1
+ }
> xtab

Population Income Illiteracy Life.Exp HS.Grad Frost Area
Ra^2 1 0 1 1 0 1 1
AIC 1 0 1 1 0 1 1
BIC 1 0 0 1 0 1 1
Cp 1 0 1 1 0 1 1
PRESS 1 0 1 1 1 1 0
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Model Diagnostics

Model Diagnostics
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Model Diagnostics Normality Assumption

Visualizing Non-Normality

Two visualizations (plots) useful for examining normality:
QQ-plot: plots empirical (estimated) quantiles against theoretical
normal quantiles
Histogram: plots empirical (estimated) distribution of data

It is often helpful to add references lines to the plots:
QQ-plot: add 45◦ line and/or qq-line (i.e., quantile-quantile line)
Histogram: add empirical density for MLE normal
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Model Diagnostics Normality Assumption

Testing for Non-Normality

QQ-plots and histograms provide nice visualizations, but are not formal
tests of whether X follows a normal distribution.

To formally test the normality assumption, we could use the
Shapiro-Wilk normality test.

Test is H0 : Y ∼ N(µ, σ2) versus H1 : Y 6∼ N(µ, σ2)

Reject H0 if observed W is too small
Implemented in the shapiro.test function in R
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Model Diagnostics Normality Assumption

Solutions for Non-Normality

Many possible solutions to deal with non-normality in regression:
Bootstrap to get SE estimates for regression coefficients
Least-squares with rank transformed data (see below reference)
Use generalized linear model (if data is exponential family)
Nonparametric regression

Conover, W. J., & Iman, R. L. (1981). Rank transformations as a bridge between
parametric and nonparametric statistics. The American Statistician, 35, 124–129.
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Model Diagnostics Linearity Assumption

Visualizing Non-Linearity

To visualize the linearity assumption, plot ŷi versus êi :
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ê

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

3.0 3.2 3.4 3.6 3.8 4.0 4.2

−
2

−
1

0
1

2

Cubic Association

ŷ
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ê

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5.6 5.8 6.0 6.2

−
4

−
2

0
2

4

Sinusodial Association

ŷ
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Model Diagnostics Linearity Assumption

Testing for Non-Linearity

Box-Cox transformation:
Finds optimal power transformation of yi for MLR model
Test significance of power transformation coefficient λ

Polynomial regression:
Refit model with polynomial terms
Test significance of higher order effects

Nonparametric regression:
Fit nonparametric regression model
Test significance of non-linear effects
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Model Diagnostics Linearity Assumption

Solutions for Non-Linearity

If you have data with a nonlinear relationship, you could
Transform data to have more linear relationship (e.g., Box-Cox)
Fit polynomial regression model
Fit nonparametric regression model
Use other nonparametric approach (e.g., analyze rank data)
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Model Diagnostics Homogeneity of Variance

Visualizing Non-Constant Error Variance

To visualize the constant variance assumption, plot ŷi versus êi :
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Model Diagnostics Homogeneity of Variance

Testing for Non-Constant Error Variance

Consider the auxiliary model predicting the squared error terms

e2
i = γ0 +

∑p
j=1 γjxij + ẽi

where γ = (γ0, γ1 . . . , γp)′ are the auxiliary coefficients, and
ẽ = (ẽi , . . . , ẽn)′ is the corresponding auxiliary error vector.

To test H0 : V (ei) = σ2 vs. H1 : V (ei) 6= σ2 use Breusch-Pagan test:

χ2
BP = nR̃2

where R̃2 is coefficient of multiple determination from auxiliary model.
As n→∞, we have χ2

BP → χ2
p

Reject H0 if χ2
BP > χ2

p(α)
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Model Diagnostics Homogeneity of Variance

Solutions for Non-Constant Error Variance

If E(e2
i ) = σ2

i , then we have heteroskedasticity.

Weighted Least Squares
Assumes that e ∼ N(0,W−1) with W = diag(1/σ2

1, . . . ,1/σ
2
n)

WLS solution: b̂w = (X̃′X̃)−1X̃′ỹ, where ỹ = W1/2y and X̃ = W1/2X

Sandwich Standard Error Estimates
V(b̂) = σ2(X′X)−1 because we assume e ∼ N(0n, σ

2In)

VS(b̂) = (X′X)−1X′Ê(ee′)X(X′X)−1 is sandwich estimate
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Model Diagnostics Equal Influence

Visualizing Equal Influence in Regression

Remember ê ∼ N(0n, σ
2(In − H))⇐⇒ V(êi) = σ2(1− hii).

hii are the leverage values (diagonals of H)
ŷi =

∑n
j=1 hijyj , so large leverage may have large influence

Rule of thumb: leverages larger than 2h̄ should be looked at more
closely, where h̄ = 1

n
∑n

i=1 hii is the mean leverage.

Plot leverage for each subject (along with 2h̄) to visualize influence.
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Model Diagnostics Equal Influence

Testing for Equal Influence in Regression

To test for unequal influence, we can use Cook’s distance
b̂(i) is OLS estimate of b holding out i-th observation

(ŷ(i) − ŷ)′(ŷ(i) − ŷ) = (b̂(i) − b̂)′X′X(b̂(i) − b̂) where ŷ(i) = Xb̂(i)

Cook’s (1977) distance Di is defined as

Di =
(b̂(i) − b̂)′X′X(b̂(i) − b̂)

(p + 1)σ̂2 =
ê2

i
(p + 1)σ̂2

[
hii

(1 + hii)2

]
∼ Fp+1,n−p−1

Note if Di ≈ F (0.5)
p+1,n−p−1, then holding out i-th observation moves

OLS estimate to edge of 50% confidence region
Typically want b̂(i) to say within 5–10% (or less) region.
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Model Diagnostics Equal Influence

Solutions for Unequal Influence

Many possible solutions to deal with unequal influence:
Rank (or other) transformation of data
IRWLS (rlm function in MASS package)
Regression trees (cv.tree function in tree package)
Minimize L1 norm (lqnorm function in VGAM package)
Quantile regression (rq function in quantreg package)
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Model Diagnostics Multicollinearity

Defining Multicollinearity

Consider the MLR model yi = b0 +
∑p

j=1 bjxij + ei with ei
iid∼ N(0, σ2); if

the xij are highly correlated with one another, we have multicollinearity.

This is a problem because interpretation becomes difficult. . .
bj is expected change in Y holding other predictors constant
If predictors are highly correlated, how do we interpret bj??

Multicollinearity is also a problem for model estimation. . .
If predictors are highly correlated, the inverse (X′X)−1 is unstable
Can not trust the resulting parameter and SE estimates
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Model Diagnostics Multicollinearity

Quantifying Multicollinearity

Pairwise Correlations
Examine correlation matrix or scatterplot matrix
Smaller (in absolute magnitude) correlations are better

Part Correlation
Let X = span{1,X1, . . . ,Xp} and define Dj = X 	 Xj

Part correlation is rY (Xj ·Dj ) =
√

R2
X − R2

Dj
, where R2

X and R2
Dj

denote the R2 with and without Xj

Variance Inflation Factors
Variance inflation factor (VIF) is defined as: (VIF)j = 1

1−R2
j

Note that R2
j is the coefficient of multiple determination for

predicting Xj from remaining predictors
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Model Diagnostics Multicollinearity

Solutions for Multicollinearity

Remove one (or more) predictors
Remove predictors with small part correlations
Remove predictors with large VIFs correlations
If possible, use theory to select most sensible predictors
Otherwise use some model selection strategy
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Model Diagnostics Example

State Data: Normality Assumption

> amod = lm(Murder~Population+Illiteracy+Life.Exp+Frost+Area, data=states)
> shapiro.test(amod$resid)

Shapiro-Wilk normality test

data: amod$resid
W = 0.986, p-value = 0.8116

> par(mfrow=c(1,2))
> qqnorm(amod$resid)
> qqline(amod$resid)
> hist(amod$resid,freq=F)
> xseq=seq(-5,5,length=200)
> lines(xseq,dnorm(xseq,sd=summary(amod)$sigma))
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Model Diagnostics Example

State Data: Normality Assumption (continued)
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Model Diagnostics Example

State Data: Linearity Assumption

> yhat=amod$fit
> ehat=amod$resid
> plot(yhat,ehat,
+ xlab=expression(hat(y)[i]),
+ ylab=expression(hat(e)[i]),
+ main="Residual Plot")
> lines(range(yhat),c(0,0))
> smod=smooth.spline(yhat,ehat)
> lines(smod,col="blue")

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

2 4 6 8 10 12 14

−
3

−
2

−
1

0
1

2
3

Residual Plot

ŷi
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Model Diagnostics Example

State Data: Homogeneity of Variance

BPtest=function(mymod){
mymod$model[,1]=(mymod$resid)^2
newmod=lm(formula(mymod),data=mymod$model)
modsum=summary(newmod)
Rsq=modsum$r.squared
BPstat=Rsq*(dim(mymod$model)[1])
pval=1-pchisq(BPstat,modsum$df[1]-1)
list(BP=BPstat,df=modsum$df[1]-1,pval=pval)

}
> BPtest(amod)
$BP
[1] 6.09788

$df
[1] 5

$pval
[1] 0.296811

Nathaniel E. Helwig (U of Minnesota) Model Selection and Diagnostics Updated 04-Jan-2017 : Slide 54



Model Diagnostics Example

State Data: Equal Influence

cookplot<-function(mymod,k=NULL,alpha=0.1,ptext=TRUE,...){
nx=dim(mymod$model)[1]
np=length(mymod$coef)
cdist=cooks.distance(mymod)
if(is.null(k)){k=qf(alpha,np,nx-np)}
ylim=range(cdist)
if(ylim[1]>k){ylim[1]=k} else if(ylim[2]<k){ylim[2]=k}
if(ptext){
plot(1:nx,cdist,type="n",xlab=expression(italic(i)),ylim=ylim,

ylab=expression(italic(D[i])),main="Cook’s Distance Plot")
text(1:nx,cdist,1:nx)

} else{plot(1:nx,cdist,xlab=expression(italic(i)),ylim=ylim,
ylab=expression(italic(D[i])),main="Cook’s Distance Plot")}

lines(c(1,nx),c(k,k),...)
}
> cookplot(amod)
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Model Diagnostics Example

State Data: Equal Influence (continued)
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> rownames(states)[c(2,11,28)]
[1] "AK" "HI" "NV"

May want to refit model without
Alaska, which is highly influential.
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Model Diagnostics Example

State Data: Multicollinearity

> library(faraway)
> X=model.matrix(amod)[,-1]
> X[1:4,]

Population Illiteracy Life.Exp Frost Area
AL 3615 2.1 69.05 20 50708
AK 365 1.5 69.31 152 566432
AZ 2212 1.8 70.55 15 113417
AR 2110 1.9 70.66 65 51945
> vif(X)
Population Illiteracy Life.Exp Frost Area
1.171232 2.871577 1.625921 2.262943 1.036358

> round(cor(X),3)
Population Illiteracy Life.Exp Frost Area

Population 1.000 0.108 -0.068 -0.332 0.023
Illiteracy 0.108 1.000 -0.588 -0.672 0.077
Life.Exp -0.068 -0.588 1.000 0.262 -0.107
Frost -0.332 -0.672 0.262 1.000 0.059
Area 0.023 0.077 -0.107 0.059 1.000
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