Model Selection and Diagnostics

Nathaniel E. Helwig

Assistant Professor of Psychology and Statistics University of Minnesota (Twin Cities)

Updated 04-Jan-2017

Copyright © 2017 by Nathaniel E. Helwig

Nathaniel E. Helwig (U of Minnesota)

Model Selection and Diagnostics

Updated 04-Jan-2017 : Slide 2

Outline of Notes

- 1) Model Selection:
 - Overview of problem
 - p value methods
 - Adjusted R²
 - Information criteria
 - Prediction based
 - Example

2) Model Diagnostics:

- Normality assumption
- Linearity assumption
- Homogeneity of variance
- Equal influence
- Multicollinearity
- Example

Model Selection

Nathaniel E. Helwig (U of Minnesota)

Model Selection and Diagnostics

Updated 04-Jan-2017 : Slide 4

The Problem: Which Variables??

The problem of model selection asks the question: which variables should be included in a multiple regression model?

We do not want to include too many predictors.

- Problem of over-fitting data
- Solution may not cross-validate

We do not want to include too few predictors.

- Miss important relationships in data
- Misinterpret relationships in data

All Possible Models

We need to consider ALL possible models that could be formed.

If we have *p* predictors, then (according to binomial theorem) there are

$$\sum_{j=1}^{p} \binom{p}{j} = 2^{p}$$

possible models we could choose.

Model Selection Strategies

We can use different statistical model selection strategies to choose which predictors to include.

There are a variety of strategies we can use:

- p value based methods (not so good)
- Adjusted R² (better)
- Information criteria (best)
- Prediction/cross-validation (best)

Overview of *p* Value Model Selection

p value model selection strategies choose which terms to include based on the significance of the terms (i.e., p-values of *F* tests).

There are three popular p-value based selection strategies:

- Backwards elimination
- Forward selection
- Stepwise selection

There is no guarantee that these selection strategies will produce a reasonable (or the same) model!

Backwards Elimination Algorithm

Given a threshold α^* , backwards elimination algorithm is:

- Begin with all possible predictors in model
- 2 Remove predictor with largest p-value above α^*
- **③** Refit and repeat step 2 until all p-values below α^*

Note that α^* doesn't have to be the magical 0.05; typically set α^* larger (e.g., 0.10 or 0.15) if ultimately interested in prediction.

• Do not want to miss important predictors

Forward Selection Algorithm

Given a threshold α^* , forward selection algorithm is:

- Begin with no predictors in model
- 2 Add predictor with smallest p-value below α^*
- **③** Refit and repeat step 2 until no new p-values below α^*

Note that α^* doesn't have to be the magical 0.05; typically set α^* larger (e.g., 0.10 or 0.15) if ultimately interested in prediction.

Do not want to miss important predictors

Stepwise Selection Algorithm

Given thresholds α_F^* and α_B^* , stepwise selection algorithm is:

- Begin with no predictors in model
- 2 Forward step: add predictor with smallest p-value below α_F^*
- **3** Backward step: remove predictor with largest p-value above α_B^*
- Pepeat steps 2–3 until convergence (or max steps reached)

Note that α_F^* and α_B^* do not have to be the magical 0.05; typically set α^* larger (e.g., 0.10 or 0.15) if ultimately interested in prediction.

• α_F^* and α_B^* do not have to be equal

Coefficient of Multiple Determination (revisited)

Consider the MLR model $y_i = b_0 + \sum_{j=1}^{p} b_j x_{ij} + e_i$ with $e_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$.

Remember: the coefficient of multiple determination is defined as

$$R^{2} = \frac{SSR}{SST}$$
$$= 1 - \frac{SSE}{SST}$$

and gives the amount of variation in y_i that is explained by the linear relationships with x_{i1}, \ldots, x_{ip} .

Adjusted R²

Adjusted R^2 (revisited)

Including more predictors in a MLR model can artificially inflate R^2 :

- Capitalizing on spurious effects present in noisy data
- Phenomenon of over-fitting the data

The adjusted R^2 is a relative measure of fit:

$$egin{aligned} R_{ ext{a}}^2 &= 1 - rac{SSE/df_E}{SST/df_T} \ &= 1 - rac{\hat{\sigma}^2}{s_Y^2} \end{aligned}$$

where $s_Y^2 = \frac{\sum_{i=1}^n (y_i - \bar{y})^2}{n-1}$ is the sample estimate of the variance of *Y*.

Adjusted R² for Model Selection

If p is not too large, could calculate R_a^2 for all 2^p possible models.

• Pick model with largest R_a^2 .

Implemented in leaps function (leaps package).

- Branch-and-bound search through all possible subsets
- Use method="adjr2" option to select via adjusted R^2

Likelihood Function (revisited)

Remember that $(\mathbf{y}|\mathbf{X}) \sim N(\mathbf{Xb}, \sigma^2 \mathbf{I}_n)$, which implies that \mathbf{y} has pdf

$$f(\mathbf{y}|\mathbf{X}, \mathbf{b}, \sigma^2) = (2\pi)^{-n/2} (\sigma^2)^{-n/2} e^{-\frac{1}{2\sigma^2} (\mathbf{y} - \mathbf{X}\mathbf{b})' (\mathbf{y} - \mathbf{X}\mathbf{b})}$$

As a result, the log-likelihood of (\mathbf{b}, σ^2) given (\mathbf{y}, \mathbf{X}) is

$$\ln\{L(\mathbf{b},\sigma^2|\mathbf{y},\mathbf{X})\} = -\frac{n}{2}\ln(2\pi) - \frac{n}{2}\ln(\sigma^2) - \frac{1}{2\sigma^2}(\mathbf{y}-\mathbf{X}\mathbf{b})'(\mathbf{y}-\mathbf{X}\mathbf{b})$$

Nathaniel E. Helwig (U of Minnesota)

Maximized Likelihood Functions

Remember that the MLEs of **b** and σ^2 are

$$\hat{\mathbf{b}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

 $ilde{\sigma}^2 = SSE/n$

where $SSE = (\mathbf{y} - \mathbf{X}\hat{\mathbf{b}})'(\mathbf{y} - \mathbf{X}\hat{\mathbf{b}})$ is the sum-of-squared errors.

As a result, the maximized log-likelihood of (\mathbf{b}, σ^2) given (\mathbf{y}, \mathbf{X}) is

$$\ln\{L(\hat{\mathbf{b}}, \tilde{\sigma}^2 | \mathbf{y}, \mathbf{X})\} = -\frac{n}{2}\ln(2\pi) - \frac{n}{2}\ln(\tilde{\sigma}^2) - \frac{1}{2\tilde{\sigma}^2}(\mathbf{y} - \mathbf{X}\hat{\mathbf{b}})'(\mathbf{y} - \mathbf{X}\hat{\mathbf{b}})$$
$$= -\frac{n}{2}\ln(2\pi) - \frac{n}{2}\ln(\tilde{\sigma}^2) - \frac{n}{2}$$

Information Criteria

Likelihoods and Information Criteria

Information criteria define model fit using maximized likelihoods that are penalized according to model complexity.

Defining
$$\hat{\mathcal{L}} = \ln\{L(\hat{\mathbf{b}}, \tilde{\sigma}^2 | \mathbf{y}, \mathbf{X})\}$$
, Akaike's (1974) AIC is defined as
$$AIC = -2\hat{\mathcal{L}} + 2k$$

where k is number of parameters; note that AIC stands for An Information Criterion, but people typically refer to it as Akaike's.

The Bayesian Information Criterion (BIC; Schwarz, 1978) is

$$BIC = -2\hat{\mathcal{L}} + \ln(n)k$$

Nathaniel E. Helwig (U of Minnesota)

Information Criteria in Regression

Using the definition $\hat{\mathcal{L}} = -\frac{n}{2}\ln(2\pi) - \frac{n}{2}\ln(\tilde{\sigma}^2) - \frac{n}{2}$, we have that

$$AIC = n + n\ln(2\pi) + n\ln(\tilde{\sigma}^2) + 2k$$

$$BIC = n + n\ln(2\pi) + n\ln(\tilde{\sigma}^2) + \ln(n)k$$

where k = p + 1 is the number of columns of the model design matrix.

In some cases the constant $n + n \ln(2\pi)$ is dropped, such as

$$AIC^* = n\ln(\tilde{\sigma}^2) + 2k$$

$$BIC^* = n\ln(\tilde{\sigma}^2) + \ln(n)k$$

Nathaniel E. Helwig (U of Minnesota)

Model Selection and Diagnostics

Information Criteria and Model Selection

AIC and BIC are theoretical optimal criteria for model selection.

- Smaller AIC (or BIC) means better model.
- *AIC* < *BIC* whenever $n \ge 8 \implies AIC$ tends to pick larger models

AIC is optimal model selection criterion if trying to find model that best describes data among possible candidate models

• True model is unknown and not one of candidate models

BIC is optimal model selection criterion if trying to find true model among possible candidate models

• True model is one of candidate models

AIC and BIC Model Selection in R

You can perform AIC and BIC model selection using step function.

Default is stepwise AIC selection (direction="both" and k=2)

- Use direction="backward" or direction="forward" to change selection algorithm
- Set k=log(n) to perform BIC selection

Prediction and Model Selection

If we are ultimately interested in prediction, we can use predictionbased criteria to select our model.

Idea: minimize prediction SSE (instead of SSE for given data).

Most implementations do exhaustive (or branch-and-bound) searches, but you could use these criterion in a stepwise fashion too.

Mallow's C_p

Consider the model $\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{e}$ where \mathbf{X} is $n \times m$ and $\mathbf{e} \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$.

If we want to estimate the mean-squared prediction error (MSPE)

$$\frac{1}{\sigma^2}\sum_{i=1}^n E\left\{\left[\hat{y}_i - E(y_i|\mathbf{x}_i)\right]^2\right\}$$

we can use Mallow's (1973) Cp

$$C_p = rac{SSE_p}{\hat{\sigma}^2} - n + 2p$$

where

• SSE_p is the SSE with p < m columns of **X** used in fit

• $\hat{\sigma}^2 = SSE/(n-m)$ is the MSE of full model

Nathaniel E. Helwig (U of Minnesota)

Model Selection and Diagnostics

Mallow's C_p in R

Implemented in leaps function (leaps package).

- Branch-and-bound search through all possible subsets
- Use default method="Cp" option to select via Mallow's Cp

We could also use the drop1 and add1 functions

- These functions drop/add one predictor to a model
- If sumF=summary (Fmod) where Fmod is the full model, then use the input scale=sumF\$sigma^2 to get Mallow's C_p

Predicted Residual Sum-of-Squares (PRESS)

The Predicted Residual Sum-of-Squares (PRESS) statistic is

PRESS =
$$\sum_{i=1}^{n} (y_i - \hat{y}_{[-i]})^2 = \sum_{i=1}^{n} \left(\frac{\hat{e}_i}{1 - h_{ii}}\right)^2$$

where

- $\hat{y}_{[-i]} = \mathbf{x}_i \hat{\mathbf{b}}_{[-i]}$ and $\hat{\mathbf{b}}_{[-i]}$ is estimate of **b** without *i*-th observation
- \hat{e}_i is *i*-th estimated residual from full model
- *h_{ii}* is *i*-th leverage score from full model

Prediction Based Methods

PRESS Statistic in R

```
getpress <- function(ix,y,x) {</pre>
  if(any(ix)){
    linmod=lm(y~.,data=as.data.frame(x[,ix]))
  } else {
    linmod=lm(y~1)
  sum((linmod$residuals/(1-hatvalues(linmod)))^2)
presslm <- function(x,y) {</pre>
  x=as.data.frame(x)
  np=ncol(x)
  xlist=vector("list",np)
  for(j in 1:np) {xlist[[j]]=c(TRUE, FALSE) }
  xall=expand.grid(xlist)
  allpress=apply(xall,1,getpress,y=y,x=x)
  list(which=as.matrix(xall), press=allpress)
}
```

R State Facts Data

The state.x77 matrix contains 8 variables (columns) collected from the 50 states (rows) during the early-to-mid 1970s

- Population: estimate of state population (1975)
- Income: per capita income (1974)
- Illiteracy: percent illiterate (1970)
- Life Exp: life expectancy (1969-1971)
- Murder: murder rate per 100,000 people (1976)
- HS.Grad: percent high-school graduates (1970)
- Frost: mean number of days with minimum temperature below freezing (1931-1960)
- Area: land area in square miles

Example: States Facts

Look at State Facts Data

>	<pre>> states = data.frame(state.x77, row.names=state.abb)</pre>								
>	> states[1:15,]								
	Population	Income	Illiteracy	Life.Exp	Murder	HS.Grad	Frost	Area	
AL	3615	3624	2.1	69.05	15.1	41.3	20	50708	
AK	365	6315	1.5	69.31	11.3	66.7	152	566432	
AZ	2212	4530	1.8	70.55	7.8	58.1	15	113417	
AR	2110	3378	1.9	70.66	10.1	39.9	65	51945	
CA	21198	5114	1.1	71.71	10.3	62.6	20	156361	
CO	2541	4884	0.7	72.06	6.8	63.9	166	103766	
CT	3100	5348	1.1	72.48	3.1	56.0	139	4862	
DE	579	4809	0.9	70.06	6.2	54.6	103	1982	
FL	8277	4815	1.3	70.66	10.7	52.6	11	54090	
GA	4931	4091	2.0	68.54	13.9	40.6	60	58073	
ΗI	868	4963	1.9	73.60	6.2	61.9	0	6425	
ID	813	4119	0.6	71.87	5.3	59.5	126	82677	
IL	11197	5107	0.9	70.14	10.3	52.6	127	55748	
IN	5313	4458	0.7	70.88	7.1	52.9	122	36097	
ΙA	2861	4628	0.5	72.56	2.3	59.0	140	55941	

Nathaniel E. Helwig (U of Minnesota)

State Data: Full Model

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	1.222e+02	1.789e+01	6.831	2.54e-08	* * *
Population	1.880e-04	6.474e-05	2.905	0.00584	* *
Income	-1.592e-04	5.725e-04	-0.278	0.78232	
Illiteracy	1.373e+00	8.322e-01	1.650	0.10641	
Life.Exp	-1.655e+00	2.562e-01	-6.459	8.68e-08	* * *
HS.Grad	3.234e-02	5.725e-02	0.565	0.57519	
Frost	-1.288e-02	7.392e-03	-1.743	0.08867	
Area	5.967e-06	3.801e-06	1.570	0.12391	
Signif. code	es: 0 `***'	0.001 `**'	0.01 `;	×′ 0.05 `.	.′ 0.1 `′
		1 7 4 6	4.0.1		1

Residual standard error: 1.746 on 42 degrees of freedom Multiple R-squared: 0.8083, Adjusted R-squared: 0.7763 F-statistic: 25.29 on 7 and 42 DF, p-value: 3.872e-13

State Data: Adjusted R² Selection

```
> X = states[, -5]
> arsqmod = leaps(x=X, y=states$Murder, method="adjr2")
> widx = which.max(arsqmod$adjr2)
> xidx = (1:ncol(X))[arsqmod$which[widx,]]
> Xin = data.frame(X[,xidx])
> arsomod = lm(states$Murder ~ . , data=Xin)
> summary(arsqmod)  # I deleted some output
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.202e+02 1.718e+01 6.994 1.17e-08 ***
Population 1.780e-04 5.930e-05 3.001 0.00442 **
Illiteracy 1.173e+00 6.801e-01 1.725 0.09161.
Life.Exp -1.608e+00 2.324e-01 -6.919 1.50e-08 ***
Frost -1.373e-02 7.080e-03 -1.939 0.05888.
Area 6.804e-06 2.919e-06 2.331 0.02439 *
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 `' 1
Residual standard error: 1.712 on 44 degrees of freedom
Multiple R-squared: 0.8068, Adjusted R-squared: 0.7848
F-statistic: 36.74 on 5 and 44 DF, p-value: 1.221e-14
```

Nathaniel E. Helwig (U of Minnesota) Model Selection and Diagnostics Updated 04-Jan-2017 : Slide 29

State Data: Stepwise AIC Selection

```
> smod = lm(states$Murder ~ . , data=states)
> aicmod = step(smod, trace=0)
> summary(aicmod)  # I deleted some output
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.202e+02 1.718e+01 6.994 1.17e-08 ***
Population 1.780e-04 5.930e-05 3.001 0.00442 **
Illiteracy 1.173e+00 6.801e-01 1.725 0.09161.
Life.Exp -1.608e+00 2.324e-01 -6.919 1.50e-08 ***
Frost -1.373e-02 7.080e-03 -1.939 0.05888.
Area 6.804e-06 2.919e-06 2.331 0.02439 *
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 `' 1
Residual standard error: 1.712 on 44 degrees of freedom
Multiple R-squared: 0.8068, Adjusted R-squared: 0.7848
```

F-statistic: 36.74 on 5 and 44 DF, p-value: 1.221e-14

State Data: Stepwise BIC Selection

```
> smod = lm(states$Murder ~ . , data=states)
> bicmod = step(smod, k=log(50), trace=0)
> summary(bicmod)  # I deleted some output
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.387e+02 1.369e+01 10.136 3.40e-13 ***
Population 1.581e-04 5.944e-05 2.660 0.010778 *
Life.Exp -1.837e+00 1.946e-01 -9.442 3.04e-12 ***
Frost -2.204e-02 5.299e-03 -4.160 0.000141 ***
Area 7.387e-06 2.962e-06 2.494 0.016374 *
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
```

Residual standard error: 1.75 on 45 degrees of freedom Multiple R-squared: 0.7937, Adjusted R-squared: 0.7754 F-statistic: 43.28 on 4 and 45 DF, p-value: 7.106e-15

State Data: Mallow's C_p Selection

```
> X = states[, -5]
> cpmod = leaps(x=X, y=states$Murder, method="Cp")
> widx = which.min(cpmod$Cp)
> xidx = (1:ncol(X))[cpmod$which[widx,]]
> Xin = data.frame(X[,xidx])
> cpmod = lm(states$Murder ~ . , data=Xin)
> summary(cpmod)  # I deleted some output
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.202e+02 1.718e+01 6.994 1.17e-08 ***
Population 1.780e-04 5.930e-05 3.001 0.00442 **
Illiteracy 1.173e+00 6.801e-01 1.725 0.09161.
Life.Exp -1.608e+00 2.324e-01 -6.919 1.50e-08 ***
Frost -1.373e-02 7.080e-03 -1.939 0.05888.
Area 6.804e-06 2.919e-06 2.331 0.02439 *
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 `' 1
Residual standard error: 1.712 on 44 degrees of freedom
```

Multiple R-squared: 0.8068, Adjusted R-squared: 0.7848 F-statistic: 36.74 on 5 and 44 DF, p-value: 1.221e-14

Nathaniel E. Helwig (U of Minnesota)

Model Selection and Diagnostics

State Data: PRESS Selection

```
> X = states[,-5]
> prmod = presslm(x=X, y=states$Murder)
> widx = which.min(prmod$press)
> xidx = (1:ncol(X))[prmod$which[widx,]]
> Xin = as.data.frame(X[,xidx])
> prmod = lm(states$Murder ~ . , data=Xin)
> summary(prmod)  # I deleted some output
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.259e+02 1.777e+01 7.083 8.64e-09 ***
Population 1.946e-04 6.078e-05 3.202 0.00254 **
Illiteracy 1.912e+00 7.620e-01 2.509 0.01587 *
Life.Exp -1.757e+00 2.491e-01 -7.053 9.57e-09 ***
HS.Grad 7.626e-02 4.369e-02 1.746 0.08786.
Frost -1.011e-02 7.199e-03 -1.404 0.16719
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 `' 1
```

Residual standard error: 1.755 on 44 degrees of freedom Multiple R-squared: 0.797, Adjusted R-squared: 0.7739 F-statistic: 34.54 on 5 and 44 DF, p-value: 3.565e-14

Nathaniel E. Helwig (U of Minnesota)

State Data: Summary of Results

```
> xnames = colnames(states)[-5]
> xtab = matrix (0, 5, 7)
> rownames(xtab) = c("Ra^2", "AIC", "BIC", "Cp", "PRESS")
> colnames(xtab) = xnames
> xlist = list(arsqmod, aicmod, bicmod, cpmod, prmod)
> for(i in 1:5) {
      ix = match(names(attr(xlist[[j]]$terms,"dataClasses"))[-1],xnames)
+
      xtab[i,ix] = 1
+
+ }
> xtab
      Population Income Illiteracy Life.Exp HS.Grad Frost Area
Ra^2
ATC
               1
                                                        1 1
BIC
Ср
                                                  0 1 1
                                                   1
                                                        1
```

Model Diagnostics

Nathaniel E. Helwig (U of Minnesota)

Model Selection and Diagnostics

Updated 04-Jan-2017 : Slide 35

Visualizing Non-Normality

Two visualizations (plots) useful for examining normality:

- QQ-plot: plots empirical (estimated) quantiles against theoretical normal quantiles
- Histogram: plots empirical (estimated) distribution of data

It is often helpful to add references lines to the plots:

- QQ-plot: add 45° line and/or qq-line (i.e., quantile-quantile line)
- Histogram: add empirical density for MLE normal

Testing for Non-Normality

QQ-plots and histograms provide nice visualizations, but are not formal tests of whether X follows a normal distribution.

To formally test the normality assumption, we could use the Shapiro-Wilk normality test.

- Test is H_0 : $Y \sim N(\mu, \sigma^2)$ versus H_1 : $Y \not\sim N(\mu, \sigma^2)$
- Reject H₀ if observed W is too small
- Implemented in the shapiro.test function in R

Solutions for Non-Normality

Many possible solutions to deal with non-normality in regression:

- Bootstrap to get SE estimates for regression coefficients
- Least-squares with rank transformed data (see below reference)
- Use generalized linear model (if data is exponential family)
- Nonparametric regression

Conover, W. J., & Iman, R. L. (1981). Rank transformations as a bridge between parametric and nonparametric statistics. *The American Statistician, 35*, 124–129.

Linearity Assumption

Visualizing Non-Linearity

To visualize the linearity assumption, plot \hat{y}_i versus \hat{e}_i :

Nathaniel E. Helwig (U of Minnesota)

Model Selection and Diagnostics

Updated 04-Jan-2017 : Slide 39

Linearity Assumption

Testing for Non-Linearity

Box-Cox transformation:

- Finds optimal power transformation of y_i for MLR model
- Test significance of power transformation coefficient λ

Polynomial regression:

- Refit model with polynomial terms
- Test significance of higher order effects

Nonparametric regression:

- Fit nonparametric regression model
- Test significance of non-linear effects

Solutions for Non-Linearity

If you have data with a nonlinear relationship, you could

- Transform data to have more linear relationship (e.g., Box-Cox)
- Fit polynomial regression model
- Fit nonparametric regression model
- Use other nonparametric approach (e.g., analyze rank data)

Visualizing Non-Constant Error Variance

To visualize the constant variance assumption, plot \hat{y}_i versus \hat{e}_i :

Nathaniel E. Helwig (U of Minnesota)

Model Selection and Diagnostics

Updated 04-Jan-2017 : Slide 42

Testing for Non-Constant Error Variance

Consider the auxiliary model predicting the squared error terms

$$e_i^2 = \gamma_0 + \sum_{j=1}^p \gamma_j x_{ij} + \tilde{e}_i$$

where $\gamma = (\gamma_0, \gamma_1 \dots, \gamma_p)'$ are the auxiliary coefficients, and $\tilde{\mathbf{e}} = (\tilde{e}_i, \dots, \tilde{e}_n)'$ is the corresponding auxiliary error vector.

To test
$$H_0$$
: $V(e_i) = \sigma^2$ vs. H_1 : $V(e_i) \neq \sigma^2$ use Breusch-Pagan test:
 $\chi^2_{BP} = n\tilde{R}^2$

where \tilde{R}^2 is coefficient of multiple determination from auxiliary model.

• As
$$n \to \infty$$
, we have $\chi^2_{BP} \to \chi^2_p$

• Reject
$$H_0$$
 if $\chi^2_{BP} > \chi^2_{p(\alpha)}$

Solutions for Non-Constant Error Variance

If $E(e_i^2) = \sigma_i^2$, then we have heteroskedasticity.

Weighted Least Squares

- Assumes that $\mathbf{e} \sim N(\mathbf{0}, \mathbf{W}^{-1})$ with $\mathbf{W} = \text{diag}(1/\sigma_1^2, \dots, 1/\sigma_n^2)$
- WLS solution: $\hat{b}_w = (\tilde{X}'\tilde{X})^{-1}\tilde{X}'\tilde{y}$, where $\tilde{y} = W^{1/2}y$ and $\tilde{X} = W^{1/2}X$

Sandwich Standard Error Estimates

- $V(\hat{\mathbf{b}}) = \sigma^2 (\mathbf{X}' \mathbf{X})^{-1}$ because we assume $\mathbf{e} \sim N(\mathbf{0}_n, \sigma^2 \mathbf{I}_n)$
- $V_{\mathcal{S}}(\hat{\mathbf{b}}) = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\hat{E}(\mathbf{ee}')\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}$ is sandwich estimate

Visualizing Equal Influence in Regression

Remember $\hat{\mathbf{e}} \sim N(\mathbf{0}_n, \sigma^2(\mathbf{I}_n - \mathbf{H})) \iff V(\hat{\mathbf{e}}_i) = \sigma^2(1 - h_{ii}).$

- *h_{ii}* are the leverage values (diagonals of **H**)
- $\hat{y}_i = \sum_{j=1}^n h_{ij} y_j$, so large leverage may have large influence

Rule of thumb: leverages larger than $2\bar{h}$ should be looked at more closely, where $\bar{h} = \frac{1}{n} \sum_{i=1}^{n} h_{ii}$ is the mean leverage.

Plot leverage for each subject (along with $2\bar{h}$) to visualize influence.

Testing for Equal Influence in Regression

To test for unequal influence, we can use Cook's distance

• $\hat{\mathbf{b}}_{(i)}$ is OLS estimate of **b** holding out *i*-th observation

•
$$(\hat{\mathbf{y}}_{(i)} - \hat{\mathbf{y}})'(\hat{\mathbf{y}}_{(i)} - \hat{\mathbf{y}}) = (\hat{\mathbf{b}}_{(i)} - \hat{\mathbf{b}})'\mathbf{X}'\mathbf{X}(\hat{\mathbf{b}}_{(i)} - \hat{\mathbf{b}})$$
 where $\hat{\mathbf{y}}_{(i)} = \mathbf{X}\hat{\mathbf{b}}_{(i)}$

Cook's (1977) distance D_i is defined as

$$D_{i} = \frac{(\hat{\mathbf{b}}_{(i)} - \hat{\mathbf{b}})' \mathbf{X}' \mathbf{X} (\hat{\mathbf{b}}_{(i)} - \hat{\mathbf{b}})}{(p+1)\hat{\sigma}^{2}} = \frac{\hat{e}_{i}^{2}}{(p+1)\hat{\sigma}^{2}} \left[\frac{h_{ii}}{(1+h_{ii})^{2}} \right] \sim F_{p+1,n-p-1}$$

- Note if D_i ≈ F^(0.5)_{p+1,n-p-1}, then holding out *i*-th observation moves OLS estimate to edge of 50% confidence region
- Typically want $\hat{\mathbf{b}}_{(i)}$ to say within 5–10% (or less) region.

Solutions for Unequal Influence

Many possible solutions to deal with unequal influence:

- Rank (or other) transformation of data
- IRWLS (rlm function in MASS package)
- Regression trees (cv.tree function in tree package)
- Minimize L₁ norm (lqnorm function in VGAM package)
- Quantile regression (rq function in quantreg package)

Defining Multicollinearity

Consider the MLR model $y_i = b_0 + \sum_{j=1}^p b_j x_{ij} + e_i$ with $e_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$; if the x_{ij} are highly correlated with one another, we have multicollinearity.

This is a problem because interpretation becomes difficult...

- b_j is expected change in Y holding other predictors constant
- If predictors are highly correlated, how do we interpret b_i??

Multicollinearity is also a problem for model estimation...

- If predictors are highly correlated, the inverse $(\mathbf{X}'\mathbf{X})^{-1}$ is unstable
- Can not trust the resulting parameter and SE estimates

Quantifying Multicollinearity

Pairwise Correlations

- Examine correlation matrix or scatterplot matrix
- Smaller (in absolute magnitude) correlations are better

Part Correlation

- Let $\mathcal{X} = \operatorname{span}\{1, X_1, \dots, X_p\}$ and define $\mathcal{D}_j = \mathcal{X} \ominus \mathcal{X}_j$
- Part correlation is $r_{Y(X_j \cdot D_j)} = \sqrt{R_X^2 R_{D_j}^2}$, where R_X^2 and $R_{D_j}^2$ denote the R^2 with and without X_j

Variance Inflation Factors

- Variance inflation factor (VIF) is defined as: $(VIF)_j = \frac{1}{1-R_{\perp}^2}$
- Note that R_j² is the coefficient of multiple determination for predicting X_j from remaining predictors

Nathaniel E. Helwig (U of Minnesota)

Model Selection and Diagnostics

Solutions for Multicollinearity

Remove one (or more) predictors

- Remove predictors with small part correlations
- Remove predictors with large VIFs correlations
- If possible, use theory to select most sensible predictors
- Otherwise use some model selection strategy

State Data: Normality Assumption

> amod = lm(Murder~Population+Illiteracy+Life.Exp+Frost+Area, data=states)
> shapiro.test(amod\$resid)

```
> Shapito.cese (amoaviesia)
```

```
Shapiro-Wilk normality test
```

```
data: amod$resid
W = 0.986, p-value = 0.8116
```

```
> par(mfrow=c(1,2))
```

- > qqnorm(amod\$resid)
- > qqline(amod\$resid)
- > hist(amod\$resid,freq=F)
- > xseq=seq(-5, 5, length=200)
- > lines(xseq, dnorm(xseq, sd=summary(amod)\$sigma))

Example

State Data: Normality Assumption (continued)

State Data: Linearity Assumption

- > yhat=amod\$fit
- > ehat=amod\$resid
- > plot(yhat,ehat,
- + xlab=expression(hat(y)[i]),
- + ylab=expression(hat(e)[i]),
- + main="Residual Plot")
- > lines(range(yhat),c(0,0))
- > smod=smooth.spline(yhat,ehat)
- > lines(smod,col="blue")

Residual Plot

State Data: Homogeneity of Variance

```
BPtest=function(mymod) {
  mymod$model[,1] = (mymod$resid) ^2
  newmod=lm(formula(mymod), data=mymod$model)
  modsum=summary (newmod)
  Rsq=modsum$r.squared
  BPstat=Rsq*(dim(mymod$model)[1])
  pval=1-pchisq(BPstat,modsum$df[1]-1)
  list(BP=BPstat,df=modsum$df[1]-1,pval=pval)
> BPtest (amod)
[1] 6.09788
Śdf
[1] 5
$pval
[1] 0.296811
```

Nathaniel E. Helwig (U of Minnesota)

State Data: Equal Influence

```
cookplot<-function(mymod, k=NULL, alpha=0.1, ptext=TRUE, ...) {</pre>
  nx=dim(mvmod$model)[1]
  np=length(mymod$coef)
  cdist=cooks.distance(mvmod)
  if(is.null(k)) {k=qf(alpha,np,nx-np)}
  vlim=range(cdist)
  if(v\lim[1]>k) \{v\lim[1]=k\} else if(v\lim[2]<k) \{v\lim[2]=k\}
  if(ptext){
    plot(1:nx,cdist,type="n",xlab=expression(italic(i)),ylim=ylim,
         vlab=expression(italic(D[i])),main="Cook's Distance Plot")
    text(1:nx,cdist,1:nx)
  } else{plot(1:nx,cdist,xlab=expression(italic(i)),ylim=ylim,
              vlab=expression(italic(D[i])),main="Cook's Distance Plot")}
  lines(c(1,nx),c(k,k),...)
 cookplot (amod)
>
```

Example

State Data: Equal Influence (continued)

Cook's Distance Plot

> rownames(states)[c(2,11,28)]
[1] "AK" "HI" "NV"

May want to refit model without Alaska, which is highly influential.

State Data: Multicollinearity

> library	> library(faraway)							
<pre>> X=model.matrix(amod)[,-1]</pre>								
> X[1:4,]								
Populat	tion Illiter	acy Lif	e.Exp	Frost	Area			
AL 3	3615	2.1	69.05	20	50708			
AK	365	1.5	69.31	152	566432			
AZ 2	2212	1.8	70.55	15	113417			
AR 2	2110	1.9	70.66	65	51945			
> vif(X)								
Population	n Illiteracy	Life	e.Exp	Fr	ost	Area		
1.171232	2.871577	1.62	5921	2.262	943 1	.036358		
<pre>> round(cor(X),3)</pre>								
	Population	Illite	eracy i	Life.Ex	p Fros	st Area		
Population	n 1.000	C	.108	-0.06	8 -0.33	0.023		
Illiteracy	0.108	1	.000	-0.58	8 -0.67	2 0.077		
Life.Exp	-0.068	- (.588	1.00	0 0.26	52 -0.107		
Frost	-0.332	- (.672	0.26	2 1.00	0.059		
Area	0.023	C	.077	-0.10	7 0.05	9 1.000		

Nathaniel E. Helwig (U of Minnesota)