Introduction to Linear Algebra

Nathaniel E. Helwig

Assistant Professor of Psychology and Statistics University of Minnesota (Twin Cities)

Updated 04-Jan-2017

Copyright

Copyright © 2017 by Nathaniel E. Helwig

Outline of Notes

1) Basic Definitions:

- Vector and matrix
- Transpose and trace
- Symmetric and diagonal
- Special matrices

2) Basic Calculations:

- Matrix equality
- Addition/Subtraction
- Vector products
- Matrix products

3) Matrix Decompositions:

- Eigenvalue (Spectral)
- Cholesky
- Singular Value
- QR

4) Miscellaneous Topics:

- Definiteness
- Determinants
- Inverses/singularity
- R code

Basic Definitions

Vectors and Matrices

A vector is a one-dimensional array: $\mathbf{a}=\left(\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right)_{n \times 1}$

A matrix is a two-dimensional array: $\mathbf{A}=\left(\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 p} \\ a_{21} & a_{22} & \cdots & a_{1 p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n p}\end{array}\right)_{n \times p}$

The order of a matrix refers the to number of rows and columns:

- a has order n-by- 1
- A has order n-by- p

Rank of a Matrix

The rank of \mathbf{A} is the number of linearly independent rows/columns.

- column rank of \mathbf{A} is number of linearly independent columns
- row rank of \mathbf{A} is number of linearly independent rows

We say that \mathbf{A} is full rank if $\operatorname{rank}(\mathbf{A})=\min (n, p)$.

- If $n<p$, full rank implies full row rank, i.e., $\operatorname{rank}(\mathbf{A})=n$
- If $n>p$, full rank implies full column rank, i.e., $\operatorname{rank}(\mathbf{A})=p$

Rank Example

The matrix \mathbf{A} is NOT full rank

$$
A=\left(\begin{array}{cc}
1 & 3 \\
2 & 6 \\
5 & 15
\end{array}\right)
$$

because we have $3 \mathbf{a}_{1}=\mathbf{a}_{2}$ where \mathbf{a}_{j} denotes the j-th column of \mathbf{A}.

In contrast, the matrix \mathbf{A} is full rank

$$
A=\left(\begin{array}{cc}
1 & 3 \\
2 & 6 \\
4 & 15
\end{array}\right)
$$

because we cannot write $\sum_{j=1} b_{j} \mathbf{a}_{j}=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$ unless we set $b_{j}=0 \forall j$.

Matrix Transpose: Definition

We will denote the transpose with a prime symbol (i.e., ').
The transpose of a vector turns a column vector into a row vector:

$$
\mathbf{a}=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)_{n \times 1} \Longleftrightarrow \mathbf{a}^{\prime}=\left(\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{n}
\end{array}\right)_{1 \times n}
$$

The transpose of a matrix exchanges rows and columns, such as

$$
\mathbf{A}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 p} \\
a_{21} & a_{22} & \cdots & a_{2 p} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n p}
\end{array}\right)_{n \times p} \Longleftrightarrow \mathbf{A}^{\prime}=\left(\begin{array}{cccc}
a_{11} & a_{21} & \cdots & a_{n 1} \\
a_{12} & a_{22} & \cdots & a_{n 2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1 p} & a_{2 p} & \cdots & a_{n p}
\end{array}\right)_{p \times n}
$$

Matrix Transpose: Example

The transpose of $\mathbf{a}=\left(\begin{array}{l}1 \\ 7 \\ 5 \\ 9\end{array}\right)_{4 \times 1}$ is given by $\mathbf{a}^{\prime}=\left(\begin{array}{llll}1 & 7 & 5 & 9\end{array}\right)_{1 \times 4}$

The transpose of $\mathbf{A}=\left(\begin{array}{ll}1 & 3 \\ 7 & 2 \\ 5 & 7 \\ 9 & 4\end{array}\right)_{4 \times 2}$ is given by $\mathbf{A}^{\prime}=\left(\begin{array}{llll}1 & 7 & 5 & 9 \\ 3 & 2 & 7 & 4\end{array}\right)_{2 \times 4}$

Matrix Transpose: Properties

Some useful properties of matrix transposes include:

- $\left(\mathbf{A}^{\prime}\right)^{\prime}=\mathbf{A}$
- $(\mathbf{A}+\mathbf{B})^{\prime}=\mathbf{A}^{\prime}+\mathbf{B}^{\prime}$ (where $\mathbf{A}+\mathbf{B}$ is matrix addition, later defined)
- $(b \mathbf{A})^{\prime}=b \mathbf{A}^{\prime}$ (where $b \mathbf{A}$ is scalar multiplication, later defined)
- $(\mathbf{A B})^{\prime}=\mathbf{B}^{\prime} \mathbf{A}^{\prime}$ (where $\mathbf{A B}$ is matrix multiplication, later defined)
- $\left(\mathbf{A}^{-1}\right)^{\prime}=\left(\mathbf{A}^{\prime}\right)^{-1}$ (where \mathbf{A}^{-1} is matrix inverse, later defined)

Matrix Trace: Definition

The trace of a square matrix $\mathbf{A}=\left(\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 p} \\ a_{21} & a_{22} & \cdots & a_{2 p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{p 1} & a_{p 2} & \cdots & a_{p p}\end{array}\right)_{p \times p}$ is
$\operatorname{tr}(\mathbf{A})=\sum_{j=1}^{p} a_{j j}$
which is the sum of the diagonal elements.

Matrix Trace: Example

The trace of the matrix $\mathbf{A}=\left(\begin{array}{cccc}1 & 4 & 8 & 13 \\ 2 & 8 & 11 & 2 \\ 7 & 2 & 6 & 9 \\ 5 & 9 & 4 & 3\end{array}\right)$ is

$$
\begin{aligned}
\operatorname{tr}(\mathbf{A}) & =1+8+6+3 \\
& =18
\end{aligned}
$$

Matrix Trace: Properties

Some useful properties of matrix traces include:

- $\operatorname{tr}(\mathbf{A})=\operatorname{tr}\left(\mathbf{A}^{\prime}\right)$
- $\operatorname{tr}(\mathbf{A}+\mathbf{B})=\operatorname{tr}(\mathbf{A})+\operatorname{tr}(\mathbf{B})$
- $\operatorname{tr}(b \mathbf{A})=b \operatorname{tr}(\mathbf{A})$
- $\operatorname{tr}(\mathbf{A B})=\operatorname{tr}(\mathbf{B A})$ if both products are defined
- If \mathbf{A} is symmetric, $\operatorname{tr}(\mathbf{A})=\sum_{j=1}^{p} \lambda_{j}$ where λ_{j} is j-th eigenvalue of \mathbf{A}.

Symmetric Matrix: Definition

A symmetric matrix is square and symmetric along the main diagonal:

$$
\mathbf{A}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \tag{2}\\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right)_{n \times n}
$$

with $a_{i j}=a_{j i}$ for all $i \neq j$.

Note that $\mathbf{A}=\mathbf{A}^{\prime}$ for all symmetric matrices (by definition).

Symmetric Matrix: Example

The matrix $\mathbf{A}=\left(\begin{array}{llll}9 & 1 & 0 & 4 \\ 1 & 4 & 2 & 1 \\ 0 & 2 & 5 & 6 \\ 4 & 1 & 6 & 8\end{array}\right)$ is a symmetric 4×4 matrix.

The matrix $\mathbf{A}=\left(\begin{array}{llll}9 & 1 & 0 & 4 \\ 1 & 4 & 2 & 1 \\ 0 & 2 & 5 & 6 \\ 3 & 1 & 6 & 8\end{array}\right)$ is NOT a symmetric 4×4 matrix.

Diagonal Matrix

A diagonal matrix is a square matrix that has zeros in the off-diagonals:

$$
\mathbf{D}=\left(\begin{array}{ccccc}
d_{1} & 0 & 0 & \cdots & 0 \tag{3}\\
0 & d_{2} & 0 & \cdots & 0 \\
0 & 0 & d_{3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & d_{p}
\end{array}\right)_{p \times p}
$$

We often write $\mathbf{D}=\operatorname{diag}\left(d_{1}, \ldots, d_{p}\right)$ to define a diagonal matrix.

Identity Matrix

The identity matrix of order p is a $p \times p$ matrix that has ones along the main diagonal and zeros in the off-diagonals:

$$
\mathbf{I}_{p}=\left(\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \tag{4}\\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right)_{p \times p}
$$

Note that \mathbf{I}_{p} is a special type of diagonal matrix.

Zero and One Matrices

A vector or matrix of all zeros will be denoted using the notation:

$$
\mathbf{0}_{n}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right)_{n \times 1} \quad \mathbf{0}_{n \times p}=\left(\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right)_{n \times p}
$$

A vector or matrix of all ones will be denoted using the notation:

$$
\mathbf{1}_{n}=\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right)_{n \times 1} \quad \mathbf{1}_{n \times p}=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 1
\end{array}\right)_{n \times p}
$$

Basic Calculations

Matrix Equality

Given two matrices of the same order $\mathbf{A}=\left\{a_{i j}\right\}_{n \times p}$ and $\mathbf{B}=\left\{b_{i j}\right\}_{n \times p}$, we say that \mathbf{A} is equal to \mathbf{B} (written $\mathbf{A}=\mathbf{B}$) if and only if $a_{i j}=b_{i j} \forall i, j$.

$$
\text { If } \mathbf{A}=\left(\begin{array}{cccc}
1 & 4 & 8 & 13 \\
2 & 8 & 11 & 2 \\
7 & 2 & 6 & 9
\end{array}\right) \text { and } \mathbf{B}=\left(\begin{array}{cccc}
1 & 4 & 8 & 13 \\
2 & 8 & 11 & 2 \\
7 & 2 & 6 & 9
\end{array}\right) \text {, then } \mathbf{A}=\mathbf{B}
$$

$$
\text { If } \mathbf{A}=\left(\begin{array}{cccc}
1 & 4 & 8 & 13 \\
2 & 8 & 11 & 2 \\
7 & 2 & 6 & 9
\end{array}\right) \text { and } \mathbf{B}=\left(\begin{array}{cccc}
1 & 4 & 8 & 13 \\
2 & 8 & 11 & 2 \\
7 & 2 & 6 & 0
\end{array}\right) \text {, then } \mathbf{A} \neq \mathbf{B}
$$

Matrix Addition and Subtraction: Definition

Given two matrices of the same order $\mathbf{A}=\left\{a_{i j}\right\}_{n \times p}$ and $\mathbf{B}=\left\{b_{i j}\right\}_{n \times p}$, the addition $\mathbf{A}+\mathbf{B}$ produces $\mathbf{C}=\left\{c_{i j}\right\}_{n \times p}$ such that $c_{i j}=a_{i j}+b_{i j}$.

Given two matrices of the same order $\mathbf{A}=\left\{a_{i j}\right\}_{n \times p}$ and $\mathbf{B}=\left\{b_{i j}\right\}_{n \times p}$, the subtraction $\mathbf{A}-\mathbf{B}$ produces $\mathbf{C}=\left\{c_{i j}\right\}_{n \times p}$ such that $c_{i j}=a_{i j}-b_{i j}$.

Note: matrix addition and subtraction is only defined for two matrices of the same order.

Matrix Addition and Subtraction: Example

Given $\mathbf{A}=\left(\begin{array}{cccc}1 & 4 & 8 & 13 \\ 2 & 8 & 11 & 2 \\ 7 & 2 & 6 & 9\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{llll}5 & 6 & 1 & 7 \\ 1 & 3 & 0 & 2 \\ 2 & 5 & 3 & 5\end{array}\right)$, we have that

$$
\mathbf{A}+\mathbf{B}=\left(\begin{array}{cccc}
1+5 & 4+6 & 8+1 & 13+7 \\
2+1 & 8+3 & 11+0 & 2+2 \\
7+2 & 2+5 & 6+3 & 9+5
\end{array}\right)=\left(\begin{array}{cccc}
6 & 10 & 9 & 20 \\
3 & 11 & 11 & 4 \\
9 & 7 & 9 & 14
\end{array}\right)
$$

$$
\mathbf{A}-\mathbf{B}=\left(\begin{array}{cccc}
1-5 & 4-6 & 8-1 & 13-7 \\
2-1 & 8-3 & 11-0 & 2-2 \\
7-2 & 2-5 & 6-3 & 9-5
\end{array}\right)=\left(\begin{array}{cccc}
-4 & -2 & 7 & 6 \\
1 & 5 & 11 & 0 \\
5 & -3 & 3 & 4
\end{array}\right)
$$

Vector Inner Products: Definition

The inner product of $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\prime}$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)^{\prime}$ is

$$
\begin{align*}
\mathbf{x}^{\prime} \mathbf{y} & =\left(x_{1} \cdots x_{n}\right)\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right) \tag{5}\\
& =\left(\sum_{i=1}^{n} x_{i} y_{i}\right)_{1 \times 1}
\end{align*}
$$

Note that \mathbf{x} and \mathbf{y} must have the same length (i.e., n).

Vector Inner Products: Example

Given $\mathbf{x}=(3,9,-2,5)^{\prime}$ and $\mathbf{y}=(2,0,2,1)^{\prime}$, we have that

$$
\begin{aligned}
\mathbf{x}^{\prime} \mathbf{y} & =\left(\begin{array}{llll}
3 & 9 & -2 & 5
\end{array}\right)\left(\begin{array}{l}
2 \\
0 \\
2 \\
1
\end{array}\right) \\
& =3(2)+9(0)-2(2)+5(1) \\
& =7
\end{aligned}
$$

Vector Outer Products: Definition

The outer product of $\mathbf{x}=\left(x_{1}, \ldots, x_{m}\right)^{\prime}$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)^{\prime}$ is

$$
\begin{align*}
\mathbf{x y}^{\prime} & =\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{m}
\end{array}\right)\left(y_{1} \cdots y_{n}\right) \\
& =\left(\begin{array}{cccc}
x_{1} y_{1} & x_{1} y_{2} & \cdots & x_{1} y_{n} \\
x_{2} y_{1} & x_{2} y_{2} & \cdots & x_{2} y_{n} \\
\vdots & \vdots & \ddots & \vdots \\
x_{m} y_{1} & x_{m} y_{2} & \cdots & x_{m} y_{n}
\end{array}\right)_{m \times n} \tag{6}
\end{align*}
$$

Note that \mathbf{x} and \mathbf{y} can have different lengths (i.e., m and n).

Vector Outer Products: Example

Given $\mathbf{x}=(3,9,-2,5)^{\prime}$ and $\mathbf{y}=(2,0,2,1)^{\prime}$, we have that

$$
\begin{aligned}
\mathbf{x y ^ { \prime }} & =\left(\begin{array}{r}
3 \\
9 \\
-2 \\
5
\end{array}\right)\left(\begin{array}{llll}
2 & 0 & 2 & 1
\end{array}\right) \\
& =\left(\begin{array}{rrrr}
6 & 0 & 6 & 3 \\
18 & 0 & 18 & 9 \\
-4 & 0 & -4 & -2 \\
10 & 0 & 10 & 5
\end{array}\right)
\end{aligned}
$$

Matrix-Scalar Products: Definition

The matrix-scalar product of $\mathbf{A}=\left\{a_{i j}\right\}_{n \times p}$ and $b \in \mathbb{R}$ is

$$
\mathbf{A} b=b \mathbf{A}=\left(\begin{array}{cccc}
b a_{11} & b a_{12} & \cdots & b a_{1 p} \tag{7}\\
b a_{21} & b a_{22} & \cdots & b a_{2 p} \\
\vdots & \vdots & \ddots & \vdots \\
b a_{n 1} & b a_{n 2} & \cdots & b a_{n p}
\end{array}\right)_{n \times p}
$$

which is the matrix $\mathbf{C}=\left\{c_{i j}\right\}_{n \times p}$ such that $c_{i j}=b a_{i j}$.

Matrix-Scalar Products: Example

Given $\mathbf{A}=\left(\begin{array}{cccc}1 & 4 & 8 & 13 \\ 2 & 8 & 11 & 2 \\ 7 & 2 & 6 & 9\end{array}\right)$ and $b=2$, we have that

$$
\begin{aligned}
b \mathbf{A} & =\left(\begin{array}{cccc}
1 & 4 & 8 & 13 \\
2 & 8 & 11 & 2 \\
7 & 2 & 6 & 9
\end{array}\right) 2 \\
& =\left(\begin{array}{cccc}
2 & 8 & 16 & 26 \\
4 & 16 & 22 & 4 \\
14 & 4 & 12 & 18
\end{array}\right)
\end{aligned}
$$

Matrix-Vector Products: Definition

The matrix-vector product of $\mathbf{A}=\left(\begin{array}{ccc}a_{11} & \cdots & a_{1 p} \\ \vdots & \ddots & \vdots \\ a_{n 1} & \cdots & a_{n p}\end{array}\right)$ and $\mathbf{x}=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{p}\end{array}\right)$ is

$$
\begin{align*}
\mathbf{A x} & =\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 p} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n p}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{p}
\end{array}\right) \\
& =\left(\begin{array}{c}
\sum_{j=1}^{p} a_{1 j} x_{j} \\
\vdots \\
\sum_{j=1}^{p} a_{n j} x_{j}
\end{array}\right)_{n \times 1} \tag{8}
\end{align*}
$$

Note that length of \mathbf{x} must match number of columns of \mathbf{A} (i.e., p).

Matrix-Vector Products: Example

Given $\mathbf{A}=\left(\begin{array}{lll}3 & 4 & 1 \\ 4 & 7 & 5\end{array}\right)$ and $\mathbf{x}=\left(\begin{array}{l}1 \\ 6 \\ 3\end{array}\right)$, we have that

$$
\begin{aligned}
\mathbf{A} \mathbf{x} & =\left(\begin{array}{lll}
3 & 4 & 1 \\
4 & 7 & 5
\end{array}\right)\left(\begin{array}{l}
1 \\
6 \\
3
\end{array}\right) \\
& =\binom{3(1)+4(6)+1(3)}{4(1)+7(6)+5(3)} \\
& =\binom{30}{61}
\end{aligned}
$$

Matrix-Matrix Products: Definition

The matrix-matrix product of $\mathbf{A}=\left\{\mathrm{a}_{i j}\right\}_{m \times n}$ and $\mathbf{B}=\left\{b_{j k}\right\}_{n \times p}$ is

$$
\begin{align*}
\mathbf{A B} & =\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right)\left(\begin{array}{ccc}
b_{11} & \cdots & b_{1 p} \\
\vdots & \ddots & \vdots \\
b_{n 1} & \cdots & b_{n p}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
\sum_{j=1}^{n} a_{1 j} b_{j 1} & \sum_{j=1}^{n} a_{11} b_{j 2} & \cdots & \sum_{j=1}^{n} a_{1 j} b_{j p} \\
\sum_{j=1}^{n} a_{2 j} b_{j 1} & \sum_{j=1}^{n} a_{2 j} b_{j 2} & \cdots & \sum_{j=1}^{n} a_{2 j} b_{j p} \\
\vdots & \vdots & \ddots & \vdots \\
\sum_{j=1}^{n} a_{m j} b_{j 1} & \sum_{j=1}^{n} a_{m j} b_{j 2} & \cdots & \sum_{j=1}^{n} a_{m j} b_{j p}
\end{array}\right)_{m \times p} \tag{9}
\end{align*}
$$

Note that \# of rows of \mathbf{B} must match \# of columns of \mathbf{A} (i.e., n), and note that $\mathbf{A B} \neq \mathbf{B A}$ even if both products are defined.

Matrix-Matrix Products: Example

Given $\mathbf{A}=\left(\begin{array}{lll}3 & 4 & 1 \\ 4 & 7 & 5\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{ll}1 & 2 \\ 6 & 1 \\ 3 & 4\end{array}\right)$, we have that

$$
\begin{aligned}
\mathbf{A B} & =\left(\begin{array}{lll}
3 & 4 & 1 \\
4 & 7 & 5
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
6 & 1 \\
3 & 4
\end{array}\right) \\
& =\left(\begin{array}{ll}
3(1)+4(6)+1(3) & 3(2)+4(1)+1(4) \\
4(1)+7(6)+5(3) & 4(2)+7(1)+5(4)
\end{array}\right) \\
& =\left(\begin{array}{ll}
30 & 14 \\
61 & 35
\end{array}\right)
\end{aligned}
$$

Multiplying by Identity Matrix

Given $\mathbf{A}=\left\{a_{i j}\right\}_{m \times n}$, pre-multiplying by the identity matrix returns \mathbf{A}

$$
\mathbf{I}_{m} \mathbf{A}=\mathbf{A}
$$

and post-multiplying by the identity matrix returns \mathbf{A}

$$
\mathbf{A l}_{n}=\mathbf{A}
$$

This is the reason we call \mathbf{I}_{m} and \mathbf{I}_{n} "identity" matrices.

Matrix Decompositions

Overview of Matrix Decompositions

A matrix decomposition decomposes (i.e., separates) a given matrix into a matrix multiplication of two (or more) simpler matrices.

Matrix decompositions are useful for many things:

- Solving systems of equations
- Obtaining low-rank approximations
- Finding important features of data

We will briefly discuss four matrix decompositions:

- Eigenvalue Decomposition
- Cholesky Decomposition
- Singular Value Decomposition
- QR Decomposition

Eigenvalue (Spectral) Decomposition

The eigenvalue decomposition (EVD) decomposes a symmetric ${ }^{1}$ matrix $\mathbf{A}=\left\{a_{i j}\right\}_{n \times n}$ into a product of three matrices:

$$
\begin{equation*}
\mathbf{A}=\boldsymbol{\Gamma} \boldsymbol{\Lambda}^{\prime} \tag{10}
\end{equation*}
$$

such that

- $\boldsymbol{\Gamma}=\left(\gamma_{1} \cdots \gamma_{n}\right)_{n \times n}$ where $\gamma_{j}=\left(\gamma_{1 j}, \ldots, \gamma_{n j}\right)^{\prime}$ is j-th eigenvector
- $\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ where λ_{j} is j-th eigenvalue
- Eigenvalues/vectors are ordered such that $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$

Note that $\boldsymbol{\Gamma}$ is an orthogonal matrix: $\boldsymbol{\Gamma} \boldsymbol{\Gamma}^{\prime}=\boldsymbol{\Gamma}^{\prime} \boldsymbol{\Gamma}=\mathbf{I}_{n}$
${ }^{1}$ EVD is defined for asymmetric matrices, but we will only consider symmetric case.

Cholesky Decomposition

The Cholesky decomposition (CD) decomposes a positive definite matrix $\mathbf{A}=\left\{a_{i j}\right\}_{n \times n}$ into a product of a two matrices:

$$
\mathbf{A}=\mathbf{L L ^ { \prime }}
$$

where

$$
\bullet \mathbf{L}=\left(\begin{array}{ccccc}
I_{11} & 0 & 0 & \cdots & 0 \\
I_{21} & I_{22} & 0 & \cdots & 0 \\
I_{31} & I_{32} & I_{33} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
I_{n 1} & I_{n 2} & I_{n 3} & \cdots & I_{n n}
\end{array}\right) \text { is a lower (left) triangular matrix }
$$

Singular Value Decomposition

The singular value decomposition (SVD) decomposes any matrix $\mathbf{A}=\left\{a_{i j}\right\}_{n \times p}$ into a product of three matrices:

$$
\begin{equation*}
\mathbf{A}=\mathbf{U S V}^{\prime} \tag{12}
\end{equation*}
$$

such that

- $\mathbf{U}=\left(\mathbf{u}_{1} \cdots \mathbf{u}_{r}\right)_{n \times r}$ where $\mathbf{u}_{k}=\left\{u_{i k}\right\}_{n \times 1}$ is k-th left singular vector
- $\mathbf{S}=\operatorname{diag}\left(s_{1}, \ldots, s_{r}\right)$ where $s_{k}>0$ is k-th singular value
- $\mathbf{V}=\left(\mathbf{v}_{1} \cdots \mathbf{v}_{r}\right)_{p \times r}$ where $\mathbf{v}_{k}=\left\{v_{j k}\right\}_{p \times 1}$ is k-th right singular vector
- $r \leq \min (m, n)$ and $r=\min (m, n)$ if \mathbf{A} is full-rank

Note that \mathbf{U} and \mathbf{V} are columnwise orthogonal: $\quad \mathbf{U}^{\prime} \mathbf{U}=\mathbf{V}^{\prime} \mathbf{V}=\mathbf{I}_{r}$

QR Decomposition

The QR decomposition (QRD) decomposes any long (i.e., $n \geq p$) matrix $\mathbf{A}=\left\{a_{i j}\right\}_{n \times p}$ into a product of two matrices:

$$
\begin{aligned}
\mathbf{A} & =\mathbf{Q} \mathbf{R} \\
& =\left(\begin{array}{ll}
\mathbf{Q}_{1} & \mathbf{Q}_{2}
\end{array}\right)\binom{\mathbf{R}_{1}}{\mathbf{O}_{(n-p) \times p}} \\
& =\mathbf{Q}_{1} \mathbf{R}_{1}
\end{aligned}
$$

such that

- \mathbf{Q} is an orthogonal matrix
- $\mathbf{R}_{1}=\left(\begin{array}{ccccc}r_{11} & r_{12} & r_{13} & \cdots & r_{1 p} \\ 0 & r_{22} & r_{23} & \cdots & r_{2 p} \\ 0 & 0 & r_{33} & \cdots & r_{3 p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & r_{p p}\end{array}\right)$ is upper (right) triangular matrix

Miscellaneous Topics

Quadratic Forms

The quadratic form of a symmetric matrix $\mathbf{A}=\left(\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ \vdots & \ddots & \vdots \\ a_{n 1} & \cdots & a_{n n}\end{array}\right)$ is

$$
\begin{align*}
\mathbf{x}^{\prime} \mathbf{A} \mathbf{x} & =\left(\begin{array}{lll}
x_{1} & \cdots & x_{n}
\end{array}\right)\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \tag{14}\\
& =\left(\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j} a_{i j}\right)_{1 \times 1}
\end{align*}
$$

where $\mathbf{x}=\left(\begin{array}{lll}x_{1} & \cdots & x_{n}\end{array}\right)^{\prime}$ is any arbitrary vector of length n.

Positive, Negative, and Semi-Definite Matrices

A symmetric matrix $\mathbf{A}=\left\{a_{i j}\right\}_{n \times n}$ is said to be

- positive definite if $\mathbf{x}^{\prime} \mathbf{A x}>0$ for every $\mathbf{x} \neq \mathbf{0}_{n}$
- positive semi-definite if $\mathbf{x}^{\prime} \mathbf{A} \mathbf{x} \geq 0$ for every $\mathbf{x} \neq \mathbf{0}_{n}$
- negative definite if $\mathbf{x}^{\prime} \mathbf{A} \mathbf{x}<0$ for every $\mathbf{x} \neq \mathbf{0}_{n}$
- negative semi-definite if $\mathbf{x}^{\prime} \mathbf{A x} \leq 0$ for every $\mathbf{x} \neq \mathbf{0}_{n}$

Note if $\mathbf{x}^{\prime} \mathbf{A x} \geq 0$ for some \mathbf{x} and $\mathbf{x}^{\prime} \mathbf{A} \mathbf{x}<0$ for other \mathbf{x}, then \mathbf{A} is said to be an indefinite matrix.

Matrix Definiteness: Example

The matrix $\mathbf{A}=\left(\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right)$ is positive definite:

$$
\begin{aligned}
\mathbf{x}^{\prime} \mathbf{A} \mathbf{x} & =\left(\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right)\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right)\binom{x_{1}}{x_{2}} \\
& =\left(\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right)\binom{2 x_{1}-x_{2}}{-x_{1}+2 x_{2}} \\
& =2 x_{1}^{2}-2 x_{1} x_{2}+2 x_{2}^{2} \\
& =x_{1}^{2}+x_{2}^{2}+\left(x_{1}-x_{2}\right)^{2} \\
& \geq 0
\end{aligned}
$$

with the equality holding only when $x_{1}=x_{2}=0$.

Matrix Definiteness: Properties

Let λ_{j} denote the j-th eigenvalue of \mathbf{A} for $j \in\{1, \ldots, n\}$.

Some useful properties of matrix definiteness include:

- If \mathbf{A} is positive definite, then $\lambda_{j}>0 \forall j$
- If \mathbf{A} is positive semi-definite, then $\lambda_{j} \geq 0 \forall j$
- If \mathbf{A} is negative definite, then $\lambda_{j}<0 \forall j$
- If \mathbf{A} is negative semi-definite, then $\lambda_{j} \leq 0 \forall j$
- If \mathbf{A} is indefinite, then $\lambda_{i}>0$ and $\lambda_{j}<0$ for some $i \neq j$

Matrix Determinant: Definition

The determinant of a square matrix $\mathbf{A} \in \mathbb{R}^{p \times p}$ is a real-valued function from $\mathbb{R}^{p \times p} \rightarrow \mathbb{R}$, and is typically denoted by $|\mathbf{A}| \operatorname{or} \operatorname{det}(\mathbf{A})$.

Determinants provide information about systems of linear equations:

- Suppose that $\mathbf{A} \in \mathbb{R}^{p \times p}, \mathbf{x} \in \mathbb{R}^{p \times 1}$, and $\mathbf{b} \in \mathbb{R}^{p \times 1}$
- System $\mathbf{A x}=\mathbf{b}$ has a unique solution if and only if $|\mathbf{A}| \neq 0$

Determinants provide information about linear transformations:

- Magnitude of $|\mathbf{A}|$ is the transformation's scale factor
- Sign of $|\mathbf{A}|$ is the transformation's orientation

Matrix Determinant: Calculation

- For 1×1 matrix $\mathbf{A}=(a)$, we have
$|\mathbf{A}|=a$
- For 2×2 matrix $\mathbf{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, we have
$|\mathbf{A}|=a d-b c$
- For 3×3 matrix $\mathbf{A}=\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)$, we have
$|\mathbf{A}|=a e i+b f g+c d h-(c e g+b d i+a f h)$

Matrix Determinant: Calculation (continued)

For $p \times p$ matrix $\mathbf{A}=\left(\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 p} \\ a_{21} & a_{22} & \cdots & a_{2 p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{p 1} & a_{p 2} & \cdots & a_{p p}\end{array}\right)$, we have
$|\mathbf{A}|=\sum_{j=1}^{p}(-1)^{i+j} a_{i j} M_{i j}=\sum_{i=1}^{p}(-1)^{i+j} a_{i j} M_{i j}$
where

- $M_{i j}=\left|\mathbf{A}_{-i j}\right|$ is the minor corresponding to cell (i, j) of \mathbf{A}
- $(-1)^{i+j} M_{i j}$ is the cofactor corresponding to cell (i, j) of \mathbf{A}
- $\mathbf{A}_{-i j}$ is the $(p-1) \times(p-1)$ matrix formed by deleting the i-th row and j-th column of \mathbf{A}

Note: can use any column (or row) to define the determinant of \mathbf{A}.

Properties of Matrix Determinants

Some useful properties of matrix determinants include:

- $|\mathbf{A}|=\left|\mathbf{A}^{\prime}\right|$
- $\left|\mathbf{A}^{-1}\right|=|\mathbf{A}|^{-1}$ (where \mathbf{A}^{-1} is defined on the next slide)
- $|\mathbf{A B}|=|\mathbf{A}||\mathbf{B}|$ (if \mathbf{A} and \mathbf{B} are both square)
- $|b \mathbf{A}|=b^{p}|\mathbf{A}| \quad$ (if $b \in \mathbb{R}$ and \mathbf{A} is $p \times p$)
- If \mathbf{A} is symmetric, $|\mathbf{A}|=\prod_{j=1}^{p} \lambda_{j}$ where λ_{j} is j-th eigenvalue of \mathbf{A}.

Matrix Inverses: Definition

A square (not necessarily symmetric) matrix $\mathbf{A}=\left\{a_{i j}\right\}_{n \times n}$ is invertible (or nonsingular) if there exists another matrix $\mathbf{B}=\left\{b_{i j}\right\}_{n \times n}$ such that

$$
\begin{equation*}
\mathbf{A B}=\mathbf{I}_{n} \tag{15}
\end{equation*}
$$

where \mathbf{I}_{n} is the $n \times n$ identity matrix.

If \mathbf{B} exists, the matrix \mathbf{B} is called the inverse of the matrix \mathbf{A} and is denoted by \mathbf{A}^{-1} (so that $\mathbf{A A}^{-1}=\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}_{n}$).

Matrix Inverses: Calculation for 2×2 Case

Claim:
For 2×2 matrix $\mathbf{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, we have $\mathbf{A}^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$

Proof:

$$
\begin{aligned}
\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) & =\frac{1}{a d-b c}\left(\begin{array}{cc}
d a-b c & d b-b d \\
-c a+a c & -c b+a d
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Matrix Inverses: Example

Given $\mathbf{A}=\left(\begin{array}{ll}1 & 3 \\ 2 & 1\end{array}\right)$, the inverse is $\mathbf{A}^{-1}=\left(\begin{array}{cc}-1 / 5 & 3 / 5 \\ 2 / 5 & -1 / 5\end{array}\right)$:

$$
\begin{aligned}
& \mathbf{A A}^{-1}=\left(\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right)\left(\begin{array}{cc}
-1 / 5 & 3 / 5 \\
2 / 5 & -1 / 5
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& \mathbf{A}^{-1} \mathbf{A}=\left(\begin{array}{cc}
-1 / 5 & 3 / 5 \\
2 / 5 & -1 / 5
\end{array}\right)\left(\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Matrix Inverses: Properties

Some useful properties of matrix inverses include:

- $\left(\mathbf{A}^{-1}\right)^{-1}=\mathbf{A}$
- $(b \mathbf{A})^{-1}=b^{-1} \mathbf{A}^{-1}$
- $\left(\mathbf{A}^{-1}\right)^{\prime}=\left(\mathbf{A}^{\prime}\right)^{-1}$
- $\mathbf{A}^{-1}=\mathbf{A}^{\prime}$ if and only if \mathbf{A} is orthogonal
- $\left|\mathbf{A}^{-1}\right|=|\mathbf{A}|^{-1}$
- $(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}$ if both \mathbf{A}^{-1} and \mathbf{B}^{-1} exist
- \mathbf{A}^{-1} exists only if $|\mathbf{A}| \neq 0$
- If \mathbf{A} is positive definite, then $\mathbf{A}^{-1}=\boldsymbol{\Gamma} \boldsymbol{\Lambda}^{-1} \boldsymbol{\Gamma}^{\prime}=\left(\mathbf{L}^{-1}\right)^{\prime} \mathbf{L}^{-1}$, where $\mathbf{\Gamma} \boldsymbol{\Lambda}^{\prime}$ and $\mathbf{L L} \mathbf{L}^{\prime}$ denote the EVD and CD of \mathbf{A}, respectively

Matrix Function: Overview

To create a matrix in R, we use the matrix function.

The relevant inputs of the matrix function include

- data: the data that will be arranged into a matrix
- nrow: the number of rows of the matrix
- ncol: the number of columns of the matrix
- byrow: logical indicating if the data should be read-in by rows (default reads in data by columns)

Matrix Function: Example

```
>x=1:9
> X
[1]
> matrix(x,nrow=3,ncol=3)
\begin{tabular}{lrrr} 
& {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} \\
{\([1]\),} & 1 & 4 & 7 \\
{\([2]\),} & 2 & 5 & 8 \\
{\([3]\),} & 3 & 6 & 9
\end{tabular}
> matrix(x, nrow=3, ncol=3, byrow=TRUE)
    [,1] [,2] [,3]
[1,] 
[2,] 4
[3,] 
```


Matrix Function: Warning

R recycles numbers if the dimensions do not conform:

```
> x = 1:9
```

$>\mathrm{X}$
[1] $1 \begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$
$>$ matrix $(x$, nrow $=3, \operatorname{ncol}=4)$
$[, 1][, 2] \quad[, 3] \quad[, 4]$

$[1]$,	1	4	7	1
$[2]$,	2	5	8	2
$[3]$,	3	6	9	3

Warning message:
In matrix (x, nrow $=3$, ncol $=4$) :
data length [9] is not a sub-multiple or multiple
of the number of columns [4]

R Matrix Calculations: Overview

Remember: scalar multiplication is performed using:
*

In contrast, matrix multiplication is performed using:
$\% * \%$

Note: the matrix multiplication symbol is really three symbols in a row:

- percent sign
- asterisk
- percent sign

R Matrix Calculations: Example

$$
\begin{aligned}
& >x=1: 9 \\
& >y=9: 1 \\
& >X=\operatorname{matrix}(x, 3,3) \\
& >Y=\operatorname{matrix}(y, 3,3) \\
& >X
\end{aligned}
$$

$$
[, 1][, 2][, 3]
$$

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	1	4	7
$[2]$,	2	5	8
$[3]$,	3	6	9
$>Y$			

$$
>Y
$$

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	9	6	3
$[2]$,	8	5	2
$[3]$,	7	4	1

$>X \% * \%$

$$
[, 1][, 2][, 3]
$$

$[1]$,	90	54	18
$[2]$,	114	69	24
$[3]$,	138	84	30

R Matrix Calculations: Error Messages

[,1] [,2]

$[1]$,	6	3
$[2]$,	5	2
$[3]$,	4	1

R Matrix Calculations: Error Messages (continued)

$$
\begin{aligned}
& >x=1: 6 \\
& >y=6: 1 \\
& >X=\operatorname{matrix}(x, 2,3) \\
& >Y=\operatorname{matrix}(y, 2,3) \\
& >X
\end{aligned}
$$

$$
[, 1][, 2][, 3]
$$

$[1]$,	1	3	5
$[2]$,	2	4	6
$>Y$			

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	6	4	2
$[2]$,	5	3	1

Transpose Function

To obtain the transpose of a matrix in R, we use the t function.

```
> X = matrix(1:6,2,3)
```

$>\mathrm{X}$

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	1	3	5
$[2]$,	2	4	6
$>t(X)$			

	$[, 1]$	$[, 2]$
$[1]$,	1	2
$[2]$,	3	4
$[3]$,	5	6

Dimension Function

To obtain the dimensions of a matrix in R , we use the dim function.

```
> X = matrix(1:6,2,3)
> X
    [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
> dim(X)
[1] 2 3
> dim(t(X))
[1] 3 2
```


Crossproduct Function

Given $\mathbf{X}=\left\{x_{i j}\right\}_{n \times p}$ and $\mathbf{Y}=\left\{y_{i k}\right\}_{n \times q}$, we can obtain the crossproduct $\mathbf{X}^{\prime} \mathbf{Y}$ using the crossprod function.

```
> X = matrix(1:6,3,2)
> Y = matrix(1:9,3,3)
> crossprod(X,Y)
```

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	14	32	50
$[2]$,	32	77	122
$>t(X)$	$\% * \%$	Y	
	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	14	32	50
$[2]$,	32	77	122

Note that crossprod produces same result as using transpose and matrix multiplication symbol.

However, you should prefer crossprod because it is faster.

Transpose-Crossproduct Function

Given $\mathbf{X}=\left\{x_{i j}\right\}_{n \times p}$ and $\mathbf{Y}=\left\{y_{h j}\right\}_{m \times p}$, we can obtain the transposecrossproduct $\mathbf{X} \mathbf{Y}^{\prime}$ using the tcrossprod function.

```
> X = matrix(1:6,2,3)
> Y = matrix(1:9,3,3)
> tcrossprod(X,Y)
```

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	48	57	66
$[2]$,	60	72	84

$$
>X \% * \% t(Y)
$$

$$
[, 1][, 2][, 3]
$$

$$
\begin{array}{llll}
{[1,]} & 48 & 57 & 66
\end{array}
$$

$$
\begin{array}{llll}
{[2,]} & 60 & 72 & 84
\end{array}
$$

Note that tcrossprod produces same result as using transpose and matrix multiplication symbol.

However, you should prefer tcrossprod because it is faster.

Row and Column Summation Functions

We can obtain rowwise and columnwise summations using the rowSums and colsums functions.
$>X=\operatorname{matrix}(1: 6,2,3)$
$>X$

Row and Column Mean Functions

We can obtain rowwise and columnwise means using the rowMeans and colmeans functions.

```
> X = matrix(1:6,2,3)
> X
    [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
> rowMeans(X)
[1] 3 4
> colMeans(X)
[1] 1.5 3.5 5.5
```


Diagonal Function

The diag function has multiple purposes:

- If you input a square matrix, diag returns the diagonal elements
- If you input a vector, diag creates a diagonal matrix
- If you input a scalar, diag creates an identity matrix

```
> X = matrix(1:4,2,2) > diag(1:3)
> X
\begin{tabular}{lrr} 
& {\([, 1]\)} & {\([, 2]\)} \\
{\([1]\),} & 1 & 3 \\
{\([2]\),} & 2 & 4 \\
\(>\operatorname{diag}(X)\) & \\
{\([1]\)} & 1 & 4
\end{tabular}
\begin{tabular}{lrrr}
\(>\) & \(\operatorname{diag}(1: 3)\) \\
{\([1,2]\)} & {\([, 2]\)} & {\([, 3]\)} \\
{\([2]\),} & 0 & 2 & 0 \\
{\([3]\),} & 0 & 0 & 3 \\
\(>\operatorname{diag}(2)\) & \\
& {\([, 1]\)} & {\([, 2]\)} & \\
{\([1]\),} & 1 & 0 & \\
{\([2]\),} & 0 & 1 &
\end{tabular}
```


Functions for Matrix Decompositions

R has built-in functions for popular matrix decompositions:

- Eigenvalue Decomposition: eigen
- Cholesky Decomposition: chol
- Singular Value Decomposition: svd
- QR Decomposition: qr

We will not directly use these functions, but some of the methods we will use call these functions internally.

Eigenvalue Decomposition

$>X=\operatorname{matrix}(1: 9,3,3)$
$>X=$ crossprod (X)
$>$ xeig $=$ eigen (X, symmetric=TRUE)
> xeig\$val
[1] $2.838586 e+021.141413 e+00 \quad 6.308738 e-15$
> xeig\$vec

Cholesky Decomposition

$>$ set.seed(1)
$>X=\operatorname{matrix}(r u n i f(9), 3,3)$
$>X=$ crossprod (X)
$>$ xchol $=\operatorname{chol}(X)$
$>$ t(xchol)

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	0.7328929	0.0000000	0.0000000
$[2]$,	1.1336353	0.6224886	0.0000000
$[3]$,	1.1694863	0.3705306	0.4688907
$>$ Xhat $=$ crossprod (xchol)			
$>\operatorname{sum}\left((X-\text { Xhat })^{\wedge} 2\right)$			

[1] 0

Singular Value Decomposition

$>X=\operatorname{matrix}(1: 6,3,2)$
$>\operatorname{xsvd}=\operatorname{svd}(X)$
> xsvd\$d
[1] 9.5080320 0.7728696
> xsvd\$u

	$[, 1]$	$[, 2]$
$[1]$,	-0.4286671	0.8059639
$[2]$,	-0.5663069	0.1123824
$[3]$,	-0.7039467	-0.5811991

> xSvd\$v

	$[, 1]$	$[, 2]$
$[1]$,	-0.3863177	-0.9223658
$[2]$,	-0.9223658	0.3863177

> Xhat $=$ xsvd\$u $\% * \%$ diag (xsvd\$d) $\% * \%$ t (xsvd\$v)
$>\operatorname{sum}\left((X-X h a t)^{\wedge} 2\right)$
[1] 3.808719e-30

QR Decomposition

> $\mathrm{X}=$ matrix $(1: 6,3,2)$
$>\mathrm{xqr}=\mathrm{qr}(\mathrm{X})$
$>Q=q r \cdot Q(x q r)$
$>$ Q

	$[, 1]$	$[, 2]$
$[1]$,	-0.2672612	0.8728716
$[2]$,	-0.5345225	0.2182179
$[3]$,	-0.8017837	-0.4364358
$>R=$ qr.R(xqr)		

$>\mathrm{R}$

	$[, 1]$	$[, 2]$
$[1]$,	-3.741657	-8.552360
$[2]$,	0.000000	1.963961

> Xhat $=$ Q \%*\% R[,sort(xqr\$pivot,index=TRUE) \$ix]
$>\operatorname{sum}\left(\mathrm{X}^{-} \text {Xhat)}\right)^{\wedge} 2$)
[1] $8.997945 e-31$

