Effect Sizes and Power Analyses

Nathaniel E. Helwig

Assistant Professor of Psychology and Statistics
University of Minnesota (Twin Cities)

Updated 04-Jan-2017
Outline of Notes

1) Effect Sizes:
 - Definition and Overview
 - Correlation ES Family
 - Some Examples
 - Difference ES Family
 - Some Examples

2) Power Analyses:
 - Definition and Overview
 - One sample t test
 - Two sample t test
 - One-Way ANOVA
 - Multiple regression
Effect Sizes
What is an Effect Size?

An effect size (ES) measures the strength of some phenomenon:

- Correlation coefficient
- Regression slope coefficient
- Difference between means

ES are related to statistical tests, and are crucial for

- Power analyses (see later slides)
- Sample size planning (needed for grants)
- Meta-analyses (which combine ES from many studies)
Like many other concepts in statistics, we distinguish between ES in the population versus ES in a given sample of data:

- Correlation: \(\rho \) versus \(r \)
- Regression: \(\beta \) versus \(\hat{\beta} \)
- Mean Difference: \((\mu_1 - \mu_2) \) versus \((\bar{x}_1 - \bar{x}_2) \)

Typically reserve Greek letter for population parameters (ES) and Roman letter (or Greek-hat) to denote sample estimates.
Effect Sizes versus Test Statistics

Sample ES measures are related to (but distinct from) test statistics.

- ES measures strength of relationship
- TS provides evidence against H_0

Unlike test statistics, measures of ES are not directly related to significance (α) levels or null hypotheses.
Standardized versus Unstandardized Effect Sizes

Standardized ES are unit free
- Correlation coefficient
- Standardized regression coefficient
- Cohen’s d

Unstandardized ES depend on unit of measurement
- Covariance
- Regression coefficient (unstandardized)
- Mean difference
Overview of Correlation Effect Size Family

Measures of ES having to do with how much variation can be explained in a response variable Y by a predictor variable X.

Some examples of correlation ES include:
- Correlation coefficient
- R^2 and Adjusted R^2
- η^2 and ω^2 (friends of R^2 and R^2_a)
- Cohen’s f^2
Given a sample of observations \((x_i, y_i)\) for \(i \in \{1, \ldots, n\}\), Pearson's product-moment correlation coefficient is defined as

\[
r_{xy} = \frac{s_{xy}}{s_x s_y} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}
\]

where

- \(s_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n-1}\) is sample covariance between \(x_i\) and \(y_i\)
- \(s_x^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}\) is sample variance of \(x_i\)
- \(s_y^2 = \frac{\sum_{i=1}^{n} (y_i - \bar{y})^2}{n-1}\) is sample variance of \(y_i\)

Measures strength of linear relationship between \(X\) and \(Y\).
The coefficient of multiple determination is defined as

\[R^2 = \frac{SSR}{SST} = \frac{SST - SSE}{SST} = 1 - \frac{SSE}{SST} \]

and gives the amount of variation in \(Y \) that is explained by \(X_1, \ldots, X_p \).

When interpreting \(R^2 \) values, note that...
- \(0 \leq R^2 \leq 1 \) so contains no directional information
- Larger \(R^2 \) values imply stronger relationship in given sample
Adjusted Coefficient of Multiple Determination (R^2_a)

The adjusted R^2 is a relative measure of fit:

$$R^2_a = 1 - \frac{SSE/df_E}{SST/df_T} = 1 - \frac{\hat{\sigma}^2}{s_Y^2}$$

where $s_Y^2 = \frac{\sum_{i=1}^{n}(y_i - \bar{y})^2}{n-1}$ is the sample estimate of the variance of Y.

Note that $R^2 = 1 - \tilde{\sigma}^2 / \tilde{s}_Y^2$ where

- $\tilde{\sigma}^2 = SSE/n$ is MLE of error variance
- $\tilde{s}_Y^2 = SST/n$ is MLE of variance of Y

so R^2_a replaces the biased estimates $\tilde{\sigma}^2$ and \tilde{s}_Y^2 with the unbiased estimates $\hat{\sigma}^2$ and s_Y^2 in definition of R^2.
In the ANOVA literature, \(R^2 \) is typically denoted using

\[\eta^2 = \frac{SSR}{SST} \]

which is the amount of variation in \(Y \) attributable to group membership.

Also could consider partial \(\eta^2 \) for \(k \)-th factor

\[\eta_k^2 = \frac{SSR_k}{SST} \]

which is the proportion of variance in \(Y \) that can be explained by the \(k \)-th factor after controlling for the remaining factors.
Calculating η_k^2 in R (Balanced ANOVAs)

R’s `aov` function does not calculate this, but you can (easily) write your own function for this using output of `anova` function:

```r
eta.sq <- function(mod, k=NULL) {
  atab = anova(mod)
  if(is.null(k)){ k = 1:(nrow(atab)-1) } 
  sum(atab[k, 2]) / sum(atab[, 2])
}
```

This function is only appropriate for balanced multiway ANOVAs.
Adjusted ANOVA Coefficient of Determination (ω^2)

Note that η^2 suffers from the same over-fitting issues as R^2:
- If you add more groups, you will have higher η^2

For a one-way ANOVA we could adjust η^2 as follows

$$\omega^2 = \frac{SSB - df_B SSW / df_W}{SST + SSW / df_W}$$

where SSB and SSW are the SS Between and Within groups.
- Note that ω^2 is less biased estimate of population η^2
R’s `aov` function does not calculate this, but you can (easily) write your own function for this using output of `anova` function:

```r
omega.sq <- function(mod) {
  atab = anova(mod)
  ssb = atab[["Sum Sq"]][1]
  ssw = atab[["Sum Sq"]][2]
  dfb = atab[["Df"]][1]
  msw = atab[["Mean Sq"]][2]
  (ssb - dfb*msw) / (ssb + ssw + msw)
}
```
Cohen’s f^2 Measure

Jacob Cohen’s f^2 measure is defined as

$$f^2 = \frac{X^2}{1 - X^2}$$

where X^2 is some R^2-like measure.

Can define f^2 using any measure we’ve discussed so far:

- **Regression:** $f^2 = \frac{R^2}{1 - R^2}$
- **ANOVA:** $f^2 = \frac{\eta^2}{1 - \eta^2}$

Note that f^2 increases as R^2 (or η^2) increases.
Cohen’s f^2 Measure for “Hierarchical” Regression

Suppose we have a regression model with two sets of predictors:
- A: contains predictors we want to control for (i.e., condition on)
- B: contains predictors we want to test for

Suppose there are q predictors in set A and $p - q$ predictors in set B.
- Model A: $y_i = b_0 + \sum_{j=1}^{q} b_j x_{ij} + e_i$
- Model AB: $y_i = b_0 + \sum_{j=1}^{p} b_j x_{ij} + e_i$

Can use a version of Cohen’s f^2 to examine contribution of B given A:

$$f^2_{B|A} = \frac{R_{AB}^2 - R_A^2}{1 - R_{AB}^2}$$

Note that this has nothing to do with hierarchical linear models (multilevel models).
Example 1: One-Way ANOVA

```r
> set.seed(1)
> g = factor(sample(c(1,2,3),100,replace=TRUE))
> e = rnorm(100)
> mu = rbind(c(0,0.05,0.1),c(0,0.5,1),c(0,5,10))
> eta = omega = rep(NA,3)
> for(k in 1:3){
+   y = 2 + mu[k,g] + e
+   mod = lm(y~g)
+   eta[k] = summary(mod)$r.squared
+   omega[k] = omega.sq(mod)
+ }
> eta
[1] 0.03222293 0.22131646 0.94945042
> omega
[1] 0.01214756 0.20362648 0.94791418
```
Example 2: Two-Way ANOVA

```r
> A = factor(rep(c("male","female"),each=12))
> B = factor(rep(c("a","b","c"),8))
> set.seed(1)
> e = rnorm(24)
> muA = c(0,2)
> muB = c(0,1,2)
> mod = aov(y~A+B)
> eta.sq(mod)
[1] 0.6710947
> eta.sq(mod,k=1)
[1] 0.4723673
> eta.sq(mod,k=2)
[1] 0.1987273
```
Example 3: Simple Regression

```R
> set.seed(1)
> x = rnorm(100)
> e = rnorm(100)
> bs = c(0.05, 0.5, 5)
> R = Ra = rep(NA, 3)
> for(k in 1:3){
+   y = 2 + bs[k] * x + e
+   smod = summary(lm(y ~ x))
+   R[k] = smod$r.squared
+   Ra[k] = smod$adj.r.squared
+ }
> R
[1] 0.002101513 0.179579589 0.956469774
> Ra
[1] -0.008081125 0.171207952 0.956025588
```
Example 4: Multiple Regression (GPA Data)

```r
> gpa = read.csv(paste(myfilepath,"sat.csv",sep=""),header=TRUE)
>
> g1mod = lm(univ_GPA~high_GPA,data=gpa)
> Rsq1 = summary(g1mod)$r.squared
> g2mod = lm(univ_GPA~high_GPA+math_SAT,data=gpa)
> Rsq2 = summary(g2mod)$r.squared
> (Rsq2-Rsq1)/(1-Rsq2)  # \(f^2\) (math_SAT given high_GPA)
[1] 0.02610875
>
> g1mod = lm(univ_GPA~math_SAT,data=gpa)
> Rsq1 = summary(g1mod)$r.squared
> g2mod = lm(univ_GPA~math_SAT+high_GPA,data=gpa)
> Rsq2 = summary(g2mod)$r.squared
> (Rsq2-Rsq1)/(1-Rsq2)  # \(f^2\) (high_GPA given math_SAT)
[1] 0.4666959
```
Overview of Difference Effect Size Family

Measures of ES having to do with how different various quantities are. For two population means

\[\theta = \frac{\mu_1 - \mu_2}{\sigma} \]

measures standardized difference, where \(\sigma \) is standard deviation.

Some examples of difference ES include:
- Glass’s \(\Delta \)
- Cohen’s \(d \)
- Hedges’s \(g \) and \(g^* \)
- Root mean square standardized effect (RMSSE)
Gene Glass’s Δ (1976)

If group 1 is the “control” group and group 2 is the “test” group use:

$$\Delta = \frac{\bar{x}_1 - \bar{x}_2}{s_1}$$

where s_1 is sample standard deviation of control group.

When $x_{i1} \sim (\mu_1, \sigma^2)$ and $x_{i2} \sim (\mu_2, \sigma^2)$ we can use

$$d = \frac{\bar{x}_1 - \bar{x}_2}{s_p}$$

where $s_p = \left\{ \frac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{n_1 + n_2} \right\}^{1/2}$ is MLE of the standard deviation σ and $s_j^2 = \sum_{i=1}^{n_j} (x_{ij} - \bar{x}_j)^2 / (n_j - 1)$ is the sample standard deviation.

Larry Hedges’s g

Hedges’s g modifies the denominator of Cohen’s d

$$g = \frac{\bar{x}_1 - \bar{x}_2}{s_p^*}$$

where $s_p^* = \left\{ \frac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{n_1 + n_2 - 2} \right\}^{1/2}$ is an unbiased estimate of σ.

Larry Hedges’s g^*

It can be shown that $E(g) = \frac{\delta}{c(n_1 + n_2 - 2)}$ where

$$\delta = \frac{\mu_1 - \mu_2}{\sigma}$$

and

$$c(m) = \frac{\Gamma(m/2)}{\sqrt{\frac{m}{2}} \Gamma \left(\frac{m-1}{2} \right)}$$

is a term that depends on the sample size.

Hedges’s g^* corrects the bias of g by multiplying it by $c(n_1 + n_2 - 2)$:

$$g^* = c(n_1 + n_2 - 2)g$$

Mean Difference Effect Sizes in R

diffES <-
 function(x,y,type=c("gs","g","d","D")){
 md = mean(x) - mean(y)
 nx = length(x)
 ny = length(y)
 if(type[1]=="gs"){
 m = nx + ny - 2
 cm = gamma(m/2)/(sqrt(m/2)*gamma((m-1)/2))
 spsq = ((nx-1)*sd(x)+(ny-1)*sd(y))/m
 theta = cm*md/sqrt(spsq)
 } else if(type[1]=="g"){
 spsq = ((nx-1)*sd(x)+(ny-1)*sd(y))/(nx+ny-2)
 theta = md/sqrt(spsq)
 } else if(type[1]=="d"){
 spsq = ((nx-1)*sd(x)+(ny-1)*sd(y))/(nx+ny)
 theta = md/sqrt(spsq)
 } else { theta = md/sd(x) }
 }
Root Mean Square Standardized Effect (RMSSE)

In one-way ANOVA we can use the RMSSE:

\[
\psi = \sqrt{\frac{1}{k-1} \sum_{j=1}^{k} (\mu_j - \mu)^2} = \sqrt{\frac{1}{k-1} \sum_{j=1}^{k} \delta_j^2}
\]

where

- \(\mu_j \) is the \(j \)-th group’s population mean
- \(\mu \) is the overall population mean
- \(\sigma^2 \) is the common variance
- \(\delta_j = \frac{\mu_j - \mu}{\sigma} \) is the \(j \)-th group’s standardized population difference
RMSSE function for one-way ANOVA model:

```r
rmsse <- function(x,g){
  mx = tapply(x,g,mean)
  ng = nlevels(g)
  nx = length(x)
  msd = sum((mx-mean(x))^2)/(ng-1)
  mse = sum((mx[g]-x)^2)/(nx-ng)
  sqrt(msd/mse)
}
```
Example 5: Student’s t test

```r
> set.seed(1)
> e = rnorm(100)
> mu = rbind(c(0,0.05),c(0,0.5),c(0,1))
> gs = g = d = D = rep(NA,3)
> for(k in 1:3){
+   x = rnorm(100,mean=mu[k,1])
+   y = rnorm(100,mean=mu[k,2])
+   gs[k] = diffES(x,y)
+   g[k] = diffES(x,y,type="g")
+   d[k] = diffES(x,y,type="d")
+   D[k] = diffES(x,y,type="D")
+ }
> rtab = rbind(gs,g,d,D)
> rownames(rtab) = c("gs","g","d","D")
> colnames(rtab) = c("small","medium","large")
> rtab

<table>
<thead>
<tr>
<th></th>
<th>small</th>
<th>medium</th>
<th>large</th>
</tr>
</thead>
<tbody>
<tr>
<td>gs</td>
<td>-0.1172665</td>
<td>-0.3922036</td>
<td>-0.8320117</td>
</tr>
<tr>
<td>g</td>
<td>-0.1177130</td>
<td>-0.3936971</td>
<td>-0.8351799</td>
</tr>
<tr>
<td>d</td>
<td>-0.1183060</td>
<td>-0.3956804</td>
<td>-0.8393874</td>
</tr>
<tr>
<td>D</td>
<td>-0.1226476</td>
<td>-0.4126996</td>
<td>-0.8745153</td>
</tr>
</tbody>
</table>
```
Example 6: One-Way ANOVA (revisited)

```r
> set.seed(1)
> g = factor(sample(c(1,2,3),100,replace=TRUE))
> e = rnorm(100)
> mu = rbind(c(0,0.05,0.1),c(0,0.5,1),c(0,5,10))
> rvec = rep(NA,3)
> for(k in 1:3){
+   y = 2 + mu[k,g] + e
+   rvec[k] = rmsse(y,g)
+ }
> rvec
[1] 0.2348609 0.6844976 5.4882692
```
Power Analyses
Some Classification Lingo

Classification Outcomes Table:

<table>
<thead>
<tr>
<th></th>
<th>Is Negative</th>
<th>Is Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Negative</td>
<td>True Negative</td>
<td>False Negative</td>
</tr>
<tr>
<td>Test Positive</td>
<td>False Positive</td>
<td>True Positive</td>
</tr>
</tbody>
</table>

Some vocabulary:

- **Sensitivity** $= \frac{TP}{TP + FN} \implies$ True Positive Rate
- **Specificity** $= \frac{TN}{TN + FP} \implies$ True Negative Rate
- **Fall-Out** $= \frac{FP}{FP + TN} \implies$ False Positive Rate
- **Miss Rate** $= \frac{FN}{FN + TP} \implies$ False Negative Rate
NHST and Statistical Power

NHST Outcomes Table:

<table>
<thead>
<tr>
<th>Accept H_0</th>
<th>H_0 True</th>
<th>H_1 True</th>
</tr>
</thead>
<tbody>
<tr>
<td>True Negative</td>
<td>Type II Error</td>
<td></td>
</tr>
<tr>
<td>Type I Error</td>
<td>True Positive</td>
<td></td>
</tr>
</tbody>
</table>

Note: Type I = False Positive, Type II = False Negative

$\alpha = P(\text{Reject } H_0 \mid H_0 \text{ true}) = P(\text{Type I Error})$

$\beta = P(\text{Accept } H_0 \mid H_1 \text{ true}) = P(\text{Type II Error})$

power = $P(\text{Reject } H_0 \mid H_1 \text{ true}) = 1 - \beta$
Visualizing Alpha, Beta, and Power

$1 - \beta = 0.64$

$\alpha = 0.05$
$\beta = 0.36$

H_0 H_1
Power is influenced by three factors:

- Population effect size (larger ES = more power)
- Precision of estimate (more precision = more power)
- Significance level α (larger α = more power)

Note: you can control two of these three (precision and α)

Precision of the estimate is controlled by the sample size n.

- Larger n gives you more precision (more power)
- Power analysis can give you needed n to find effect
Power Analyses

Definition and Overview

Alpha, Beta, and Power: Mean Differences

1 – β = 0.13

1 – β = 0.26

1 – β = 0.44

1 – β = 0.64

1 – β = 0.8

1 – β = 0.91

Nathaniel E. Helwig (U of Minnesota)

Effect Sizes and Power Analyses

Updated 04-Jan-2017 : Slide 38
Power Analyses

Definition and Overview

Alpha, Beta, and Power: SD Differences

\(1 - \beta = 0.26 \)

\(1 - \beta = 0.41 \)

\(1 - \beta = 0.53 \)

\(1 - \beta = 0.64 \)

\(1 - \beta = 0.72 \)

\(1 - \beta = 0.79 \)
Alpha, Beta, and Power: Alpha Differences

1 − β = 0.37

1 − β = 0.48

1 − β = 0.64

1 − β = 0.76

1 − β = 0.83

1 − β = 0.88

\[\alpha = 0.01, \beta = 0.63 \]

\[\alpha = 0.02, \beta = 0.52 \]

\[\alpha = 0.05, \beta = 0.36 \]

\[\alpha = 0.1, \beta = 0.24 \]

\[\alpha = 0.15, \beta = 0.17 \]

\[\alpha = 0.2, \beta = 0.12 \]
plotpower <- function(m0,m1,sd=1,alpha=0.05){
 x0seq = seq(m0-3*sd,m0+3*sd,length=500)
 x1seq = seq(m1-3*sd,m1+3*sd,length=500)
 cval = qnorm(1-alpha,m0,sd)
 power = round(pnorm(cval,m1,sd,lower=F),2)
 plot(x0seq,dnorm(x0seq,m0,sd),xlim=c(m0-3*sd-1,m1+3*sd+1),type="l",
 lwd=2,xlab=expression(italic(x)),ylab=expression(italic(f(x))),
 main=bquote(1-beta==.(power)),cex.main=2,cex.axis=1.25,cex.lab=1.5)
 lines(x1seq,dnorm(x1seq,m1,sd),lwd=2)
 px=c(rep(cval,2),seq(cval-0.01,m1-3*sd,length=50),m1-3*sd,cval)
 py=c(0,dnorm(cval,m1,sd),dnorm(seq(cval-0.01,m1-3*sd,length=50),m1,sd),
 rep(dnorm(m1-3*sd,m1,sd),2))
 polygon(px,py,col="lightblue",border=NA)
 px=c(rep(cval,2),seq(cval+0.1,m0+3*sd,length=50),m0+3*sd,cval)
 py=c(0,dnorm(cval,m0,sd),dnorm(seq(cval+0.1,m0+3*sd,length=50),m0,sd),
 rep(dnorm(m0+3*sd,m0,sd),2))
 polygon(px,py,col="pink",border=NA)
 legend("topleft",legend=c(as.expression(bquote(alpha==.(alpha))),
 as.expression(bquote(beta==.(1-power)))),
 fill=c("pink","lightblue"),bty="n")
}
One Sample Location Problem

Suppose we have sample of data $x_i \sim N(\mu, \sigma^2)$ and we want to make inferences about the mean μ.

Letting $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ denote the sample mean, we have

\[
E(\bar{x}) = E \left(\frac{1}{n} \sum_{i=1}^{n} x_i \right) = \frac{1}{n} E \left(\sum_{i=1}^{n} x_i \right) = \frac{1}{n} \sum_{i=1}^{n} E(x_i) = \frac{n\mu}{n} = \mu
\]

\[
V(\bar{x}) = V \left(\frac{1}{n} \sum_{i=1}^{n} x_i \right) = \frac{1}{n^2} V \left(\sum_{i=1}^{n} x_i \right) = \frac{1}{n^2} \sum_{i=1}^{n} V(x_i) = \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n}
\]

where $E(\bar{x})$ and $V(\bar{x})$ are the expectation and variance of \bar{x}.

Implies that $\bar{x} \sim N(\mu, \sigma^2/n)$
Suppose we want to test one of the following sets of hypotheses

- \(H_0 : \mu = \mu_0 \) versus \(H_1 : \mu > \mu_0 \)
- \(H_0 : \mu = \mu_0 \) versus \(H_1 : \mu < \mu_0 \)
- \(H_0 : \mu = \mu_0 \) versus \(H_1 : \mu \neq \mu_0 \)

and define \(\delta = \mu_1 - \mu_0 \) where \(\mu_1 \) is the true mean under \(H_1 \).

Our \(t \) test statistic has the form:

\[
T = \frac{\hat{\delta}}{\hat{\sigma}/\sqrt{n}}
\]

- \(\hat{\delta} = \bar{x} - \mu_0 \)
- \(\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 \)
Given the test statistic $T = \frac{\hat{\delta}}{\hat{\sigma}/\sqrt{n}}$, power is influenced by

- Effect size $\hat{\delta}$
- Precision $\hat{\sigma}/\sqrt{n}$
- Significance level α

Note that there are four parameters that affect power: $\{\delta, \sigma, n, \alpha\}$

- If you know 3 of 4 (and desired power), you can solve for fourth
- The `power.t.test` function in R does this for you
One Sample \(t \) Test Power in R (one-sided)

```r
> power.t.test(n=NULL,delta=-1,sd=1,sig.level=0.05,power=0.80,
+               type="one.sample",alternative="one.sided")
Error in uniroot(function(n) eval(p.body) - power, c(2, 1e+07),
  tol = tol,  : no sign change found in 1000 iterations
> power.t.test(n=NULL,delta=1,sd=1,sig.level=0.05,power=0.80,
+               type="one.sample",alternative="one.sided")

One-sample \( t \) test power calculation

\[
\begin{align*}
n &= 7.727622 \\
delta &= 1 \\
sd &= 1 \\
sig.level &= 0.05 \\
power &= 0.8 \\
alternative &= \text{one.sided}
\end{align*}
\]
```r
> power.t.test(n=NULL, delta=1, sd=1, sig.level=0.05, power=0.80,
+ type="one.sample", alternative="two.sided")

One-sample t test power calculation

 n = 9.937864
 delta = 1
 sd = 1
 sig.level = 0.05
 power = 0.8
 alternative = two.sided
```
One Sample $t$ Test Power in R (small effect size)

```r
> power.t.test(n=NULL,delta=0.2,sd=1,sig.level=0.05,power=0.80,
+ type="one.sample",alternative="two.sided")

One-sample t test power calculation

n = 198.1513
delta = 0.2
sd = 1
sig.level = 0.05
power = 0.8
alternative = two.sided
```
One Sample $t$ Test Power in R (really small effect size)

```r
> power.t.test(n=NULL, delta=0.02, sd=1, sig.level=0.05, power=0.80,
+ type="one.sample", alternative="two.sided")

One-sample t test power calculation

n = 19624.12
delta = 0.02
sd = 1
sig.level = 0.05
power = 0.8
alternative = two.sided
```
Two Sample Location Problem

Suppose we have two independent samples of data \( x_{i1} \overset{iid}{\sim} \mathcal{N}(\mu_1, \sigma^2) \) and \( x_{i2} \overset{iid}{\sim} \mathcal{N}(\mu_2, \sigma^2) \) and we want to make inferences about \( \delta = \mu_1 - \mu_2 \).

Letting \( \bar{x}_1 = \frac{1}{n_1} \sum_{i=1}^{n_1} x_{i1} \) and \( \bar{x}_2 = \frac{1}{n_2} \sum_{i=1}^{n_2} x_{i2} \), we have

\[
E(\bar{x}_1) = \mu_1 \quad \text{and} \quad E(\bar{x}_2) = \mu_2
\]

\[
V(\bar{x}_1) = \frac{\sigma^2}{n_1} \quad \text{and} \quad V(\bar{x}_2) = \frac{\sigma^2}{n_2}
\]

where \( E(\cdot) \) and \( V(\cdot) \) are the expectation and variance operators.

Implies that \( \bar{x}_1 \sim \mathcal{N}(\mu_1, \sigma^2/n_1) \) and \( \bar{x}_2 \sim \mathcal{N}(\mu_2, \sigma^2/n_2) \).

- Note that \( \bar{x}_1 - \bar{x}_2 \sim \mathcal{N}(\delta, \sigma^*_2) \) where \( \sigma^*_2 = \sigma^2\left(\frac{1}{n_1} + \frac{1}{n_2}\right) \).
Suppose we want to test one of the following sets of hypotheses:

- \( H_0 : \delta = 0 \) versus \( H_1 : \delta > 0 \)
- \( H_0 : \delta = 0 \) versus \( H_1 : \delta < 0 \)
- \( H_0 : \delta = 0 \) versus \( H_1 : \delta \neq 0 \)

where \( \delta = \mu_1 - \mu_2 \) is the population mean difference.

Our \( t \) test statistic has the form:

\[
T = \frac{\hat{\delta}}{\hat{\sigma} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}
\]

- \( \hat{\delta} = \bar{x}_1 - \bar{x}_2 \)
- \( \hat{\sigma}^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2} \) is the pooled variance estimate
- \( s_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (x_{i1} - \bar{x}_1)^2 \) and \( s_2^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (x_{i2} - \bar{x}_2)^2 \)
Power Calculations for Two Sample $t$ Test

Given the test statistic $T = \frac{\hat{\delta}}{\hat{\sigma} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$, power is influenced by:

- Effect size $\hat{\delta}$
- Precision $\hat{\sigma} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} = \hat{\sigma} \sqrt{2/n}$ if $n_1 = n_2 = n$
- Significance level $\alpha$

Note that the same four parameters affect power: $\{\delta, \sigma, n, \alpha\}$

- If you know 3 of 4 (and desired power), you can solve for fourth
- The `power.t.test` function in R does this for you
Two Sample $t$ Test Power in R (one-sided)

```r
> power.t.test(n=NULL, delta=-1, sd=1, sig.level=0.05, power=0.80,
+ alternative="one.sided")
Error in uniroot(function(n) eval(p.body) - power, c(2, 1e+07),
 tol = tol, : no sign change found in 1000 iterations
> power.t.test(n=NULL, delta=1, sd=1, sig.level=0.05, power=0.80,
+ alternative="one.sided")

Two-sample t test power calculation

n = 13.09777
delta = 1
sd = 1
sig.level = 0.05
power = 0.8
alternative = one.sided

NOTE: n is number in *each* group
```
> power.t.test(n=NULL, delta=1, sd=1, sig.level=0.05, power=0.80, +
   alternative="two.sided")

Two-sample t test power calculation

n = 16.71477
delta = 1
sd = 1
sig.level = 0.05
power = 0.8
alternative = two.sided

NOTE: n is number in *each* group
Two Sample $t$ Test Power in R (small effect size)

```r
> power.t.test(n=NULL, delta=0.2, sd=1, sig.level=0.05, power=0.80,
+ alternative="two.sided")

Two-sample t test power calculation

n = 393.4067
delta = 0.2
sd = 1
sig.level = 0.05
power = 0.8
alternative = two.sided

NOTE: n is number in *each* group
Two Sample t Test Power in R (really small effect size)

```r
> power.t.test(n=NULL, delta=0.02, sd=1, sig.level=0.05, power=0.80,
+ alternative="two.sided")

Two-sample t test power calculation

   n = 39245.36
   delta = 0.02
   sd = 1
   sig.level = 0.05
   power = 0.8
   alternative = two.sided

NOTE: n is number in *each* group
Suppose we have $k > 2$ independent samples of data $x_{ij} \overset{iid}{\sim} N(\mu_j, \sigma^2)$.

Letting $\bar{x}_j = \frac{1}{n_j} \sum_{i=1}^{n_j} x_{ij}$ denote the $j$-th group’s mean, we have

$$E(\bar{x}_j) = \mu_j \quad \text{and} \quad V(\bar{x}_j) = \frac{\sigma^2}{n_j}$$

where $E(\cdot)$ and $V(\cdot)$ are the expectation and variance operators.

Implies that $\bar{x}_j \sim N(\mu_j, \sigma^2/n_j)$ for $j \in \{1, \ldots, k\}$
One-Way ANOVA $F$ Test Statistic

Suppose we want to test the overall (omnibus) $F$ test

- $H_0 : \mu_j = \mu \forall j$ versus $H_1 : \text{not all } \mu_j \text{ are equal}$

where $\mu$ is some common population mean.

Our $F$ test statistic has the form:

$$F = \frac{MSB}{MSW} = \frac{\frac{1}{k-1} \sum_{j=1}^{k} n_j (\bar{y}_j - \bar{y})^2}{\frac{1}{n-k} \sum_{j=1}^{k} \sum_{i=1}^{n_j} (y_{ij} - \bar{y}_j)^2}$$

- If $n_j = n \forall j$, then $F = n \hat{\Psi}^2$ where $\hat{\Psi}$ is estimated RMSSE
- $\hat{\Psi}^2 = \frac{\nu(\text{between})}{\nu(\text{within})}$ is ratio of variances
- $MSW = \hat{\sigma}^2$ is the pooled variance estimate
Power Calculations for One-Way ANOVA

Given the test statistic $F = n\hat{\psi}^2$, power is influenced by

- Effect sizes $\tilde{\delta}_j = \bar{y}_j - \bar{y}$
- Precisions $\hat{\sigma}$ and $n$
- Significance level $\alpha$

Note that there are four parameters that affect power: $\{V(\tilde{\delta}), \sigma, n, \alpha\}$

- If you know 3 of 4 (and desired power), you can solve for fourth
- The `power.anova.test` function in R does this for you
One-Way ANOVA Power in R (large effect size)

```r
> power.anova.test(groups=3, n=NULL, between.var=1, within.var=2,
+ sig.level=0.05, power=0.80)

Balanced one-way analysis of variance power calculation

 groups = 3
 n = 10.69938
between.var = 1
within.var = 2
 sig.level = 0.05
 power = 0.8

NOTE: n is number in each group
```
One-Way ANOVA Power in R (medium effect size)

```r
> power.anova.test(groups=3, n=NULL, between.var=1, within.var=4,
+ sig.level=0.05, power=0.80)

Balanced one-way analysis of variance power calculation

groups = 3
 n = 20.30205
between.var = 1
within.var = 4
 sig.level = 0.05
 power = 0.8

NOTE: n is number in each group
```
One-Way ANOVA Power in R (small effect size)

```r
> power.anova.test(groups=3, n=483, between.var=1, within.var=100,
+ sig.level=0.05, power=0.80)

Balanced one-way analysis of variance power calculation

 groups = 3
 n = 482.7344
 between.var = 1
 within.var = 100
 sig.level = 0.05
 power = 0.8

NOTE: n is number in each group
One-Way ANOVA Power in R (really small effect size)

> power.anova.test(groups=3, n=NULL, between.var=1, within.var=1000, +
 sig.level=0.05, power=0.80)

Balanced one-way analysis of variance power calculation

groups = 3
 n = 4818.343
between.var = 1
within.var = 1000
sig.level = 0.05
 power = 0.8

NOTE: n is number in each group
Multiple Regression Problem

Suppose we have a multiple linear regression

\[y_i = b_0 + \sum_{j=1}^{p} b_j x_{ij} + e_i \]

for \(i \in \{1, \ldots, n\} \) where

- \(y_i \in \mathbb{R} \) is the real-valued response for the \(i \)-th observation
- \(b_0 \in \mathbb{R} \) is the regression intercept
- \(b_j \in \mathbb{R} \) is the \(j \)-th predictor’s regression slope
- \(x_{ij} \in \mathbb{R} \) is the \(j \)-th predictor for the \(i \)-th observation
- \(e_i \overset{iid}{\sim} \mathcal{N}(0, \sigma^2) \) is a Gaussian error term
Suppose we want to test the overall (omnibus) F test

- $H_0: \ b_1 = \cdots = b_p = 0$ versus $H_1: \text{not all } b_j \text{ equal } 0$

where the b_j terms are the unknown population slopes.

Our F test statistic has the form:

$$F = \frac{MSR}{MSE} = \frac{1}{p} \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 \frac{1}{n-(p+1)} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

- Reminder: $f^2 = \frac{R^2}{1-R^2} = \frac{SSR/SST}{1-SSR/SST} = \frac{SSR}{SSE}$
- Note that $f^2 = \left(\frac{p}{n-(p+1)} \right) F$
Power Calculations for Multiple Regression

Given the test statistic $F = \left(\frac{n-(p+1)}{p} \right) f^2$, power is influenced by:

- Effect sizes f^2
- Degrees of freedom p and $n-(p+1)$
- Significance level α

Note that there are four parameters that affect power: $\{f^2, p, n, \alpha\}$

- If you know 3 of 4 (and desired power), you can solve for fourth
- See `pwr.f2.test` function in `pwr` R package
Assume that \(p = 2 \) and \(R^2 = 0.8 \), so that our ES is \(f^2 = 4 \).

```r
> library(pwr)
> pwr.f2.test(u=2,v=NULL,f2=4,sig.level=0.05,power=0.80)

Multiple regression power calculation

\[
\begin{align*}
\text{u} & = 2 \\
\text{v} & = 3.478466 \\
\text{f2} & = 4 \\
\text{sig.level} & = 0.05 \\
\text{power} & = 0.8
\end{align*}
\]

Need \( n = \lceil v \rceil + (p + 1) = 4 + 3 = 7 \) subjects.
Assume that $p = 2$ and $R^2 = 0.5$, so that our ES is $f^2 = 1$.

> pwr.f2.test(u=2,v=NULL,f2=1,sig.level=0.05,power=0.80)

```
Multiple regression power calculation

 u = 2
 v = 10.14429
 f2 = 1
 sig.level = 0.05
 power = 0.8
```

Need $n = \lceil v \rceil + (p + 1) = 11 + 3 = 14$ subjects.
Assume that $p = 2$ and $R^2 = 0.1$, so that our ES is $f^2 \approx 0.11$.

```r
> pwr.f2.test(u=2,v=NULL,f2=0.11,sig.level=0.05,power=0.80)

Multiple regression power calculation

 u = 2
 v = 87.65198
 f2 = 0.11
 sig.level = 0.05
 power = 0.8

Need $n = \lceil v \rceil + (p + 1) = 88 + 3 = 91$ subjects.
Assume that \(p = 2 \) and \(R^2 = 0.01 \), so that our ES is \(f^2 \approx 0.01 \).

```r
> pwr.f2.test(u=2,v=NULL,f2=0.01,sig.level=0.05,power=0.80)

Multiple regression power calculation

u = 2
v = 963.4709
f2 = 0.01
sig.level = 0.05
power = 0.8
```

Need \(n = \lceil v \rceil + (p + 1) = 964 + 3 = 967 \) subjects.
Multiple Regression Power in R (more predictors)

Assume that $p = 4$ and $R^2 = 0.01$, so that our ES is $f^2 \approx 0.01$.

```r
> pwr.f2.test(u=4,v=NULL,f2=0.01,sig.level=0.05,power=0.80)
```

Multiple regression power calculation

- $u = 4$
- $v = 1193.282$
- $f^2 = 0.01$
- $\text{sig.level} = 0.05$
- $\text{power} = 0.8$

Note: $F = \left(\frac{n-(p+1)}{p}\right) f^2$ so need larger n as p increases (for fixed f^2).