Correlation and Geometry

Nathaniel E. Helwig

Assistant Professor of Psychology and Statistics
University of Minnesota (Twin Cities)

Updated 04-Jan-2017

Copyright

Copyright © 2017 by Nathaniel E. Helwig

Outline of Notes

1) Pearson's Correlation:

- Population vs. sample
- Important properties
- Sampling distribution

2) Correlation and Regression:

- Simple linear regression
- Reinterpreting correlation
- Connecting the two

3) Inferences with Correlations:

- Hypothesis testing ($\rho=0$)
- Hypothesis testing $(\rho \neq 0)$
- GPA Example

4) Geometrical Interpretations:

- Sum-of-squares
- Correlation coefficient
- Part and partial correlations

Pearson's Correlation

Pearson's Correlation Coefficient: Population

Pearson's product-moment correlation coefficient is defined as

$$
\begin{aligned}
\rho_{X Y} & =\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}} \\
& =\frac{\mathrm{E}\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]}{\sqrt{\mathrm{E}\left[\left(X-\mu_{X}\right)^{2}\right]} \sqrt{\mathrm{E}\left[\left(Y-\mu_{Y}\right)^{2}\right]}}
\end{aligned}
$$

where

- $\sigma_{X Y}$ is the population covariance between X and Y
- σ_{X}^{2} is the population variance of X
- σ_{Y}^{2} is the population variance of Y

Pearson's Correlation Coefficient: Sample

Given a sample of observations $\left(x_{i}, y_{i}\right)$ for $i \in\{1, \ldots, n\}$, Pearson's product-moment correlation coefficient is defined as

$$
\begin{aligned}
r_{x y} & =\frac{s_{x y}}{s_{x} s_{y}} \\
& =\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}}
\end{aligned}
$$

where

- $s_{x y}=\frac{\sum_{i=1}^{n}\left(x_{i}-\overline{-}\right)\left(y_{i}-\bar{y}\right)}{n-1}$ is sample covariance between x_{i} and y_{i}
- $s_{x}^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}$ is sample variance of x_{i}
- $s_{y}^{2}=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}{n-1}$ is sample variance of y_{i}

Properties of Pearson's Correlation

$\rho_{X Y}$ measures linear dependence between X and Y

- Not about prediction. . . just a measure of linear dependence
- CORRELATION \neq CAUSATION
$\rho_{X Y}$ is bounded: $-1 \leq \rho_{X Y} \leq 1$
- $\rho_{X Y}=-1$ implies perfect negative linear relationship
- $\rho_{X Y}=1$ implies perfect positive linear relationship
- $\rho_{X Y}=0$ implies no linear relationship
$\rho_{X Y}$ is independent of the units of measurement of X and Y

Properties of Pearson's Correlation (continued)

Magnitude of $\rho_{X Y}$ is unaffected by linear transformations

- Suppose that $W=a X+b$ and $Z=c Y+d$
- If $\operatorname{sign}(a)=\operatorname{sign}(c)$, then $\rho_{W Z}=\rho_{X Y}$
- If $\operatorname{sign}(a) \neq \operatorname{sign}(c)$, then $\rho_{W Z}=-\rho_{X Y}$

Sample correlation $r_{x y}$ is sensitive to outliers
$\rho_{X Y}$ can be affected by moderator variables

- Need to think about possible moderator variables
- Can have different patterns of correlation in different subgroups

Visualization of Pearson's Correlation

Plots of x_{i} versus y_{i} for different $r_{x y}$ values:

From http://en.wikipedia.org/wiki/File:Correlation_examples2.svg

Visualization of Pearson's Correlation (continued)

Plots of x_{i} versus y_{i} for two groups of observations:

From Practical Regression and Anova using R, Faraway (2002)

Example \#1: Pizza Data

The owner of Momma Leona's Pizza restaurant chain believes that if a restaurant is located near a college campus, then there is a linear relationship between sales and the size of the student population. Suppose data were collected from a sample of 10 Momma Leona's Pizza restaurants located near college campuses.

Population (1000s): x	2	6	8	8	12	16	20	20	22	26
Sales (\$1000s): y	58	105	88	118	117	137	157	169	149	202

We want to find the correlation between student population (x) and quarterly pizza sales (y).

Example \#1: Correlation Calculation

Remember from the definition: $\hat{r}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}}$

Remember from the SLR notes:

$$
\begin{aligned}
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} & =\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2} \\
\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} & =\sum_{i=1}^{n} y_{i}^{2}-n \bar{y}^{2} \\
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) & =\sum_{i=1}^{n} x_{i} y_{i}-n \bar{x} \bar{y}
\end{aligned}
$$

Example \#1: Correlation Calculation (continued)

$\left.\begin{array}{rrrrr}x & y & x^{2} & y^{2} & x y \\ \hline 2 & 58 & 4 & 3364 & 116 \\ 6 & 105 & 36 & 11025 & 630\end{array}\right]$

\sum	140	1300	2528	184730	21040

$$
\begin{aligned}
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} & =2528-10\left(14^{2}\right)=568 \\
\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} & =184730-10\left(130^{2}\right)=15730 \\
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) & =21040-10(14)(130)=2840
\end{aligned}
$$

Example \#1: Correlation Calculation (continued)

Using the results from the previous slides:

$$
\begin{aligned}
\hat{r} & =\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}} \\
& =\frac{2840}{\sqrt{568} \sqrt{15730}} \\
& =0.950123
\end{aligned}
$$

Strong positive correlation: as the number of students (x) increases, the quarterly pizza sales (y) increases linearly.

Sampling Distribution of r

Fisher (1929) derived the sampling distribution of Pearson's r :

$$
f(r)=\frac{n-2}{\pi}\left(1-\rho^{2}\right)^{\frac{1}{2}(n-1)}\left(1-r^{2}\right)^{\frac{1}{2}(n-4)} \int_{0}^{\infty}[\cosh (z)-\rho r]^{-(n-1)} \mathrm{d} z
$$

where

- ρ is the true population correlation coefficient
- n is the observed sample size

For a given ρ and n, we can simulate r using:

```
rsim<-function(rho,n) {
    x=rnorm(n)
    y=rho*x+rnorm(n,sd=sqrt(1-rho^2))
    cor(x,y)
```

\}

Empirical Distribution with $\rho=0$

If $\rho=0$ then $f(r)$ is symmetric and approximately normal for large n :

Empirical Distribution with $\rho=0$ (continued)

R code:

```
> set.seed(1234)
> r10z=replicate(10000,rsim(rho=0,n=10))
> r30z=replicate(10000,rsim(rho=0,n=30))
> r60z=replicate(10000,rsim(rho=0,n=60))
> r90z=replicate(10000,rsim(rho=0,n=90))
> r120z=replicate(10000,rsim(rho=0,n=120))
> r150z=replicate(10000,rsim(rho=0,n=150))
> par(mfrow=c (2,3))
> hist(r10z,main=expression(italic(n)*"="*10))
> hist(r30z,main=expression(italic(n)*"="*30))
> hist(r60z,main=expression(italic(n)*"="*60))
> hist(r90z,main=expression(italic(n)*"="*90))
> hist(r120z,main=expression(italic(n)*"="*120))
> hist(r150z,main=expression(italic(n)*"="*150))
```


Empirical Distribution with $\rho \neq 0$

If $\rho \neq 0$ then $f(r)$ is skewed in opposite direction of correlation sign:

Empirical Distribution with $\rho \neq 0$ (continued)

R code:

```
> set.seed(1234)
> r1p=replicate(10000,rsim(rho=0.1,n=100))
> r5p=replicate(10000,rsim(rho=0.5,n=100))
> r9p=replicate(10000,rsim(rho=0.9,n=100))
> r1n=replicate(10000,rsim(rho=-0.1,n=100))
> r5n=replicate(10000,rsim(rho=-0.5,n=100))
> r9n=replicate(10000,rsim(rho=-0.9,n=100))
> par(mfrow=c (2,3))
> hist(r1p,main=expression(italic(n)*"="*100*",
> hist(r5p,main=expression(italic(n)*"="*100*",
> hist(r9p,main=expression(italic(n)*"="*100*",
> hist(r1n,main=expression(italic(n)*"="*100*",
> hist(r5n,main=expression(italic(n)*"="*100*",
> hist(r9n,main=expression(italic(n)*"="*100*",
"*italic(r)*"="*0.1))
"*italic(r)*"="*0.5))
"*italic(r)*"="*0.9))
"*italic(r)*"="*-0.1))
"*italic(r)*"="*-0.5))
"*italic(r)*"="*-0.9))
```


Correlation and Regression

Simple Linear Regression Model

The simple linear regression model has the form

$$
y_{i}=b_{0}+b_{1} x_{i}+e_{i}
$$

for $i \in\{1, \ldots, n\}$ where

- $y_{i} \in \mathbb{R}$ is the real-valued response for the i-th observation
- $b_{0} \in \mathbb{R}$ is the regression intercept
- $b_{1} \in \mathbb{R}$ is the regression slope
- $x_{i} \in \mathbb{R}$ is the predictor for the i-th observation
- $e_{i} \stackrel{\mathrm{iid}}{\sim} \mathrm{N}\left(0, \sigma^{2}\right)$ is a Gaussian error term

Ordinary Least Squares Solution

The ordinary least squares (OLS) problem is

$$
\min _{b_{0}, b_{1} \in \mathbb{R}} \sum_{i=1}^{n}\left(y_{i}-b_{0}-b_{1} x_{i}\right)^{2}
$$

and the OLS solution has the form

$$
\begin{aligned}
& \hat{b}_{0}=\bar{y}-\hat{b}_{1} \bar{x} \\
& \hat{b}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
\end{aligned}
$$

where $\bar{x}=(1 / n) \sum_{i=1}^{n} x_{i}$ and $\bar{y}=(1 / n) \sum_{i=1}^{n} y_{i}$

Revisiting Sample Correlation $r_{x y}$

Note that we can rewrite the sample correlation coefficient as

$$
\begin{aligned}
r_{x y} & =\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}} \\
& =\frac{1}{n-1} \sum_{i=1}^{n} z_{x_{i}} z_{y_{i}}
\end{aligned}
$$

where

- $z_{x_{i}}=\frac{x_{i}-\bar{x}}{s_{x}}$ with $s_{x}^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}$
- $z_{y_{i}}=\frac{y_{i}-\bar{y}}{s_{y}}$ with $s_{y}^{2}=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}{n-1}$

Revisiting Sample Correlation $r_{x y}$ (continued)

Note that $z_{x_{i}}$ and $z_{y_{i}}$ are standardized to have mean 0 and variance 1 .

- $z_{x_{i}}$ and $z_{y_{i}}$ are Z-scores

Thus, the sample correlation coefficient

$$
r_{x y}=\frac{1}{n-1} \sum_{i=1}^{n} z_{x_{i}} z_{y_{i}}
$$

is the sample covariance of the standardized scores of X and Y.

Connecting $r_{x y}$ to OLS Solution

First convert x_{i} and y_{i} into Z-scores:

$$
z_{x_{i}}=\frac{x_{i}-\bar{x}}{s_{x}} \quad z_{y_{i}}=\frac{y_{i}-\bar{y}}{s_{y}}
$$

Next suppose we want to predict $z_{y_{i}}$ from $z_{x_{i}}$.

Now plug in the Z-scores to the OLS solution:

$$
\begin{aligned}
& \hat{b}_{0}^{(z)}=\bar{z}_{y}-\hat{b}_{1}^{(z)} \bar{z}_{x}=0 \\
& \hat{b}_{1}^{(z)}=\frac{\sum_{i=1}^{n}\left(z_{x_{i}}-\bar{z}_{x}\right)\left(z_{y_{i}}-\bar{z}_{y}\right)}{\sum_{i=1}^{n}\left(z_{x_{i}}-\bar{z}_{x}\right)^{2}}=r_{x y}
\end{aligned}
$$

because $\bar{z}_{x}=\bar{z}_{y}=0$ and $\frac{1}{n-1} \sum_{i=1}^{n}\left(z_{x_{i}}-\bar{z}_{x}\right)^{2}=\frac{1}{n-1} \sum_{i=1}^{n} z_{x_{i}}^{2}=1$

Connecting $r_{x y}$ to OLS Solution (continued)

Thus, we have that $\hat{z}_{y_{i}}=r_{x y} z_{x_{i}}$ is the fitted value for i-th observation.

In general, the relationship between $r_{x y}$ and b_{1} is:

$$
\begin{aligned}
b_{1} & =\frac{s_{x y}}{s_{x}^{2}} \\
& =\left(\frac{s_{x y}}{s_{x} s_{y}}\right) \frac{s_{y}}{s_{x}} \\
& =r_{x y} \frac{s_{y}}{s_{x}}
\end{aligned}
$$

which implies that $r_{x y}=b_{1} \frac{s_{x}}{s_{y}}$.

Connecting $r_{x y}$ to SSR

Remember from the SLR notes that $\hat{y}_{i}=\hat{b}_{0}+\hat{b}_{1} x_{i}=\bar{y}+\hat{b}_{1}\left(x_{i}-\bar{x}\right)$ because $\hat{b}_{0}=\bar{y}-\hat{b}_{1} \bar{x}$

Plugging $\hat{y}_{i}=\bar{y}+\hat{b}_{1}\left(x_{i}-\bar{x}\right)$ into the definition of SSR produces

$$
S S R=\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}=\sum_{i=1}^{n} \hat{b}_{1}^{2}\left(x_{i}-\bar{x}\right)^{2}
$$

Now plugging in $\hat{b}_{1}=\hat{r}_{x y} \frac{s_{y}}{s_{x}}$ to R^{2} defintion produces

$$
\begin{aligned}
R^{2} & =\frac{S S R}{S S T}=\frac{\sum_{i=1}^{n} \hat{b}_{1}^{2}\left(x_{i}-\bar{x}\right)^{2}}{(n-1) s_{y}^{2}} \\
& =\frac{\sum_{i=1}^{n}\left(\hat{r}_{x y} \frac{s_{y}}{s_{x}}\right)^{2}\left(x_{i}-\bar{x}\right)^{2}}{(n-1) s_{y}^{2}}=\hat{r}_{x y}^{2}
\end{aligned}
$$

Example \#1: Connecting $\hat{r}_{x y}$ to \hat{b}_{1}

From the SLR notes, remember that:

$$
\begin{aligned}
& \hat{b}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=2840 / 568=5 \\
& \hat{b}_{0}=\bar{y}-\hat{b}_{1} \bar{x}=130-5(14)=60
\end{aligned}
$$

And from the previous correlation calculations, remember that:

$$
\hat{r}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}}=\frac{2840}{\sqrt{568} \sqrt{15730}}=0.950123
$$

Note that $0.950123=\hat{r}=\hat{b}_{1} \frac{s_{x}}{s_{y}}=5 \frac{\sqrt{568}}{\sqrt{15730}}=0.950123$

Inferences with Correlations

Testing for Non-Zero Correlation

In most cases we want to test if there is a linear relationship:

$$
\begin{aligned}
& H_{0}: \rho_{X Y}=0 \\
& H_{1}: \rho_{X Y} \neq 0
\end{aligned}
$$

If (X, Y) follow a bivariate normal distribution with $\rho=0$ and if $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$ are independent samples then

$$
T^{*}=\frac{r_{x y} \sqrt{n-2}}{\sqrt{1-r_{x y}^{2}}} \sim t_{n-2}
$$

so we reject H_{0} if $\left|T^{*}\right| \geq t_{n-2}^{(\alpha / 2)}$ where $t_{n-2}^{(\alpha / 2)}$ is critical t_{n-2} value such that $\mathrm{P}\left(T \geq t_{n-2}^{(\alpha / 2)}\right)=\alpha / 2$

Fisher z-Transformation

If $\rho \neq 0$, then we can use Fisher's z-transformation:

$$
z=\frac{1}{2} \ln \left(\frac{1+r}{1-r}\right)
$$

If (X, Y) follow a bivariate normal distribution and if $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$ are independent samples then z is approximately normal with

$$
\begin{aligned}
& \mathrm{E}(z)=\frac{1}{2} \ln \left(\frac{1+\rho}{1-\rho}\right) \\
& \mathrm{V}(z)=\frac{1}{n-3}
\end{aligned}
$$

where ρ is the true population correlation coefficient.

Testing for Arbitrary Correlation

In some cases we want to test if there is a particular correlation:

$$
\begin{aligned}
& H_{0}: \rho_{X Y}=\rho_{0} \\
& H_{1}: \rho_{X Y} \neq \rho_{0}
\end{aligned}
$$

In this case, we use Fisher's z-transformation; first define the standardized variable $Z^{*}=\left[z-\frac{1}{2} \ln \left(\frac{1+\rho_{0}}{1-\rho_{0}}\right)\right] \sqrt{n-3}$

We reject H_{0} if $\left|Z^{*}\right| \geq Z_{\alpha / 2}$ where $Z_{\alpha / 2}$ is critical Z value such that $\mathrm{P}\left(Z \geq Z_{\alpha / 2}\right)=\alpha / 2$

Confidence Intervals for $r_{x y}$

To form a Cl around $r_{x y}$ we use Fisher's z-transformation to form a Cl on the transformed scale:

$$
z \pm Z_{\alpha / 2} / \sqrt{n-3}
$$

Then we need to transform z limits back to r :

$$
r=\frac{e^{2 z}-1}{e^{2 z}+1}
$$

Example \#1: Correlation Inference Questions

Returning to Momma Leona's Pizza example, suppose we want to...
(a) Test if there is a significant linear relationship between student population (x) and quarterly pizza sales (y), i.e., test $H_{0}: \rho_{X Y}=0$ versus $H_{1}: \rho_{X Y} \neq 0$. Use $\alpha=.05$ significance level.
(b) Test $H_{0}: \rho_{X Y}=0.8$ versus $H_{1}: \rho_{X Y} \neq 0.8$. Use $\alpha=.05$ level.
(b) Test $H_{0}: \rho_{X Y}=0.8$ versus $H_{1}: \rho_{X Y}>0.8$. Use $\alpha=.05$ level.
(d) Make a $90 \% \mathrm{Cl}$ for $\rho_{X Y}$.

Example \#1: Answer 1a

Question: Test $H_{0}: \rho_{X Y}=0$ versus $H_{1}: \rho_{X Y} \neq 0$. Use $\alpha=.05$.

The needed t test statistic is

$$
T^{*}=\frac{r_{x y} \sqrt{n-2}}{\sqrt{1-r_{x y}^{2}}}=\frac{0.950123 \sqrt{8}}{\sqrt{1-0.950123^{2}}}=8.616749
$$

which follows a t_{8} distribution.

The critical t_{8} values are $t_{8}^{(.025)}=-2.306004$ and $t_{8}^{(.975)}=2.306004$, so our decision is

$$
t_{8}^{(.975)}=2.306004<8.616749=T^{*} \Longrightarrow \text { Reject } H_{0}
$$

Example \#1: Answer 1b

Question: Test $H_{0}: \rho_{X Y}=0.8$ versus $H_{1}: \rho_{X Y} \neq 0.8$. Use $\alpha=.05$.

First form the z-transformed variable

$$
z=0.5 \ln \left(\frac{1+\hat{r}}{1-\hat{r}}\right)=0.5 \ln \left(\frac{1.950123}{0.04987704}\right)=1.833043
$$

which is approximately normal with mean and variance

$$
\begin{aligned}
& \mathrm{E}(z)=0.5 \ln \left(\frac{1+\rho_{0}}{1-\rho_{0}}\right)=0.5 \ln \left(\frac{1.8}{0.2}\right)=1.098612 \\
& \mathrm{~V}(z)=\frac{1}{n-3}=1 / 7
\end{aligned}
$$

under the null hypothesis $H_{0}: \rho_{X Y}=0.8$.

Example \#1: Answer 1b (continued)

Question: Test $H_{0}: \rho_{X Y}=0.8$ versus $H_{1}: \rho_{X Y} \neq 0.8$. Use $\alpha=.05$.

Now form the standardized variable

$$
Z^{*}=\frac{z-z_{0}}{\sqrt{V(z)}}=\frac{1.833043-1.098612}{1 / \sqrt{7}}=1.943122
$$

which is approximately $\mathrm{N}(0,1)$ under $H_{0}: \rho_{X Y}=0.8$.

The critical Z values are $Z_{.025}=-1.959964$ and $Z_{.975}=1.959964$, so our decision is

$$
Z_{.975}=1.959964>1.943122=Z^{*} \Longrightarrow \text { Retain } H_{0}
$$

Example \#1: Answer 1c

Question: Test $H_{0}: \rho_{X Y}=0.8$ versus $H_{1}: \rho_{X Y}>0.8$. Use $\alpha=.05$.

We have the same transformed variable $z=1.833043$ with $\mathrm{E}(z)=1.098612$ and $\mathrm{V}(z)=1 / 7$; results in the same

$$
Z^{*}=\frac{z-z_{0}}{\sqrt{V(z)}}=\frac{1.833043-1.098612}{1 / \sqrt{7}}=1.943122
$$

which is approximately $\mathrm{N}(0,1)$ under $H_{0}: \rho_{X Y}=0.8$

The critical Z value is $Z_{.95}=1.644854$, so our decision is

$$
Z_{.95}=1.644854<1.943122=Z^{*} \Longrightarrow \text { Reject } H_{0}
$$

Example \#1: Answer 1d

Question: Make a $90 \% \mathrm{Cl}$ for $\rho_{X Y}$.

First form the z-transformed variable

$$
z=0.5 \ln \left(\frac{1+\hat{r}}{1-\hat{r}}\right)=0.5 \ln \left(\frac{1.950123}{0.04987704}\right)=1.833043
$$

which is approximately normal with variance $\mathrm{V}(z)=1 / 7$.

The critical Z value is $Z_{.95}=1.644854$, so the $90 \% \mathrm{Cl}$ is given by

$$
z \pm Z_{.95} \sqrt{\mathrm{~V}(z)}=1.833043 \pm 1.644854 \sqrt{1 / 7}=[1.211347 ; 2.45474]
$$

and converting the z limits back to the correlation scale produces

$$
\left[\frac{e^{2(1.211347)}-1}{e^{2(1.211347)}+1} ; \frac{e^{2(2.45474)}-1}{e^{2(2.45474)}+1}\right]=[0.8370831 ; 0.9853554]
$$

Data Overview

This example uses the GPA data set that we examined before.

- From http://onlinestatbook.com/2/regression/intro.html
Y : student's university grade point average.
X : student's high school grade point average.

Have data from $n=105$ different students.

Correlation Calculation

Calculate Pearson's correlation with cor function:
> X=gpa\$high_GPA
> Y=gpa\$univ_GPA
$>\operatorname{cor}(X, Y)$
[1] 0.7795631

Calculate Pearson's correlation with cov and sd functions:
$>\operatorname{cov}(X, Y) /(\operatorname{sd}(X) * \operatorname{sd}(Y))$
[1] 0.7795631

Correlation Calculation (continued)

Calculate Pearson's correlation manually:

$>\operatorname{mux}=\operatorname{mean}(X)$
$>$ muy=mean (Y)
$>c x y=\operatorname{sum}((X-m u x) *(Y-m u y))$
$>\operatorname{sx}=\operatorname{sqrt}\left(\operatorname{sum}\left((X-m u x)^{\wedge} 2\right)\right)$
$>\operatorname{sy}=\operatorname{sqrt}\left(\operatorname{sum}\left((Y-m u y)^{\wedge} 2\right)\right)$
$>c x y /(s x * s y)$
[1] 0.7795631

Testing for Non-Zero Correlation

To test $H_{0}: \rho_{X Y}=0$ versus $H_{1}: \rho_{X Y} \neq 0$ use the cor. test function: $>\operatorname{cor} . \operatorname{test}(X, Y)$

```
Pearson's product-moment correlation
```

```
data: X and Y
t = 12.632, df=103, p-value < 2. 2e-16
alternative hypothesis: true correlation is not equal to 0
9 5 \text { percent confidence interval:}
    0.6911690 0.8449761
sample estimates:
    cor
0.7795631
```


Testing for Non-Zero Correlation (continued)

Note that we can get the same results manually using

```
> gpacr=cor(X,Y)
> tstar=gpacr*sqrt(length(X) -2)/sqrt(1-gpacr^2)
> tstar
[1] 12.63197
> 2*(1-pt(tstar,103))
[1] 0
> z=log((1+gpacr)/(1-gpacr))/2
> Z
[1] 1.044256
> zlo=z-qnorm(.975)/sqrt(102)
> zhi=z+qnorm(.975)/sqrt(102)
> c(zlo,zhi)
[1] 0.8501905 1.2383212
>rlo=(exp(2*zlo)-1)/(exp(2*zlo)+1)
>rhi=(exp (2*zhi)-1)/(exp (2*zhi) +1)
> c(rlo,rhi)
[1] 0.6911690 0.8449761
```


Testing for Arbitrary Correlation

```
To test H0: 片 = 0.7 versus H}\mp@subsup{H}{1}{}:\mp@subsup{\rho}{XY}{}\not=0.7\mathrm{ define fisherz function
fisherz=function(r,n,rho0=0){
    z=log((1+r)/(1-r))/2
    z0=log((1+rho0)/(1-rho0))/2
    zstar=(z-z0)*sqrt(n-3)
    pval=2*(1-pnorm(abs(zstar)))
    list(z=z,pval=pval)
}
and then use
```

> fisherz(cor (X,Y), 105,rho0=0.7)
\$ z
[1] 1.044256
\$pval
[1] 0.07391138

Testing for Arbitrary Correlation (continued)

Note that we could also test $H_{0}: \rho_{X Y}=0.7$ versus $H_{1}: \rho_{X Y} \neq 0.7$ using the output from the cor. test function.

Output 95\% CI from cor.test function is [0.6911690, 0.8449761], which contains the null hypothesis value of $\rho_{X Y}=0.7$.

So, we retain the null hypothesis at the $\alpha=.05$ level.

Geometrical Interpretations

Geometry of Sum-of-Squares

\mathbf{J} is an $n \times 1$ vector of ones

Figure 8. A simple statistical model.

Bryant, P. (1984). Geometry, statistics, probability: Variations on a common theme. The American Statistician, 38, 38-48.

Let aJ denote a constant vector

Let $\mathbf{z}=\left(z_{1}, \ldots, z_{n}\right)^{\prime}$ denote any n-dimensional vector

$$
\begin{aligned}
& S S=\sum_{i=1}^{n}\left(z_{i}-a\right)^{2}=\|\mathbf{e}\|^{2} \text { with } \\
& \mathbf{e}=\mathbf{z}-a \mathbf{a}
\end{aligned}
$$

Geometry of Sum-of-Squares Total

\mathbf{J} is an $n \times 1$ vector of ones

- $n^{-1} \mathbf{J} \mathbf{J}^{\prime}$ is projection matrix

Figure 9. Derivation of the sample mean.

Bryant, P. (1984). Geometry, statistics, probability: Variations on a common theme. The American Statistician, 38, 38-48.

Let $\mathbf{z}=\left(z_{1}, \ldots, z_{n}\right)^{\prime}$ denote any n-dimensional vector

Let $P_{J}(\mathbf{z})=n^{-1} \mathbf{J J}^{\prime} \mathbf{z}=\overline{\mathbf{z}} \mathbf{J}$ denote the projection of \mathbf{z} onto \mathbf{J}

Note: $\mathbf{z}-P_{J}(\mathbf{z})$ is orthogonal to \mathbf{J}

Geometry of Pearson's Correlation

Let $\mathbf{y}=\left\{y_{i}\right\}_{i=1}^{n}$ and $P_{J}(\mathbf{y})=\bar{y} \mathbf{J}$

Figure 10. The simple correlation coefficient.

Bryant, P. (1984). Geometry, statistics, probability: Variations on a common theme. The American Statistician, 38, 38-48. denote the projection of \mathbf{y} onto \mathbf{J}.

Correlation is cosine of angle between $\mathbf{y}-P_{J}(\mathbf{y})$ and $\mathbf{z}-P_{J}(\mathbf{z})$:

$$
\begin{aligned}
r & =\cos (\theta) \\
& =\frac{\left(\mathbf{y}-P_{J}(\mathbf{y})\right)^{\prime}\left(\mathbf{z}-P_{J}(\mathbf{z})\right)}{\left\|\mathbf{y}-P_{J}(\mathbf{y})\right\|\left\|\mathbf{z}-P_{J}(\mathbf{z})\right\|}
\end{aligned}
$$

Part (Semipartial) Correlation

Given predictors X_{1}, X_{2} and response Y, the part (or semipartial) correlation of Y and X_{1}, controlling for X_{2}, can be written as

$$
r_{Y\left(X_{1} \cdot X_{2}\right)}=\frac{r_{Y X_{1}}-r_{Y X_{2}} r_{X_{1} X_{2}}}{\sqrt{1-r_{X_{1} X_{2}}^{2}}}
$$

Note that $r_{Y\left(X_{1} \cdot X_{2}\right)}$ is the correlation between Y and $\left(X_{1}-\hat{X}_{1}\right)$, where $\hat{X}_{1}=\hat{\gamma}_{0}+\hat{\gamma}_{1} X_{2}$ and ($\hat{\gamma}_{0}, \hat{\gamma}_{1}$) are OLS coefficients predicting X_{1} from X_{2}.

Partial Correlation

Given predictors X_{1}, X_{2} and response Y, the partial correlation of Y and X_{1}, controlling for X_{2}, can be written as

$$
r_{Y X_{1} \cdot X_{2}}=\frac{r_{Y X_{1}}-r_{Y X_{2}} r_{X_{1} X_{2}}}{\sqrt{1-r_{Y X_{2}}} \sqrt{1-r_{X_{1} X_{2}}^{2}}}=\frac{r_{Y\left(X_{1} \cdot X_{2}\right)}}{\sqrt{1-r_{Y X_{2}}^{2}}}
$$

Note that $r_{Y X_{1} \cdot X_{2}}$ is the correlation between $\left(Y-\hat{Y}^{*}\right)$ and $\left(X_{1}-\hat{X}_{1}\right)$, where $\hat{Y}^{*}=\hat{\kappa}_{0}+\hat{\kappa}_{1} X_{2}$ and $\hat{X}_{1}=\hat{\gamma}_{0}+\hat{\gamma}_{1} X_{2}$.

Note that $r_{Y X_{1} \cdot X_{2}}^{2} \geq r_{Y\left(X_{1} \cdot X_{2}\right)}^{2}$ with equality holding only when $r_{Y X_{2}}^{2}=0$.

Part and Partial Correlation in R

We can define our own part and partial correlation function.

```
pcor=function(x,y,z,type=c("partial","part")) {
    rxy=cor (x,y)
    rxz=cor (x,z)
    ryz=cor (y,z)
    pc=(rxy-ryz*rxz)/sqrt(1-rxz^2)
    if(type[1]=="partial") {pc=pc/sqrt(1-ryz^2)}
    pc
}
```

Note: pcor calculates partial (or part) correlation between x and y , controlling for z; for part correlation, effect of z is removed from x.

