Outline of Notes

1) Pearson’s Correlation:
 - Population vs. sample
 - Important properties
 - Sampling distribution

2) Correlation and Regression:
 - Simple linear regression
 - Reinterpreting correlation
 - Connecting the two

3) Inferences with Correlations:
 - Hypothesis testing ($\rho = 0$)
 - Hypothesis testing ($\rho \neq 0$)
 - GPA Example

4) Geometrical Interpretations:
 - Sum-of-squares
 - Correlation coefficient
 - Part and partial correlations
Pearson’s product-moment correlation coefficient is defined as

\[\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y} = \frac{E[(X - \mu_X)(Y - \mu_Y)]}{\sqrt{E[(X - \mu_X)^2]} \sqrt{E[(Y - \mu_Y)^2]}} \]

where

- \(\sigma_{XY} \) is the population covariance between \(X \) and \(Y \)
- \(\sigma_X^2 \) is the population variance of \(X \)
- \(\sigma_Y^2 \) is the population variance of \(Y \)
Pearson’s Correlation Coefficient: Sample

Given a sample of observations \((x_i, y_i)\) for \(i \in \{1, \ldots, n\}\), Pearson’s product-moment correlation coefficient is defined as

\[
r_{xy} = \frac{s_{xy}}{s_x s_y} = \frac{\sum_{i=1}^{n}(x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n}(x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n}(y_i - \bar{y})^2}}
\]

where
- \(s_{xy} = \frac{\sum_{i=1}^{n}(x_i - \bar{x})(y_i - \bar{y})}{n-1}\) is sample covariance between \(x_i\) and \(y_i\)
- \(s_x^2 = \frac{\sum_{i=1}^{n}(x_i - \bar{x})^2}{n-1}\) is sample variance of \(x_i\)
- \(s_y^2 = \frac{\sum_{i=1}^{n}(y_i - \bar{y})^2}{n-1}\) is sample variance of \(y_i\)
Properties of Pearson’s Correlation

ρ_{XY} measures linear dependence between X and Y

- Not about prediction... just a measure of linear dependence
- CORRELATION \neq CAUSATION

ρ_{XY} is bounded: $-1 \leq \rho_{XY} \leq 1$

- $\rho_{XY} = -1$ implies perfect negative linear relationship
- $\rho_{XY} = 1$ implies perfect positive linear relationship
- $\rho_{XY} = 0$ implies no linear relationship

ρ_{XY} is independent of the units of measurement of X and Y
Properties of Pearson’s Correlation (continued)

Magnitude of ρ_{XY} is unaffected by linear transformations

- Suppose that $W = aX + b$ and $Z = cY + d$
- If $\text{sign}(a) = \text{sign}(c)$, then $\rho_{WZ} = \rho_{XY}$
- If $\text{sign}(a) \neq \text{sign}(c)$, then $\rho_{WZ} = -\rho_{XY}$

Sample correlation r_{xy} is sensitive to outliers

ρ_{XY} can be affected by moderator variables

- Need to think about possible moderator variables
- Can have different patterns of correlation in different subgroups
Visualization of Pearson’s Correlation

Plots of x_i versus y_i for different r_{xy} values:

From http://en.wikipedia.org/wiki/File:Correlation_examples2.svg
Plots of x_i versus y_i for two groups of observations:

From *Practical Regression and Anova using R*, Faraway (2002)
Example #1: Pizza Data

The owner of Momma Leona’s Pizza restaurant chain believes that if a restaurant is located near a college campus, then there is a linear relationship between sales and the size of the student population. Suppose data were collected from a sample of 10 Momma Leona’s Pizza restaurants located near college campuses.

<table>
<thead>
<tr>
<th>Population (1000s): x</th>
<th>2</th>
<th>6</th>
<th>8</th>
<th>8</th>
<th>12</th>
<th>16</th>
<th>20</th>
<th>20</th>
<th>22</th>
<th>26</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales ($1000s): y</td>
<td>58</td>
<td>105</td>
<td>88</td>
<td>118</td>
<td>117</td>
<td>137</td>
<td>157</td>
<td>169</td>
<td>149</td>
<td>202</td>
</tr>
</tbody>
</table>

We want to find the correlation between student population (x) and quarterly pizza sales (y).
Example #1: Correlation Calculation

Remember from the definition:

$$
\hat{r} = \frac{\sum_{i=1}^{n}(x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n}(x_i - \bar{x})^2 \sqrt{\sum_{i=1}^{n}(y_i - \bar{y})^2}}}
$$

Remember from the SLR notes:

$$
\sum_{i=1}^{n}(x_i - \bar{x})^2 = \sum_{i=1}^{n}x_i^2 - n\bar{x}^2
$$

$$
\sum_{i=1}^{n}(y_i - \bar{y})^2 = \sum_{i=1}^{n}y_i^2 - n\bar{y}^2
$$

$$
\sum_{i=1}^{n}(x_i - \bar{x})(y_i - \bar{y}) = \sum_{i=1}^{n}x_iy_i - n\bar{x}\bar{y}
$$
Example #1: Correlation Calculation (continued)

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>x^2</th>
<th>y^2</th>
<th>xy</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>58</td>
<td>4</td>
<td>3364</td>
<td>116</td>
</tr>
<tr>
<td>6</td>
<td>105</td>
<td>36</td>
<td>11025</td>
<td>630</td>
</tr>
<tr>
<td>8</td>
<td>88</td>
<td>64</td>
<td>7744</td>
<td>704</td>
</tr>
<tr>
<td>8</td>
<td>118</td>
<td>64</td>
<td>13924</td>
<td>944</td>
</tr>
<tr>
<td>12</td>
<td>117</td>
<td>144</td>
<td>13689</td>
<td>1404</td>
</tr>
<tr>
<td>16</td>
<td>137</td>
<td>256</td>
<td>18769</td>
<td>2192</td>
</tr>
<tr>
<td>20</td>
<td>157</td>
<td>400</td>
<td>24649</td>
<td>3140</td>
</tr>
<tr>
<td>20</td>
<td>169</td>
<td>400</td>
<td>28561</td>
<td>3380</td>
</tr>
<tr>
<td>22</td>
<td>149</td>
<td>484</td>
<td>22201</td>
<td>3278</td>
</tr>
<tr>
<td>26</td>
<td>202</td>
<td>676</td>
<td>40804</td>
<td>5252</td>
</tr>
</tbody>
</table>

$$\bar{x} = \frac{140}{10} = 14$$

$$\bar{y} = \frac{1300}{10} = 130$$

$$\sum_{i=1}^{n}(x_i - \bar{x})^2 = 2528 - 10(14^2) = 568$$

$$\sum_{i=1}^{n}(y_i - \bar{y})^2 = 184730 - 10(130^2) = 15730$$

$$\sum_{i=1}^{n}(x_i - \bar{x})(y_i - \bar{y}) = 21040 - 10(14)(130) = 2840$$
Example #1: Correlation Calculation (continued)

Using the results from the previous slides:

\[
\hat{r} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}
\]

\[
= \frac{2840}{\sqrt{568} \sqrt{15730}}
\]

\[
= 0.950123
\]

Strong positive correlation: as the number of students \((x)\) increases, the quarterly pizza sales \((y)\) increases linearly.
Fisher (1929) derived the sampling distribution of Pearson’s r:

$$ f(r) = \frac{n-2}{\pi} \left(1 - \rho^2\right)^{\frac{1}{2}(n-1)} \left(1 - r^2\right)^{\frac{1}{2}(n-4)} \int_0^\infty \left[\cosh(z) - \rho r\right]^{-(n-1)} dz $$

where

- ρ is the true population correlation coefficient
- n is the observed sample size

For a given ρ and n, we can simulate r using:

```r
rsim<-function(rho,n){
  x=rnorm(n)
  y=rho*x+rnorm(n,sd=sqrt(1-rho^2))
  cor(x,y)
}
```
Empirical Distribution with $\rho = 0$

If $\rho = 0$ then $f(r)$ is symmetric and approximately normal for large n:
Empirical Distribution with $\rho = 0$ (continued)

R code:

```r
> set.seed(1234)
> r10z=replicate(10000,rsim(rho=0,n=10))
> r30z=replicate(10000,rsim(rho=0,n=30))
> r60z=replicate(10000,rsim(rho=0,n=60))
> r90z=replicate(10000,rsim(rho=0,n=90))
> r120z=replicate(10000,rsim(rho=0,n=120))
> r150z=replicate(10000,rsim(rho=0,n=150))
> par(mfrow=c(2,3))
> hist(r10z,main=expression(italic(n) * "= " * 10))
> hist(r30z,main=expression(italic(n) * "= " * 30))
> hist(r60z,main=expression(italic(n) * "= " * 60))
> hist(r90z,main=expression(italic(n) * "= " * 90))
> hist(r120z,main=expression(italic(n) * "= " * 120))
> hist(r150z,main=expression(italic(n) * "= " * 150))
```
Empirical Distribution with $\rho \neq 0$

If $\rho \neq 0$ then $f(r)$ is skewed in opposite direction of correlation sign:

- $n=100$, $r=0.1$
- $n=100$, $r=0.5$
- $n=100$, $r=0.9$

- $n=100$, $r=-0.1$
- $n=100$, $r=-0.5$
- $n=100$, $r=-0.9$
R code:

```r
> set.seed(1234)
> r1p=replicate(10000,rsim(rho=0.1,n=100))
> r5p=replicate(10000,rsim(rho=0.5,n=100))
> r9p=replicate(10000,rsim(rho=0.9,n=100))
> r1n=replicate(10000,rsim(rho=-0.1,n=100))
> r5n=replicate(10000,rsim(rho=-0.5,n=100))
> r9n=replicate(10000,rsim(rho=-0.9,n=100))
> par(mfrow=c(2,3))
> hist(r1p,main=expression(italic(n)*"="*100*, italic(r)*"="*0.1)))
> hist(r5p,main=expression(italic(n)*"="*100*, italic(r)*"="*0.5)))
> hist(r9p,main=expression(italic(n)*"="*100*, italic(r)*"="*0.9)))
> hist(r1n,main=expression(italic(n)*"="*100*, italic(r)*"="*-0.1)))
> hist(r5n,main=expression(italic(n)*"="*100*, italic(r)*"="*-0.5)))
> hist(r9n,main=expression(italic(n)*"="*100*, italic(r)*"="*-0.9)))
```
The simple linear regression model has the form

\[y_i = b_0 + b_1 x_i + e_i \]

for \(i \in \{1, \ldots, n\} \) where

- \(y_i \in \mathbb{R} \) is the real-valued response for the \(i \)-th observation
- \(b_0 \in \mathbb{R} \) is the regression intercept
- \(b_1 \in \mathbb{R} \) is the regression slope
- \(x_i \in \mathbb{R} \) is the predictor for the \(i \)-th observation
- \(e_i \stackrel{iid}{\sim} N(0, \sigma^2) \) is a Gaussian error term
The ordinary least squares (OLS) problem is

$$\min_{b_0, b_1 \in \mathbb{R}} \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i)^2$$

and the OLS solution has the form

$$\hat{b}_0 = \bar{y} - \hat{b}_1 \bar{x}$$

$$\hat{b}_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

where \(\bar{x} = (1/n) \sum_{i=1}^{n} x_i \) and \(\bar{y} = (1/n) \sum_{i=1}^{n} y_i \)
Note that we can rewrite the sample correlation coefficient as

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

$$= \frac{1}{n-1} \sum_{i=1}^{n} z_{x_i} z_{y_i}$$

where

- $z_{x_i} = \frac{x_i - \bar{x}}{s_x}$ with $s_x^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}$
- $z_{y_i} = \frac{y_i - \bar{y}}{s_y}$ with $s_y^2 = \frac{\sum_{i=1}^{n} (y_i - \bar{y})^2}{n-1}$
Note that z_{xi} and z_{yi} are standardized to have mean 0 and variance 1.

- z_{xi} and z_{yi} are Z-scores

Thus, the sample correlation coefficient

$$r_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} z_{xi}z_{yi}$$

is the sample covariance of the standardized scores of X and Y.

Connecting \(r_{xy} \) to OLS Solution

First convert \(x_i \) and \(y_i \) into \(Z \)-scores:

\[
Z_{x_i} = \frac{x_i - \bar{x}}{s_x}, \quad Z_{y_i} = \frac{y_i - \bar{y}}{s_y}
\]

Next suppose we want to predict \(z_{y_i} \) from \(z_{x_i} \).

Now plug in the \(Z \)-scores to the OLS solution:

\[
\hat{b}_0^{(z)} = \bar{z}_y - \hat{b}_1^{(z)} \bar{z}_x = 0
\]
\[
\hat{b}_1^{(z)} = \frac{\sum_{i=1}^n (z_{x_i} - \bar{z}_x)(z_{y_i} - \bar{z}_y)}{\sum_{i=1}^n (z_{x_i} - \bar{z}_x)^2} = r_{xy}
\]

because \(\bar{z}_x = \bar{z}_y = 0 \) and \(\frac{1}{n-1} \sum_{i=1}^n (z_{x_i} - \bar{z}_x)^2 = \frac{1}{n-1} \sum_{i=1}^n z_{x_i}^2 = 1 \)
Thus, we have that \(\hat{z}_{yi} = r_{xy} z_{xi} \) is the fitted value for \(i \)-th observation.

In general, the relationship between \(r_{xy} \) and \(b_1 \) is:

\[
b_1 = \frac{s_{xy}}{s_x^2} = \left(\frac{s_{xy}}{s_x s_y} \right) \frac{s_y}{s_x} = r_{xy} \frac{s_y}{s_x}
\]

which implies that \(r_{xy} = b_1 \frac{s_x}{s_y} \).
Connecting r_{xy} to SSR

Remember from the SLR notes that $\hat{y}_i = \hat{b}_0 + \hat{b}_1 x_i = \bar{y} + \hat{b}_1 (x_i - \bar{x})$
because $\hat{b}_0 = \bar{y} - \hat{b}_1 \bar{x}$

Plugging $\hat{y}_i = \bar{y} + \hat{b}_1 (x_i - \bar{x})$ into the definition of SSR produces

$$SSR = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 = \sum_{i=1}^{n} \hat{b}_1^2 (x_i - \bar{x})^2$$

Now plugging in $\hat{b}_1 = \hat{r}_{xy} \frac{s_y}{s_x}$ to R^2 definition produces

$$R^2 = \frac{SSR}{SST} = \frac{\sum_{i=1}^{n} \hat{b}_1^2 (x_i - \bar{x})^2}{(n - 1)s_y^2}$$

$$= \sum_{i=1}^{n} \left(\hat{r}_{xy} \frac{s_y}{s_x} \right)^2 \frac{(x_i - \bar{x})^2}{(n - 1)s_y^2} = \hat{r}_{xy}^2$$
Example #1: Connecting \hat{r}_{xy} to \hat{b}_1

From the SLR notes, remember that:

\[
\hat{b}_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} = \frac{2840}{568} = 5
\]

\[
\hat{b}_0 = \bar{y} - \hat{b}_1 \bar{x} = 130 - 5(14) = 60
\]

And from the previous correlation calculations, remember that:

\[
\hat{r} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}} = \frac{2840}{\sqrt{568} \sqrt{15730}} = 0.950123
\]

Note that 0.950123 = $\hat{r} = \hat{b}_1 \frac{s_x}{s_y} = 5 \frac{\sqrt{568}}{\sqrt{15730}} = 0.950123$
Testing for Non-Zero Correlation

In most cases we want to test if there is a linear relationship:

\[H_0 : \rho_{XY} = 0 \]
\[H_1 : \rho_{XY} \neq 0 \]

If \((X, Y)\) follow a bivariate normal distribution with \(\rho = 0\) and if \(\{(x_i, y_i)\}_{i=1}^{n}\) are independent samples then

\[T^* = \frac{r_{xy} \sqrt{n - 2}}{\sqrt{1 - r_{xy}^2}} \sim t_{n-2} \]

so we reject \(H_0\) if \(|T^*| \geq t_{n-2}^{(\alpha/2)}\) where \(t_{n-2}^{(\alpha/2)}\) is critical \(t_{n-2}\) value such that \(P(T \geq t_{n-2}^{(\alpha/2)}) = \alpha/2\)
Fisher z-Transformation

If $\rho \neq 0$, then we can use Fisher’s z-transformation:

$$z = \frac{1}{2} \ln \left(\frac{1 + r}{1 - r} \right)$$

If (X, Y) follow a bivariate normal distribution and if $\{(x_i, y_i)\}_{i=1}^{n}$ are independent samples then z is approximately normal with

$$E(z) = \frac{1}{2} \ln \left(\frac{1 + \rho}{1 - \rho} \right)$$
$$V(z) = \frac{1}{n - 3}$$

where ρ is the true population correlation coefficient.
In some cases we want to test if there is a particular correlation:

\[H_0 : \rho_{XY} = \rho_0 \]
\[H_1 : \rho_{XY} \neq \rho_0 \]

In this case, we use Fisher’s \(z \)-transformation; first define the standardized variable:

\[Z^* = \left[z - \frac{1}{2} \ln \left(\frac{1+\rho_0}{1-\rho_0} \right) \right] \sqrt{n-3} \]

We reject \(H_0 \) if \(|Z^*| \geq Z_{\alpha/2}\) where \(Z_{\alpha/2} \) is critical \(Z \) value such that \(P(Z \geq Z_{\alpha/2}) = \alpha/2 \)
Confidence Intervals for r_{xy}

To form a CI around r_{xy} we use Fisher’s z-transformation to form a CI on the transformed scale:

$$z \pm Z_{\alpha/2}/\sqrt{n-3}$$

Then we need to transform z limits back to r:

$$r = \frac{e^{2z} - 1}{e^{2z} + 1}$$
Example #1: Correlation Inference Questions

Returning to Momma Leona’s Pizza example, suppose we want to...

(a) Test if there is a significant linear relationship between student population (x) and quarterly pizza sales (y), i.e., test $H_0 : \rho_{XY} = 0$ versus $H_1 : \rho_{XY} \neq 0$. Use $\alpha = .05$ significance level.

(b) Test $H_0 : \rho_{XY} = 0.8$ versus $H_1 : \rho_{XY} \neq 0.8$. Use $\alpha = .05$ level.

(b) Test $H_0 : \rho_{XY} = 0.8$ versus $H_1 : \rho_{XY} > 0.8$. Use $\alpha = .05$ level.

(d) Make a 90% CI for ρ_{XY}.
Example #1: Answer 1a

Question: Test $H_0 : \rho_{XY} = 0$ versus $H_1 : \rho_{XY} \neq 0$. Use $\alpha = .05$.

The needed t test statistic is

$$T^* = \frac{r_{xy} \sqrt{n - 2}}{\sqrt{1 - r_{xy}^2}} = \frac{0.950123 \sqrt{8}}{\sqrt{1 - 0.950123^2}} = 8.616749$$

which follows a t_8 distribution.

The critical t_8 values are $t_8^{(.025)} = -2.306004$ and $t_8^{(.975)} = 2.306004$, so our decision is

$$t_8^{(.975)} = 2.306004 < 8.616749 = T^* \implies \text{Reject } H_0$$
Example #1: Answer 1b

Question: Test $H_0 : \rho_{XY} = 0.8$ versus $H_1 : \rho_{XY} \neq 0.8$. Use $\alpha = .05$.

First form the z-transformed variable

$$z = 0.5 \ln \left(\frac{1 + \hat{r}}{1 - \hat{r}} \right) = 0.5 \ln \left(\frac{1.950123}{0.04987704} \right) = 1.833043$$

which is approximately normal with mean and variance

$$E(z) = 0.5 \ln \left(\frac{1 + \rho_0}{1 - \rho_0} \right) = 0.5 \ln \left(\frac{1.8}{0.2} \right) = 1.098612$$

$$V(z) = \frac{1}{n - 3} = 1/7$$

under the null hypothesis $H_0 : \rho_{XY} = 0.8$.
Example #1: Answer 1b (continued)

Question: Test $H_0 : \rho_{XY} = 0.8$ versus $H_1 : \rho_{XY} \neq 0.8$. Use $\alpha = .05$.

Now form the standardized variable

$$Z^* = \frac{Z - z_0}{\sqrt{V(Z)}} = \frac{1.833043 - 1.098612}{1/\sqrt{7}} = 1.943122$$

which is approximately $N(0, 1)$ under $H_0 : \rho_{XY} = 0.8$.

The critical Z values are $Z_{.025} = -1.959964$ and $Z_{.975} = 1.959964$, so our decision is

$$Z_{.975} = 1.959964 > 1.943122 = Z^* \implies \text{Retain } H_0$$
Example #1: Answer 1c

Question: Test $H_0 : \rho_{XY} = 0.8$ versus $H_1 : \rho_{XY} > 0.8$. Use $\alpha = .05$.

We have the same transformed variable $z = 1.833043$ with $E(z) = 1.098612$ and $V(z) = 1/7$; results in the same

$$Z^* = \frac{Z - Z_0}{\sqrt{V(z)}} = \frac{1.833043 - 1.098612}{1/\sqrt{7}} = 1.943122$$

which is approximately $N(0, 1)$ under $H_0 : \rho_{XY} = 0.8$

The critical Z value is $Z_{.95} = 1.644854$, so our decision is

$$Z_{.95} = 1.644854 < 1.943122 = Z^* \implies \text{Reject } H_0$$
Example #1: Answer 1d

Question: Make a 90% CI for ρ_{XY}.

First form the z-transformed variable

$$z = 0.5 \ln \left(\frac{1 + \hat{r}}{1 - \hat{r}} \right) = 0.5 \ln \left(\frac{1.950123}{0.04987704} \right) = 1.833043$$

which is approximately normal with variance $V(z) = 1/7$.

The critical Z value is $Z_{.95} = 1.644854$, so the 90% CI is given by

$$z \pm Z_{.95} \sqrt{V(z)} = 1.833043 \pm 1.644854 \sqrt{1/7} = [1.211347; 2.45474]$$

and converting the z limits back to the correlation scale produces

$$\left[\frac{e^{2(1.211347)} - 1}{e^{2(1.211347)} + 1}; \frac{e^{2(2.45474)} - 1}{e^{2(2.45474)} + 1} \right] = [0.8370831; 0.9853554]$$
Data Overview

This example uses the GPA data set that we examined before.

- From http://onlinestatbook.com/2/regression/intro.html

\[Y: \text{student's university grade point average.} \]

\[X: \text{student's high school grade point average.} \]

Have data from \(n = 105 \) different students.
Calculate Pearson’s correlation with `cor` function:

```r
> X = gpa$high_GPA
> Y = gpa$univ_GPA
> cor(X, Y)
[1] 0.7795631
```

Calculate Pearson’s correlation with `cov` and `sd` functions:

```r
> cov(X, Y) / (sd(X) * sd(Y))
[1] 0.7795631
```
Calculate Pearson’s correlation manually:

\[
> \text{mux} = \text{mean}(X) \\
> \text{muy} = \text{mean}(Y) \\
> \text{cxy} = \text{sum}((X – \text{mux}) \times (Y – \text{muy})) \\
> \text{sx} = \sqrt{\text{sum}((X – \text{mux})^2)} \\
> \text{sy} = \sqrt{\text{sum}((Y – \text{muy})^2)} \\
> \text{cxy} / (\text{sx} \times \text{sy}) \\
\]

[1] 0.7795631
To test $H_0 : \rho_{XY} = 0$ versus $H_1 : \rho_{XY} \neq 0$ use the `cor.test` function:

```r
> cor.test(X, Y)
```

Pearson’s product-moment correlation

data: X and Y
t = 12.632, df = 103, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.6911690 0.8449761
sample estimates:
cor
0.7795631
Testing for Non-Zero Correlation (continued)

Note that we can get the same results manually using

```r
> gpacr = cor(X, Y)
> tstar = gpacr * sqrt(length(X) - 2) / sqrt(1 - gpacr^2)
> tstar
[1] 12.63197
> 2 * (1 - pt(tstar, 103))
[1] 0
> z = log((1 + gpacr) / (1 - gpacr)) / 2
> z
[1] 1.044256
> zlo = z - qnorm(.975) / sqrt(102)
> zhi = z + qnorm(.975) / sqrt(102)
> c(zlo, zhi)
[1] 0.8501905 1.2383212
> rlo = (exp(2 * zlo) - 1) / (exp(2 * zlo) + 1)
> rhi = (exp(2 * zhi) - 1) / (exp(2 * zhi) + 1)
> c(rlo, rhi)
[1] 0.6911690 0.8449761
```
To test $H_0 : \rho_{XY} = 0.7$ versus $H_1 : \rho_{XY} \neq 0.7$ define `fisherz` function:

```r
fisherz=function(r,n,rho0=0){
  z=log((1+r)/(1-r))/2
  z0=log((1+rho0)/(1-rho0))/2
  zstar=(z-z0)*sqrt(n-3)
  pval=2*(1-pnorm(abs(zstar)));
  list(z=z,pval=pval)
}
```

and then use

```r
> fisherz(cor(X,Y),105,rho0=0.7)
$z
[1] 1.044256

$pval
[1] 0.07391138
```
Note that we could also test \(H_0 : \rho_{XY} = 0.7 \) versus \(H_1 : \rho_{XY} \neq 0.7 \) using the output from the `cor.test` function.

Output 95% CI from `cor.test` function is \([0.6911690, 0.8449761]\), which contains the null hypothesis value of \(\rho_{XY} = 0.7 \).

So, we retain the null hypothesis at the \(\alpha = .05 \) level.
J is an $n \times 1$ vector of ones

Let aJ denote a constant vector

Let $z = (z_1, \ldots, z_n)'$ denote any n-dimensional vector

$$SS = \sum_{i=1}^{n} (z_i - a)^2 = \|e\|^2 \quad \text{with} \quad e = z - aJ$$

Geometry of Sum-of-Squares Total

\(J \) is an \(n \times 1 \) vector of ones

- \(n^{-1}JJ' \) is projection matrix

Let \(z = (z_1, \ldots, z_n)' \) denote any \(n \)-dimensional vector

Let \(P_J(z) = n^{-1}JJ'z = \bar{z}J \) denote the projection of \(z \) onto \(J \)

Note: \(z - P_J(z) \) is orthogonal to \(J \)
Let $y = \{y_i\}_{i=1}^n$ and $P_J(y) = \bar{y}J$ denote the projection of y onto J.

Correlation is cosine of angle between $y - P_J(y)$ and $z - P_J(z)$:

$$r = \cos(\theta) = \frac{(y - P_J(y))'(z - P_J(z))}{\|y - P_J(y)\| \|z - P_J(z)\|}$$

Figure 10. The simple correlation coefficient.

Part (Semipartial) Correlation

Given predictors X_1, X_2 and response Y, the part (or semipartial) correlation of Y and X_1, controlling for X_2, can be written as

$$r_{Y(X_1 \cdot X_2)} = \frac{r_{YX_1} - r_{YX_2} r_{X_1 X_2}}{\sqrt{1 - r^2_{X_1 X_2}}}$$

Note that $r_{Y(X_1 \cdot X_2)}$ is the correlation between Y and $(X_1 - \hat{X}_1)$, where $\hat{X}_1 = \hat{\gamma}_0 + \hat{\gamma}_1 X_2$ and $(\hat{\gamma}_0, \hat{\gamma}_1)$ are OLS coefficients predicting X_1 from X_2.
Partial Correlation

Given predictors X_1, X_2 and response Y, the partial correlation of Y and X_1, controlling for X_2, can be written as

$$r_{YX_1 \cdot X_2} = \frac{r_{YX_1} - r_{YX_2}r_{X_1X_2}}{\sqrt{1 - r_{YX_2}^2} \sqrt{1 - r_{X_1X_2}^2}} = \frac{r_Y(X_1 \cdot X_2)}{\sqrt{1 - r_{YX_2}^2}}$$

Note that $r_{YX_1 \cdot X_2}$ is the correlation between $(Y - \hat{Y}^*)$ and $(X_1 - \hat{X}_1)$, where $\hat{Y}^* = \hat{\kappa}_0 + \hat{\kappa}_1X_2$ and $\hat{X}_1 = \hat{\gamma}_0 + \hat{\gamma}_1X_2$.

Note that $r_{YX_1 \cdot X_2}^2 \geq r_Y^2(X_1 \cdot X_2)$ with equality holding only when $r_{YX_2}^2 = 0$.
We can define our own part and partial correlation function.

```r
pcor=function(x, y, z, type=c("partial","part")){
  rxy=cor(x,y)
  rxz=cor(x,z)
  ryz=cor(y,z)
  pc=(rxy-ryz*rxz)/sqrt(1-rxz^2)
  if(type[1]=="partial"){pc=pc/sqrt(1-ryz^2)}
  pc
}
```

Note: `pcor` calculates partial (or part) correlation between \(x \) and \(y \), controlling for \(z \); for part correlation, effect of \(z \) is removed from \(x \).