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Empirical Cumulative Distribution Function

Estimating the CDF

The empirical cumulative distribution function (ECDF) is a simple and
powerful approach for estimating the CDF.

Given an independent and identically distributed (iid) sample of data
x1, . . . , xn from some distribution F , the ECDF is defined as

F̂n(x) =
1

n

n∑
i=1

I(xi ≤ x)

where I(·) is an indicator function, i.e., I(xi ≤ x) = 1 if xi ≤ x and
I(xi ≤ x) = 0 otherwise.
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Empirical Cumulative Distribution Function

ECDF Properties

The ECDF simply calculates the proportion of observations in the
sample that are less than or equal to the input x.

Since F̂n(x) is a proportion estimate, we have that

E
(
F̂n(x)

)
= F (x) and Var

(
F̂n(x)

)
=

1

n
F (x)(1− F (x))

which implies that F̂n(x) is an unbiased estimate of F (x) = P (X ≤ x).

Furthermore, as the sample size gets large, i.e., as n→∞, we have

that F̂n(x)
d−→ F (x), which is known as the Glivenko-Cantelli theorem.
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Empirical Cumulative Distribution Function

ECDF Visualizations
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Figure 1: ECDF for n ∈ {100, 1000} samples drawn from a U [0, 1] distribution (top)
and a N(0, 1) distribution (bottom). The black dots denote the ECDF and the red
line denotes the true CDF for each distribution.
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Quantile-Quantile (Q-Q) Plots

Quantile Overview

Q-Q plots are used to plot sample quantiles against one another or
against population quantiles.

Such plots can be useful for assessing whether

• one sample of data follows a particular distribution

• two samples of data have a similar distribution

As a reminder, the population quantile function Q(p) is the inverse of
the CDF function, such that it takes in a probability p ∈ [0, 1] and
returns a value x ∈ S such that F (x) ≥ p.
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Quantile-Quantile (Q-Q) Plots

Order Statistics and Sample Quantiles

Given an iid sample of data x1, . . . , xn from some distribution F , the
order statistics are

x(1) ≤ x(2) ≤ · · · ≤ x(n−1) ≤ x(n)

which is simply the sample of data sorted from smallest to largest.

For convenience of notation, let’s assume that the observations are
sorted from smallest to largest, so that xi = x(i) for i = 1, . . . , n. The
sample quantiles are defined as

Q̂n(p) = xbhc + (h− bhc)
(
xbhc+1 − xbhc

)
where the value of h depends on what interpolation scheme is used to
estimate the quantiles.
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Quantile-Quantile (Q-Q) Plots

Two Uses of Q-Q Plots

Two ways in which Q-Q plots are typically used:

• If you have a single sample of data, it is typical to plot the
theoretical quantiles Q(p) on the x-axis and the sample quantiles
Q̂n(p) on the y-axis.

• If you have two samples of data with sizes m and n, it is typical to
plot the sample quantiles of the first sample Q̂1

m(p) on the x-axis
and the sample quantiles Q̂2

n(p) on the y-axis.

In both cases, having the points fall on the 45-degree line indicates that
the two sets of plotted quantiles reasonably agree with one another.
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Quantile-Quantile (Q-Q) Plots

Interpreting Q-Q Plots

Any deviations from the 45-degree line can provide graphical insights
into how the quantiles differ from one another.

In the follwoing example, note the following:

• for left-skewed data, the Q-Q points fall below the 45-degree line

• for right-skewed data, the Q-Q points fall above the 45-degree line

• for leptokurtic data, the points fall below the 45-degree line for
negative values and above the 45-degree line for positive values

• for platykurtic data, the points fall above the 45-degree line for
negative values and below the 45-degree line for positive values
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Quantile-Quantile (Q-Q) Plots

Example Q-Q Plots
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Figure 2: Top: probability density functions for distributions with different values
of skewness and kurtosis (solid line), along with the standard normal density
function (dotted line). Bottom: corresponding normal Q-Q plots with theoretical
quantiles from a standard normal. Calculated using 10,000 independent samples.
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Boxplots
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Boxplots

Boxplot Properties

A standard box plot consists of a few different components:

• a rectangle to denote the interquartile range, i.e., IQR = Q3 −Q1

• a line for the median, i.e., the second quartile Q2

• whiskers on each end of the box plot to denote the data range

Figure 3: Properties of a box
plot. From https:

//www.simplypsychology.org/

boxplots.html

R’s boxplot() function draws the whiskers to extend to ±1.5IQR.
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Boxplots

Boxplot Visualization
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Figure 4: Box plots created with R’s boxplot() function. The box plots we
calculated using 10,000 independent samples from each distribution.
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Histograms
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Histograms

Motivation for Histogram

If the PDF f(x) is smooth, then we have that

P (x− h/2 < X < x + h/2) = F (x + h/2)− F (x− h/2)

=

∫ x+h/2

x−h/2
f(z)dz ≈ hf(x)

where h > 0 is some small constant referred to as the “bin width”.

If the CDF F (x) were known, then we could estimate the PDF using

f̂(x) =
F (x + h/2)− F (x− h/2)

h

but this isn’t practical because we never know the true CDF F (x).

Nathaniel E. Helwig (Minnesota) Visualizing Probability Distributions c© August 28, 2020 17 / 26



Histograms

Histograms in Practice

Plugging the ECDF estimate F̂n(x) into the previous equation gives

f̂n(x) =
F̂n(x + h/2)− F̂n(x− h/2)

h

=

∑n
i=1 I(xi ≤ x + h/2)−

∑n
i=1 I(xi ≤ x− h/2)

nh

=

∑n
i=1 I (xi ∈ (x− h/2, x + h/2])

nh

Generally, we could estimate the PDF f(x) in a window around x using

f̂n(x) =

∑n
i=1 I(xi ∈ wj)

nh
=

nj

nh

for all x ∈ wj = (bj − h/2, bj + h/2] where the b1 < b2 . . . < bm+1 are
chosen constants known as “break points”.
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Histograms

Choosing the Histogram Break Points

To form a histogram you just need to (i) break the real number line
into m mutually exclusive bins at break points spanning your data, and
(ii) count the number of observations nj that fall within each bin.

Different choices of the number of bins m will affect the estimate

Different methods for choosing m and h for a histogram:

• Sturges (default in R’s hist() function): m = dlog2(n) + 1e and
h = (x(n) − x(1))/m

• Freedman and Diaconis: h = 2IQR/n1/3 and m = d(x(n)−x(1))/he
• Scott: h = 3.5s/n1/3 and m = d(x(n) − x(1))/he where

s2 = 1
n−1

∑n
i=1(xi − x̄)2
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Histograms

Histogram Examples

Left Skewed

x

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

n = 50

Right Skewed

x

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

n = 50

Leptokurtic

x

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

n = 50

Platykurtic

x

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

n = 50

Left Skewed

x

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

n = 100

Right Skewed

x

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

n = 100

Leptokurtic

x

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

n = 100

Platykurtic

x

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

n = 100

Left Skewed

x

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

n = 1000

Right Skewed

x

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

n = 1000

Leptokurtic

x

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

n = 1000

Platykurtic

x

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

n = 1000

Figure 5: Created with R’s hist() function. Red line denotes the true density.
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Kernel Density Estimates
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Kernel Density Estimates

Improved Estimates of Densities

Histograms are simple to understand and create, but they provide
rather crude (i.e., jagged) estimates of PDFs.

Given an iid sample of data x1, . . . , xn from some distribution F , a
KDE has the form

f̂h(x) =
1

nh

n∑
i=1

K

(
x− xi

h

)
where K(·) is a kernel function and h > 0 is the chosen bandwidth.

The kernel function K(·) can be any function that satisfies

• K(x) ≥ 0 for all x (non-negative)

• K(x) = K(−x) for all x (symmetric)

•
∫∞
−∞K(x) = 1 (unit measure)
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Kernel Density Estimates

Examples of Kernel Functions
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Figure 6: Different kernel functions. From
https://upload.wikimedia.org/wikipedia/commons/4/47/Kernels.svg
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Kernel Density Estimates

Bandwidth Parameter

The bandwidth parameter h is analogous to the bin width parameter h
in a histogram, such that different values of h will produce different
estimates.

The bandwidth parameter controls the compactness of the kernel
function, such that larger values of h use wider kernels

• As h ↑ the KDE gets smoother

• As h ↓ the KDE gets more jagged

It is typical to use Silverman’s rule of thumb to define h, which has the
form h = 0.9n−1/5 min(s, IQR/1.34) where s2 = 1

n−1
∑n

i=1(xi − x̄)2.

• Using cross-validation is more ideal
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Kernel Density Estimates

Simple Example of KDE

Suppose that we n = 6 data points (−2.1,−1.3,−0.4, 1.9, 5.1, 6.2), and
we want to form a histogram and a KDE using a standard normal
kernel function with h = 1.5.
• KDE centers a N(0, 1.52) density at each data point xi
• then calculates the average of the N(xi, 1.5

2) densities
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Figure 7: The red dashed lines are showing 1
nh

K
(
x−xi

h

)
, which are summed

together to obtain the blue line, which is the KDE.
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Kernel Density Estimates

More Examples of KDEs
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Figure 8: Kernel density estimates (KDEs) created with R’s density() function.
The blue dashed line denotes the true density.
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