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1 Background and Motivation

Suppose that we have some hypothesis (i.e., proposed idea) about a random variable, and

we want to explore the plausibility of our hypothesis using a sample of data collected from

the population. For example, suppose that we believe that the random variable’s mean µ

is equal to some hypothesized value, say µ0. Given a sample of n independent observations

x1, . . . , xn from the population, we could estimate the population mean µ using the sample

mean x̄ = 1
n

∑n
i=1 xi. Assuming that our random variable of interest is continuous, the

probability that x̄ is exactly equal to µ0 will be zero, i.e., P (x̄ = µ0) = 0. In other words,

given any random sample of data from the population, we would expect the sample estimate

x̄ to differ from the hypothesized population mean µ0 to some degree. But how small of

a difference is “small enough” such that we should assume that the hypothesis µ = µ0 is

reasonable? And how large of a difference is “too large” such that we should assume that

the hypothesis µ = µ0 is unreasonable?

Statistical tests, also known as “significance tests” or “null hypothesis significance tests”

(NHST), attempt to answer these sorts of questions. The commonly used procedure for

NHST was first developed by Sir Ronald A. Fisher (1925) and further developed by Neyman

and Pearson (1933). As a result, if the filed of statistics, you may hear the idea of NHST

referred to as the Neyman-Pearson procedure for testing the significance of a hypothesis.

The idea of NHST has caused quite a bit of controversy in the field of psychology (e.g.,

Nickerson, 2000) and has lead to many heated arguments. As will be discussed towards the

end of this chapter, this controversy is mainly due to the traditions of misunderstanding and

misusing (and sometimes outright abusing) the ideas of NHST in the field of psychology.
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2 Forming a Statistical Hypothesis

Definition. In statistics, a hypothesis refers to some statement about the parameter (or

parameters) of a random variable’s probability distribution. A hypothesis will be denoted

with the letter H followed by a colon and the statement about the parameter(s).

A variety of different distinctions can be made to describe the nature of a statistical

hypothesis. One possible distinction is that between a simple versus composite hypothesis.

A “simple” hypothesis is one that completely specifies the probability distribution of the

random variable, whereas a “composite” hypothesis does not completely specify the random

variable’s distribution. For example, H : X ∼ N(µ, σ2) is a simple hypothesis because it

specifies the family of the distribution (i.e., normal) as well as the parameter values that

define the precise distribution from the family. In contrast, the hypothesis H : E(X) = µ is

a composite hypothesis because it only specifies the mean of the random variable, without

specifying the distribution family and/or other parameters that fully specify the distribution.

Another distinction that can be made is that between an exact versus an inexact hy-

pothesis. An “exact” hypothesis specifies the exact value(s) of the parameter(s) of interest,

whereas an “inexact” hypothesis specifies a range of possible values for the parameter(s)

of interest. For example, the hypothesis H : E(X) = µ is an exact hypothesis, because it

specifies the exact value of the population mean. In contrast, the hypothesis H : E(X) ≤ µ

is an inexact hypothesis, because it specifies that the population mean is less than or equal

to some value. Note that a simple hypothesis must be exact, because you need the exact pa-

rameter values to completely specify the random variable’s distribution. However, an exact

hypothesis does not necessarily need to be simple, because you can make an exact hypothesis

about a parameter without having to completely specify a variables distribution.

3 Testing a Statistical Hypothesis

Definition. The hypothesis that will be tested is referred to as the null hypothesis and is

typically denoted by H0. The alternative hypothesis, which is typically denoted by H1, is

the hypothesis that would be true if the null hypothesis is false. By definition, H0 and H1

can never both be true, i.e., P ({H0 is true} ∩ {H1 is true}) = 0, and either H0 or H1 must

be true, i.e., P ({H0 is true} ∪ {H1 is true}) = 1.
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As mentioned in the introductory section, the procedure of NHST involves first spec-

ifying a hypothesis that will be tested, and then using a sample of data to examine the

plausibility of that hypothesis based on the evidence from the sample of data. Returning

to the previous example of testing a hypothesis about a population mean, we would denote

the null hypothesis that µ is equal to µ0 using the notation H0 : µ = µ0. The corresponding

alternative hypothesis is H1 : µ 6= µ0, which states that the population mean is not equal to

the null hypothesized value of µ0. In this example, the null hypothesis was exact, i.e., that

µ is exactly equal to µ. However, this does not always need to be the case. Suppose that we

wanted to test the null hypothesis H0 : µ ≤ µ0 versus the alternative hypothesis H1 : µ > µ0.

Note that these sorts of inexact hypotheses are likely to be more useful in scientific studies,

where there is likely to be a hypothesized direction of an effect.

Regardless of whether the null hypothesis is exact or inexact, the general procedure for

conducting a NHST remains the same (although, as will be later discussed, one specific detail

of the procedure does differ depending on whether H0 is exact or inexact). The general NHST

procedure involves the following steps:

1. The null hypothesis H0 and corresponding alternative hypothesis H1 are stated.

2. If the null hypothesis is composite, additional assumptions are stated, which make it

possible to completely determine the probability distribution of the random variable

(or really the test statistic) under the assumption that H0 is true.

3. A statistic T = s(·) is chosen, such that values of T can be used to evaluate the

plausibility of the null hypothesis H0. Note that the statistic T is often referred to

as a “test statistic”, which is typically some function of the sample estimate θ̂ of the

population parameter θ.

4. A decision rule D is chosen, such that the rule specifies which values of T will be

considered deviant enough to reject the fact that the null hypothesis H0 is true. The

region of values R = {t : t is extreme enough to reject H0} is typically referred to as

the “rejection region” for the test.

5. Given the observed data x = (x1, . . . , xn)>, if the observed test statistic T0 = s(x)

falls in the rejection region R, then the null hypothesis H0 is rejected in favor of the

alternative hypothesis H1. Otherwise, we accept (i.e., fail to reject) the null hypothesis.
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Example 1. As an example of the NHST procedure, suppose that we want to test the null

hypothesis H0 : µ = 75 versus the alternative hypothesis H1 : µ 6= 75. (Note that we have

just completed step 1 of the NHST procedure.) Also, let’s assume that the random variable

X is normally distributed with a standard deviation of σ = 100, which completes step 2 of

the NHST procedure. As a test statistic, suppose that we define

T =
x̄− 75

100/
√
n

where x̄ = 1
n

∑n
i=1 xi is the same mean. Note T ∼ N(0, 1) when the null hypothesis H0 is

true, so large absolute values of T would be unlikely to observe if H0 is true. This completes

step 3 of the NHST procedure. As a decision rule, suppose that we define the rejection

region as R = {t : |t| ≥ 1.96}, i.e., we decide to reject H0 : µ = 75 if the absolute value

of T is greater than or equal to 1.96. Note that if the null hypothesis H0 is true, then the

probability of observing such an extreme value of T is

P (|T | ≥ 1.96) = P (T < −1.96) + P (T > 1.96) = Φ(−1.96) + (1− Φ(1.96)) ≈ 0.05

given that T ∼ N(0, 1) when the null hypothesis H0 is true. This completes step 4 of the

NHST procedure. For the final step, we need to collect some data and calculate x̄ (and the

corresponding observed test statistic T0), and determine whether the observed test statistic

is in the rejection region. Suppose that our observed sample mean is x̄ = 93 and that we

have n = 100 observations, which corresponds to an observed test statistic of T0 = 1.8. In

this case, we would fail to reject the null hypothesis given that T0 is not in the specified

rejection region, i.e., T0 ∈ Rc.

Example 2. Now suppose that we want to test the inexact null hypothesis H0 : µ ≤ 75

versus the alternative hypothesis H1 : µ > 75. Note that the worst case scenario (i.e., when

it would be most difficult to make the correct decision) would be when µ = 75, so we will

focus on this worst case scenario for forming the test statistic’s (null) sampling distribution.

Suppose that we make the same assumptions and use the same test statistic that was used in

the previous example, which implies that T ∼ N(0, 1) in the worst case scenario of µ = 75.

Note that if µ < 75, then T ∼ N(δ, 1) where δ < 0. As a decision rule, suppose that we

define the rejection region as R = {t : t ≥ 1.65}, i.e., we decide to reject H0 : µ ≤ 75 if the

Null Hypothesis Significance Testing 4 Nathaniel E. Helwig



Copyright c© October 17, 2020 by NEH

value of T is greater than or equal to 1.65. Note that if the null hypothesis H0 is true, then

P (T > 1.65) ≤ 1− Φ(1.65) ≈ 0.05

where the inequality (i.e., ≤) would be changed to an equality (i.e., =) if the worst case

scenario of µ = 0.75 was true. As before, assume that x̄ = 93 and n = 100, which corresponds

to the same observed test statistic of T0 = 1.8. In this case, we would reject the null

hypothesis given that T0 is in the specified rejection region, i.e., T0 ∈ R. Note that we made

a different decision this time—because we changed our rejection region.

4 Choosing a Decision Rule

In the previous two examples, the decision rules that were used to determine rejection regions

were stated without providing much intuition—however the careful reader likely noticed the

common theme between the two rules. In both examples, the decision rules were chosen

such that the probability of incorrectly rejecting H0 was approximately equal to 0.05. To

understand where this idea came from, it is helpful to take a step back and introduce the

possible outcomes of our significance testing procedure, which are displayed in Table 1.

Note that there are two different ways to make a correct decision (i.e., true negative and

true positive), and there are two different ways to make an incorrect decision (i.e., an error).

Table 1: Possible outcomes of a significance test.
H0 is True H1 is True

Accept H0 True Negative Type II Error
Reject H0 Type I Error True Positive

Definition. In a significance test, a type I error occurs when we reject a null hypothesis

that is true, and a type II error occurs when we fail to reject a null hypothesis that is false.

The probabilities of committing the two types of errors are typically denoted by

α = P (Reject H0 | H0 is true) = P (Type I Error)

β = P (Accept H0 | H1 is true) = P (Type II Error)

and the power of the test is defined as 1−β = P (Reject H0 | H1 is true) = P (True Positive).
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The probability of committing a type I error is often referred to as the “significance level”

of the test. The Neyman-Pearson NHST procedure involves specifying the significance level,

and then choosing the decision rule that maximizes the power of the test. In the previous

examples, the decision rules were determined by setting the significance level at α ≈ 0.05 for

each null hypothesis. Note that the value of α = 0.05 seems to be quite popular in applied

research studies in Psychology (see Cohen, 1994, for a satirical critique). However, there is

no statistical reason why one should prefer a significance level of α = 0.05. Furthermore,

there is no reason that the Neyman-Pearson idea of fixing α and maximizing 1 − β needs

to be used. If one does decide to use Neyman-Pearson’s idea of fixing α at a particular

value, then the significance level should be chosen to meet the needs of the application. For

example, if making a false positive finding (i.e., Type I Error) is subjectively viewed to be

costly, then the significance level should be set quite small (e.g., α = 0.0001). In contrast, if

making a false negative finding (i.e., Type II Error) is subjectively viewed to be costly, then

the significance level should be set more liberally (e.g., α = 0.1).

5 One-Sided versus Two-Sided Tests

Definition. A statistical test is referred to as one-sided if the null hypothesis is inexact,

given that the alternative hypothesis is of the form H1 : θ < θ0 (less than) or H1 : θ > θ0

(greater than). In contrast, a test is referred to as two-sided if the null hypothesis is exact,

given that the alternative hypothesis is of the form H1 : θ 6= θ0 (two-sided).

In the previous examples, note that the decision rule differed depending on whether the

null hypothesis was exact (i.e., H0 : µ = 75) versus inexact (i.e., H0 : µ ≤ 75). For the

exact null hypothesis, our rejection region needed to consider the possibility that the test

statistic could be too small (< −1.96) or too large (> 1.96), where the values of ±1.96 are

the values that approximately cut-off α/2 in each tail of the N(0, 1) distribution—which is

the assumed distribution of T under the assumption that H0 is true. In contrast, for the

inexact null hypothesis, our rejection region only needed to consider the possibility that the

test statistic was too large (> 1.65), where the value of 1.65 is the value that approximately

cuts-off α in the upper tail of the N(0, 1) distribution—which is the assumed distribution of

T under the assumption that the worst case scenario of µ = 75 is true.
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Definition. Given a significance level α, the value(s) of the test statistic that are on the

border of the rejection region are referred to as the critical values of the test.

For an inexact null hypothesis, the rejection region is one-sided so there is a single

critical value. If the inexact null hypothesis is of the form H0 : θ ≥ θ0, then the alternative

hypothesis is a “less than” alternative hypothesis, i.e., H1 : θ < θ0, and the critical value is

Tα. Note that Tα denotes the corresponding quantile of the sampling distribution of T under

the assumption that the worst case scenario of θ = θ0 is true. If the inexact null hypothesis

is of the form H0 : θ ≤ θ0, then the alternative hypothesis is a “greater than” alternative,

i.e., H1 : θ > θ0, and the critical value is T1−α. Finally, for an exact null hypothesis, the

rejection region is two-sided so there are two critical values, which are Tα/2 and T1−α/2. For

the previous examples, the critical value was T1−α = 1.65 for the one-sided test, and the

critical values were Tα/2 = −1.96 and T1−α/2 = 1.96 for the two-sided test.
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Figure 1: Visualization of the two-sided and one-sided rejection regions with α = 0.05. Note
that in both figures, the red shaded region contains 5% of the area under the N(0, 1) density.
For the one-sided rejection region, the figure depicts the “greater than” alternative.
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6 p-Value of a Test

Definition. The p-value of a statistical test refers to the probability of observing a test

statistic value as or more extreme than the observed test statistic T0 under the assumption

that the null hypothesis is true. What it means to be “as or more extreme” will depend on

the direction of the alternative hypothesis:

• If H1 : θ < θ0, then p = P (T < T0 | H0 is true)

• If H1 : θ > θ0, then p = P (T > T0 | H0 is true)

• If H1 : θ 6= θ0, then p = P (T < −|T0| | H0 is true) + P (T > |T0| | H0 is true)

where p denotes the p-value corresponding to T0.

The p-value provides another way to talk about the decision of a significance test. Given

a specified significance level α, the null hypothesis is rejected if p < α, where p is the p-value

associated with T0. This is because T0 ∈ R whenever p < α, i.e., there is a one-to-one

relationship between the p-value being less than the significance level and the observed test

statistic being in the rejection region. Of course, this implies that if p > α, then the test

statistic is not within the rejection region, i.e., T0 ∈ Rc. Note that in the special case when

p = α, the test statistic is on the border of the rejection region, i.e., T0 is equal to a critical

value of the test. However, in practice you don’t really need to worry about this possibility

when you’re working with continuous distributions, because the probability of observing a

test statistic that is exactly equal to a critical value is zero.

7 Relation to Confidence Intervals

In some (low quality) statistical textbooks and journal publications, you may encounter the

claim that there is a one-to-one correspondence between p-values and confidence intervals.

In particular, you are likely to hear a claim along the lines of “if the null hypothesis value

θ0 is within the 100(1− α)% confidence interval, then the null hypothesis H0 : θ = θ0 would

be retained using the significance level α”. Unfortunately, this claim is not entirely accu-

rate, given that there is a key distinction between how p-values and confidence intervals

are calculated. As a reminder, a confidence interval is computed using the quantiles of the
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sampling distribution of a parameter estimate—without being attached to any null hypoth-

esis. In contrast, a p-value is computed using the sampling distribution of the test statistic

under the assumption that the null hypothesis is true. In some cases, these two sampling

distributions will be equivalent to one another; however, in other cases (such as proportion

tests), the sampling distribution will differ depending on whether or not the null hypothesis

is assumed to be true. Note that the classic example of when these two will be equal is when

you are testing a hypothesis about the mean of a normal distribution—which seems to be

the standard hypothesis that is tested in applied studies. But, more generally, the sampling

distribution of a statistic (without any specified null hypothesis) will not necessarily be the

same as the sampling distribution of the statistic under the assumption that H0 is true.

8 Asymptotic and Nonparametric Tests

In step 2 of the NHST procedure, it was stated that you need to make additional assumptions

to completely determine the probability distribution of the random variable (or the test

statistic) under the assumption that H0 is true. Note that this statement is true if you are

conducting a standard parametric test, but there are other options for testing hypotheses.

As a reminder, in the previous chapter we discussed three different methods for forming

confidence intervals: parametric, asymptotic, and nonparametric. Analogues of these three

options exist for testing hypotheses:

• Parametric: If the null hypothesized sampling distribution of T can be completely

derived, then a parametric significance test can be conducted.

• Asymptotic: If the null hypothesized sampling distribution of T can the asymptotically

derived, then an (asymptotically) approximate significance test can be conducted.

• Nonparametric: If the null hypothesized sampling distribution of T can be conditionally

derived (given the observed data), then a nonparametric significance test, also known

as a randomization test or permutation test, can be conducted.

Note that asymptotic tests are often used when (n is large and) maximum likelihood esti-

mation is used to estimate the parameters, given that MLEs are asymptotically normally

distributed. Nonparametric tests are powerful alternatives that can perform well across a

variety of data generating distributions and sample sizes (see Helwig, 2019b,a).
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9 Common Sense Considerations

9.1 Overview

As mentioned in the introduction, the concept of NHST has become a controversial topic in

the field of psychology (and other social sciences). Throughout the remainder of this chapter,

I will outline the various abuses, muses, and misunderstandings of NHST that seem to have

caused this controversy. I will begin by discussing outright abuses of the NHST framework,

which anyone should agree are problematic—but, sadly, several researchers are guilt of these

abuses. Then I will address two issues that misinformed researchers often use to critique

the NHST framework. In both cases, I will point that these seemingly unrelated critiques

are centered around a common theme: psychologists do not typically use NHST in a way

that will meaningfully move the science forward. I will end with a brief discussion—and

encouragement—as to how the NHST framework could be used in a more useful way.

9.2 P-Hacking and Data Snooping

The pressure to find a “significant” result has lead some researchers to commit serious abuses

of the NHST framework. More specifically, some researchers are so concerned with finding

a “statistically significant” result that they are willing to go to great lengths to do so. As

a reminder, a valid application of the NHST framework requires the user to specify their

hypothesis and assumptions (steps 1 and 2), choose a test statistic and decision rule (steps

3 and 4), and then calculate the test statistic for the observed data. If done correctly, this

procedure allows the user to control the type I error rate (i.e., the probability of making

a false positive finding) at a desired level. However, in practice, many researchers do not

implement NHST in this fashion. Instead, they change their hypothesis, assumptions, test

statistic, and/or decision rule in order to obtain a final result that is “statistically significant”

at the conventional α = 0.05 level. Such dubious practices are referred to as p-hacking or

data snooping. Note that if steps 1–4 of the NHST framework are adapted to produce a

statistically significant result for a given sample of data, the probability of a false positive

finding is likely to be much higher than the desired α = 0.05 level. This is evident from the

“reproducibility crisis” that exists in psychology (and other social sciences). In my opinion,

many unreproducible results are likely to have been false positive findings.
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9.3 Practical Significance

One critique of NHST that is routinely repeated in psychology is the idea that “statistical

significance is not the same thing as practical (or clinical) significance”. To understand the

heart of this argument, consider the standard error of the sample mean SE(x̄) = σ/
√
n,

which was the denominator of the test statistic used in our examples. As the sample size n

gets infinitely large, the standard error of the sample mean x̄ approaches zero, i.e., as n→∞,

we have that SE(x̄) → 0. Thus, for a large enough sample size, we would expect to reject

the null hypothesis H0 : µ = µ0 for any value of µ0 that is not the true population mean µ.

In practice, the difference between the hypothesized µ0 and the true µ may be so small that

it makes little practical difference whether we believe the mean is µ or µ0. If that is the case,

finding a statistically significant result (i.e., rejecting H0 : µ = µ0) does not translate into

a practically meaningful result. However, I do not see why this is a problem, and I think

that this “critique” is rather silly. You should not fault the NHST framework because it

works as intended, i.e., rejects an incorrect H0 given enough power to do so. And, in reality,

most applications of NHST in psychology are vastly underpowered, so worrying about the

hypothetical situation of having perfect power (i.e., β = 0) doesn’t seem too practical.

9.4 The Nil Hypothesis

The primary problem regarding the use of NHST in psychology (and other social sciences)

is the fact that most applications are testing the wrong null hypothesis. More specifically, in

many applications of NHST, the null hypothesis being tested is not formed using any useful

knowledge about the data. Instead, researchers often test what is referred to as the “nil

hypothesis”, which refers to a null hypothesis of form H0 : θ = 0. Note that the value of the

parameter that is specified in the null hypothesis should be your best guess of the population

parameter—not some arbitrary value (such as 0) that is the default in whatever statistical

software is being used. Most applications of NHST in psychology are backwards, such that

the null hypothesis is arbitrary (e.g., H0 : θ = 0) and the alternative hypothesis is what the

experimenter believes to be true (e.g., H1 : θ 6= 0). Note that this is completely backwards

because rejecting a null hypothesis that you know is false will do nothing to move the science

of psychology forward. The correct way to use NHST is to specify a null hypothesis that

you think is true, and then design a (well powered) study to test the null hypothesis.
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