Introduction to Set Theory

Nathaniel E. Helwig

Associate Professor of Psychology and Statistics University of Minnesota

August 27, 2020

Copyright \bigodot 2020 by Nathaniel E. Helwig

Nathaniel E. Helwig (Minnesota)

Introduction to Set Theory

1/32

- 1. What is a Set?
- 2. What is a Subset?
- 3. The Size of a Set
- 4. Venn Diagrams (or Euler Diagrams)
- 5. Unions and Intersections
- 6. Complements and Differences
- 7. Basic Set Properties

- 1. What is a Set?
- 2. What is a Subset?
- 3. The Size of a Set
- 4. Venn Diagrams (or Euler Diagrams)
- 5. Unions and Intersections
- 6. Complements and Differences
- 7. Basic Set Properties

Definition of a Set

The field of "set theory" is a branch of mathematics that is concerned with describing collections of objects.

A <u>set</u> is a collection of objects, where an "object" is a generic term that refers to the elements (or members) of the set.

The notation $a \in A$ denotes that the object a belongs to the set A.

- The symbol " \in " should be read as "is a member of"
- $a \in A$ denotes the lower case letter a is a member (or element) of the upper case letter A (the set)

Specifying a Set

Sets are defined by listing the elements inside curly braces, such as

$$A = \{a_1, \dots, a_n\}$$

where a_i is the *i*-th element of the set A for i = 1, ..., n.

We could also use a rule or property that specifies the elements, such as

 $A = \{a \mid \text{some rule or property}\}\$

where a denotes an arbitrary member that satisfies the specified rule.

- The vertical bar symbol "|" should be read as "such that"
- The notation {a | rule} denotes that the set consists of all elements a such that the rule is satisfied

Set Example 1

Define the set C to denote the possible outcomes of a coin toss:

 $C = \{$ heads, tails $\}$

which is a list containing all of the elements of C.

If we wanted to use the "rule" notation, we could define the set C as

 $C = \{c \mid c \text{ is either "heads" or "tails"} \}$

which denotes the same set that was previously defined.

Given that there are only two elements, the list notation is preferable.

Set Example 2

Define the set D to denote the possible outcomes of the roll of a dice:

 $D=\{1,2,3,4,5,6\}$

which is a list containing all of the elements of D.

If we wanted to use the "rule" notation, we could define the set D as

 $D = \{d \mid d \text{ is a positive integer less than or equal to } 6\}$

which denotes the same set that was previously defined.

Given that there are only six elements, the list notation is preferable.

Set Example 3

Define the set ${\cal S}$ to denote the states in the United States of America:

 $S = \{Alabama, Alaska, \dots, Wisconsin, Wyoming\}$

which is a list suggesting all of the elements of S.

• "..." denotes some additional elements are implied but omitted

Using the rule notation:

 $S = \{s \mid s \text{ is a state in the United States of America}\}$

which denotes the same set that was previously suggested.

The rule notation is preferred because the list (with \ldots) is vague.

- 1. What is a Set?
- 2. What is a Subset?
- 3. The Size of a Set
- 4. Venn Diagrams (or Euler Diagrams)
- 5. Unions and Intersections
- 6. Complements and Differences
- 7. Basic Set Properties

Definition of a Subset

Given sets A and B, we say that B is a <u>subset</u> of A if every member of set B is also a member of set A.

- The notation $B \subseteq A$ denotes that B is a subset of A.
- " \subseteq " includes the possibility that A and B are equivalent sets.

Given sets A and B, we say that A and B are <u>equivalent</u> if the two sets contain the exact same elements.

- The notation A = B denotes that two sets are equivalent.
- Equivalent sets satisfy $A \subseteq B$ and $B \subseteq A$.

Subset Examples

Example. Suppose that A is all possible outcomes of the roll of a standard (six-sided) dice and $B = \{1, 2, 3, 4, 5, 6\}$.

- The sets A and B are equivalent, i.e., A = B (A is equal to B)
- $A \subseteq B$ (A is a subset of B) and $B \subseteq A$ (B is a subset of A)

Example. Suppose that A is all possible outcomes of the roll of a standard (six-sided) dice and $B = \{1, 2, 7\}$.

- Each set contains at least one unique element
- $A \not\subseteq B$ (A is not a subset of B)
- $B \not\subseteq A$ (B is not a subset of A)

Definition of a Proper Subset

Given sets A and B, we say that B is a proper subset of A if (i) every member of B is also a member of A, and (ii) A contains at least one member that is not in B.

• The notation $B \subset A$ denotes that B is a proper subset of A.

Example. Suppose that A is all possible outcomes of the roll of a standard (six-sided) dice and $B = \{1, 2, 3\}$.

- $B \subseteq A$ (B is a subset of A)
- $B \subset A$ (B is a proper subset of A)
- The proper subset notation provides more information

Definition of the Universal Set

The <u>universal set</u> U refers to the set that contains all other objects of interest, such that any other set A is a proper subset of U.

• $A \subset U$ where A is any other set

Example. Suppose that $U = \{1, 2, 3, ...\}$ is the set of all natural numbers, i.e., all positive integers.

- U would be considered the universal set for the previous examples
- If $A = \{1, 2, 3, 4, 5, 6\}$ and $B = \{1, 2, 3\}$, then
- $A \subset U$ and $B \subset U$ for each example

- 1. What is a Set?
- 2. What is a Subset?
- 3. The Size of a Set
- 4. Venn Diagrams (or Euler Diagrams)
- 5. Unions and Intersections
- 6. Complements and Differences
- 7. Basic Set Properties

Cardinality of a Set

The <u>cardinality</u> (or size) of a set refers to the number of elements in the set. Note that the cardinality of a set A is typically denoted by |A|.

If $|A| \le |B|$ and $|B| \le |A|$, then we write that |A| = |B|, which is the Schröder-Bernstein theorem.

Note that |A| = |B| does not imply that A = B.

- If $A = \{ \text{cat, dog, fish} \}$ and $B = \{ \text{red, white, blue} \}$
- Then |A| = |B| but $A \neq B$

Examples of Set Cardinality

The previously discussed examples all had finite cardinalities.

Example. If $C = \{\text{heads, tails}\}, \text{ then } |C| = 2.$

Example. If $D = \{1, 2, 3, 4, 5, 6\}$, then |D| = 6.

Example. If $S = \{s \mid s \text{ is a state in the United States of America}\}$, then |S| = 50.

16/32

Finite versus Infinite Sets

A set is <u>finite</u> if the number of elements of the set is countable, whereas a set is <u>infinite</u> if the number of elements of the set is uncountable.

A set A is considered "countable" (i) if the set has a finite number of elements, i.e., $|A| < \infty$, or (ii) if the number of elements of the set has a 1-to-1 relation with the set of natural numbers $N = \{1, 2, 3, \ldots\}$.

Example. The set of even numbers is a countably infinite set: $E = \{e \mid e = 2n \text{ where } n \text{ is a natural number}\}$

Example. The set $A = \{a \mid a \text{ is a point on a circle}\}$ is an infinite set

- 1. What is a Set?
- 2. What is a Subset?
- 3. The Size of a Set
- 4. Venn Diagrams (or Euler Diagrams)
- 5. Unions and Intersections
- 6. Complements and Differences
- 7. Basic Set Properties

Graphical Depictions of Sets

Relations between sets can be shown using a Venn (or Euler) Diagram.

Figure 1: $A \subset U$ (left) and $B \subset A \subset U$ (right). Created with eulerr R package.

- 1. What is a Set?
- 2. What is a Subset?
- 3. The Size of a Set
- 4. Venn Diagrams (or Euler Diagrams)
- 5. Unions and Intersections
- 6. Complements and Differences
- 7. Basic Set Properties

Unions and Intersections of Sets

The <u>union</u> of two sets A and B contains all of the objects that are in either set. The union is denoted as $C = A \cup B$, where the $C = \{c \mid c \in A \text{ or } c \in B\}.$

The <u>intersection</u> of two sets A and B contains all of the objects that are in both sets. The intersection is denoted as $C = A \cap B$, where the $C = \{c \mid c \in A \text{ and } c \in B\}.$

Example. If $A = \{1, 2, 3\}$ and $B = \{3, 4, 5, 6\}$, then the union is $A \cup B = \{1, 2, 3, 4, 5, 6\}$ and the intersection is $A \cap B = \{3\}$.

Depiction of Unions and Intersections

Figure 2: $A \cup B$ (left) and $A \cap B$ (right). Created with eulerr R package.

The Empty Set and Disjoint Sets

The empty set is the set that contains no elements, which is denoted by $\emptyset = \{\}$. Two sets are said to be <u>disjoint</u> if they have no elements in common, i.e., if $A \cap B = \emptyset$.

Note that the empty set is considered to be a subset of all sets, i.e., $\emptyset \subseteq A$. As a result, we have that $\emptyset \cup A = A$ for any set A. Note that we also have that $\emptyset \cap A = \emptyset$ for any set A.

Example. If $A = \{ \text{cat, dog, fish} \}$ and $B = \{ \text{red, white, blue} \}$, then $A \cap B = \emptyset$.

Example. If $A = \{1, 2, 3\}$, $B = \{4, 5, 6\}$, and $C = \{1, 4, 7, 8, 9, 10\}$, then $A \cap B \cap C = \emptyset$.

Depiction of Disjoint Sets

Figure 3: $A \cap B = \emptyset$ (left) and $A \cap B \cap C = \emptyset$ (right). Created with eulerr R package.

Order of Operations

Note that the order of operations is important if you are talking about unions and intersections with more than two sets:

• $(A \cup B) \cap C$ is not necessarily equivalent to $A \cup (B \cap C)$

Example. Using the three sets $A = \{1, 2, 3\}, B = \{4, 5, 6\}$, and $C = \{1, 4, 7, 8, 9, 10\}$, we have that $(A \cup B) \cap C = \{1, 4\}$ and $A \cup (B \cap C) = \{1, 2, 3, 4\}$.

Question for the Reader: Does the order of operations matter if we are only talking about unions or interactions?

- Is $(A \cup B) \cup C$ the same as $A \cup (B \cup C)$?
- Is $(A \cap B) \cap C$ the same as $A \cap (B \cap C)$?

Depiction of Order of Operations

Figure 4: $(A \cup B) \cap C$ (left) and $A \cup (B \cap C)$ (right). Created with eulerr R package.

- 1. What is a Set?
- 2. What is a Subset?
- 3. The Size of a Set
- 4. Venn Diagrams (or Euler Diagrams)
- 5. Unions and Intersections
- 6. Complements and Differences
- 7. Basic Set Properties

Complement of a Set

The complement of a set A, denoted by A^c (or sometimes by \overline{A}), consists of all elements that are in the universal set U but not in A, i.e., $A^c = \{a \mid a \in U, a \notin A\}$.

The concept of a complement requires the definition of both the set of interest (i.e., A) and the universal set (i.e., U). In other words, the complement of a set is defined with respect to the universal set.

Example. If $A = \{1, 2, 3, 4, 5\}$ and $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, then the complement of A is defined as $A^c = \{6, 7, 8, 9, 10\}$.

Difference Between Two Sets

The <u>difference</u> of a set A minus a set B, denoted by $A \setminus B$ (or sometimes by A - B), consists of all elements that are in A but not in B, i.e., $A \setminus B = \{a \mid a \in A, a \notin B\}$.

Note that the set difference (A - B) is the intersection of A and the complement of B, i.e., $A \setminus B = A \cap B^c$. Also, note that $A \setminus B$ is not the same as $B \setminus A$ (i.e., non-commutative).

Example. If $A = \{1, 2, 3, 4, 5, 6\}$ and $B = \{4, 5, 6\}$, then $A \setminus B = \{1, 2, 3\}$ and $B \setminus A = \emptyset$.

Depiction of Set Complements and Differences

Figure 5: A^c (left) and $A \setminus B$ (right). Created with eulerr R package.

- 1. What is a Set?
- 2. What is a Subset?
- 3. The Size of a Set
- 4. Venn Diagrams (or Euler Diagrams)
- 5. Unions and Intersections
- 6. Complements and Differences
- 7. Basic Set Properties

Some Helpful Set Theory Rules

- 1. $A \cup \emptyset = A$
- 2. $A \cap \emptyset = \emptyset$
- 3. $A \cup U = U$
- 4. $A \cap U = A$
- 5. $A \cup A^c = U$
- 6. $A \cap A^c = \emptyset$
- $7. \ A \cup B = B \cup A$
- 8. $A \cap B = B \cap A$

9. $A \cup (B \cup C) = (A \cup B) \cup C$ 10. $A \cap (B \cap C) = (A \cap B) \cap C$ 11. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ 12. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ 13. $(A \cup B)^c = A^c \cap B^c$ 14. $(A \cap B)^c = A^c \cup B^c$ 15. $A \setminus B = B \setminus A$ if and only if A = B