Introduction to Set Theory

Nathaniel E. Helwig

Associate Professor of Psychology and Statistics
University of Minnesota

August 27, 2020

Copyright © 2020 by Nathaniel E. Helwig

Table of Contents

1. What is a Set?
2. What is a Subset?
3. The Size of a Set
4. Venn Diagrams (or Euler Diagrams)
5. Unions and Intersections
6. Complements and Differences
7. Basic Set Properties

Table of Contents

1. What is a Set?
2. What is a Subset?
3. The Size of a Set
4. Venn Diagrams (or Euler Diagrams)
5. Unions and Intersections
6. Complements and Differences
7. Basic Set Properties

Definition of a Set

The field of "set theory" is a branch of mathematics that is concerned with describing collections of objects.

A set is a collection of objects, where an "object" is a generic term that refers to the elements (or members) of the set.

The notation $a \in A$ denotes that the object a belongs to the set A.

- The symbol " \in " should be read as "is a member of"
- $a \in A$ denotes the lower case letter a is a member (or element) of the upper case letter A (the set)

Specifying a Set

Sets are defined by listing the elements inside curly braces, such as

$$
A=\left\{a_{1}, \ldots, a_{n}\right\}
$$

where a_{i} is the i-th element of the set A for $i=1, \ldots, n$.

We could also use a rule or property that specifies the elements, such as

$$
A=\{a \mid \text { some rule or property }\}
$$

where a denotes an arbitrary member that satisfies the specified rule.

- The vertical bar symbol "|" should be read as "such that"
- The notation $\{a \mid$ rule $\}$ denotes that the set consists of all elements a such that the rule is satisfied

Set Example 1

Define the set C to denote the possible outcomes of a coin toss:

$$
C=\{\text { heads }, \text { tails }\}
$$

which is a list containing all of the elements of C.

If we wanted to use the "rule" notation, we could define the set C as

$$
C=\{c \mid c \text { is either "heads" or "tails" }\}
$$

which denotes the same set that was previously defined.

Given that there are only two elements, the list notation is preferable.

Set Example 2

Define the set D to denote the possible outcomes of the roll of a dice:

$$
D=\{1,2,3,4,5,6\}
$$

which is a list containing all of the elements of D.

If we wanted to use the "rule" notation, we could define the set D as

$$
D=\{d \mid d \text { is a positive integer less than or equal to } 6\}
$$

which denotes the same set that was previously defined.

Given that there are only six elements, the list notation is preferable.

Set Example 3

Define the set S to denote the states in the United States of America:

$$
S=\{\text { Alabama, Alaska, ..., Wisconsin, Wyoming }\}
$$

which is a list suggesting all of the elements of S.

- ". .." denotes some additional elements are implied but omitted

Using the rule notation:

$$
S=\{s \mid s \text { is a state in the United States of America }\}
$$

which denotes the same set that was previously suggested.

The rule notation is preferred because the list (with ...) is vague.

Table of Contents

```
1. What is a Set?
2. What is a Subset?
3. The Size of a Set
4. Venn Diagrams (or Euler Diagrams)
5. Unions and Intersections
6. Complements and Differences
7. Basic Set Properties
```


Definition of a Subset

Given sets A and B, we say that B is a subset of A if every member of set B is also a member of set A.

- The notation $B \subseteq A$ denotes that B is a subset of A.
- " \subseteq " includes the possibility that A and B are equivalent sets.

Given sets A and B, we say that A and B are equivalent if the two sets contain the exact same elements.

- The notation $A=B$ denotes that two sets are equivalent.
- Equivalent sets satisfy $A \subseteq B$ and $B \subseteq A$.

Subset Examples

Example. Suppose that A is all possible outcomes of the roll of a standard (six-sided) dice and $B=\{1,2,3,4,5,6\}$.

- The sets A and B are equivalent, i.e., $A=B$ (A is equal to B)
- $A \subseteq B(A$ is a subset of $B)$ and $B \subseteq A(B$ is a subset of $A)$

Example. Suppose that A is all possible outcomes of the roll of a standard (six-sided) dice and $B=\{1,2,7\}$.

- Each set contains at least one unique element
- $A \nsubseteq B(A$ is not a subset of $B)$
- $B \nsubseteq A(B$ is not a subset of $A)$

Definition of a Proper Subset

Given sets A and B, we say that B is a proper subset of A if (i) every member of B is also a member of A, and (ii) A contains at least one member that is not in B.

- The notation $B \subset A$ denotes that B is a proper subset of A.

Example. Suppose that A is all possible outcomes of the roll of a standard (six-sided) dice and $B=\{1,2,3\}$.

- $B \subseteq A(B$ is a subset of $A)$
- $B \subset A(B$ is a proper subset of $A)$
- The proper subset notation provides more information

Definition of the Universal Set

The universal set U refers to the set that contains all other objects of interest, such that any other set A is a proper subset of U.

- $A \subset U$ where A is any other set

Example. Suppose that $U=\{1,2,3, \ldots\}$ is the set of all natural numbers, i.e., all positive integers.

- U would be considered the universal set for the previous examples
- If $A=\{1,2,3,4,5,6\}$ and $B=\{1,2,3\}$, then
- $A \subset U$ and $B \subset U$ for each example

Table of Contents

```
1. What is a Set?
2. What is a Subset?
3. The Size of a Set
4. Venn Diagrams (or Euler Diagrams)
5. Unions and Intersections
6. Complements and Differences
7. Basic Set Properties
```


Cardinality of a Set

The cardinality (or size) of a set refers to the number of elements in the set. Note that the cardinality of a set A is typically denoted by $|A|$.

If $|A| \leq|B|$ and $|B| \leq|A|$, then we write that $|A|=|B|$, which is the Schröder-Bernstein theorem.

Note that $|A|=|B|$ does not imply that $A=B$.

- If $A=\{$ cat, dog, fish $\}$ and $B=\{$ red, white, blue $\}$
- Then $|A|=|B|$ but $A \neq B$

Examples of Set Cardinality

The previously discussed examples all had finite cardinalities.

Example. If $C=\{$ heads, tails $\}$, then $|C|=2$.

Example. If $D=\{1,2,3,4,5,6\}$, then $|D|=6$.

Example. If $S=\{s \mid s$ is a state in the United States of America $\}$, then $|S|=50$.

Finite versus Infinite Sets

A set is finite if the number of elements of the set is countable, whereas a set is infinite if the number of elements of the set is uncountable.

A set A is considered "countable" (i) if the set has a finite number of elements, i.e., $|A|<\infty$, or (ii) if the number of elements of the set has a 1-to-1 relation with the set of natural numbers $N=\{1,2,3, \ldots\}$.

Example. The set of even numbers is a countably infinite set: $E=\{e \mid e=2 n$ where n is a natural number $\}$

Example. The set $A=\{a \mid a$ is a point on a circle $\}$ is an infinite set

Table of Contents

```
1. What is a Set?
2. What is a Subset?
3. The Size of a Set
4. Venn Diagrams (or Euler Diagrams)
5. Unions and Intersections
6. Complements and Differences
7. Basic Set Properties
```


Graphical Depictions of Sets

Relations between sets can be shown using a Venn (or Euler) Diagram.

Figure 1: $A \subset U$ (left) and $B \subset A \subset U$ (right). Created with eulerr R package.

Table of Contents

```
1. What is a Set?
2. What is a Subset?
3. The Size of a Set
4. Venn Diagrams (or Euler Diagrams)
5. Unions and Intersections
6. Complements and Differences
7. Basic Set Properties
```


Unions and Intersections of Sets

The union of two sets A and B contains all of the objects that are in either set. The union is denoted as $C=A \cup B$, where the $C=\{c \mid c \in A$ or $c \in B\}$.

The intersection of two sets A and B contains all of the objects that are in both sets. The intersection is denoted as $C=A \cap B$, where the $C=\{c \mid c \in A$ and $c \in B\}$.

Example. If $A=\{1,2,3\}$ and $B=\{3,4,5,6\}$, then the union is $A \cup B=\{1,2,3,4,5,6\}$ and the intersection is $A \cap B=\{3\}$.

Depiction of Unions and Intersections

Figure 2: $A \cup B$ (left) and $A \cap B$ (right). Created with eulerr R package.

The Empty Set and Disjoint Sets

The empty set is the set that contains no elements, which is denoted by $\emptyset=\{ \}$. Two sets are said to be disjoint if they have no elements in common, i.e., if $A \cap B=\emptyset$.

Note that the empty set is considered to be a subset of all sets, i.e., $\emptyset \subseteq A$. As a result, we have that $\emptyset \cup A=A$ for any set A. Note that we also have that $\emptyset \cap A=\emptyset$ for any set A.

Example. If $A=\{\mathrm{cat}, \operatorname{dog}, \mathrm{fish}\}$ and $B=\{\mathrm{red}$, white, blue $\}$, then $A \cap B=\emptyset$.

Example. If $A=\{1,2,3\}, B=\{4,5,6\}$, and $C=\{1,4,7,8,9,10\}$, then $A \cap B \cap C=\emptyset$.

Depiction of Disjoint Sets

Figure 3: $A \cap B=\emptyset$ (left) and $A \cap B \cap C=\emptyset$ (right). Created with eulerr R package.

Order of Operations

Note that the order of operations is important if you are talking about unions and intersections with more than two sets:

- $(A \cup B) \cap C$ is not necessarily equivalent to $A \cup(B \cap C)$

Example. Using the three sets $A=\{1,2,3\}, B=\{4,5,6\}$, and $C=\{1,4,7,8,9,10\}$, we have that $(A \cup B) \cap C=\{1,4\}$ and $A \cup(B \cap C)=\{1,2,3,4\}$.

Question for the Reader: Does the order of operations matter if we are only talking about unions or interactions?

- Is $(A \cup B) \cup C$ the same as $A \cup(B \cup C)$?
- Is $(A \cap B) \cap C$ the same as $A \cap(B \cap C)$?

Depiction of Order of Operations

Figure 4: $(A \cup B) \cap C$ (left) and $A \cup(B \cap C)$ (right). Created with eulerr R package.

Table of Contents

```
1. What is a Set?
2. What is a Subset?
3. The Size of a Set
4. Venn Diagrams (or Euler Diagrams)
5. Unions and Intersections
```

6. Complements and Differences
7. Basic Set Properties

Complement of a Set

The complement of a set A, denoted by A^{c} (or sometimes by \bar{A}), consists of all elements that are in the universal set U but not in A, i.e., $A^{c}=\{a \mid a \in U, a \notin A\}$.

The concept of a complement requires the definition of both the set of interest (i.e., A) and the universal set (i.e., U). In other words, the complement of a set is defined with respect to the universal set.

Example. If $A=\{1,2,3,4,5\}$ and $U=\{1,2,3,4,5,6,7,8,9,10\}$, then the complement of A is defined as $A^{c}=\{6,7,8,9,10\}$.

Difference Between Two Sets

The difference of a set A minus a set B, denoted by $A \backslash B$ (or sometimes by $A-B$), consists of all elements that are in A but not in B, i.e., $A \backslash B=\{a \mid a \in A, a \notin B\}$.

Note that the set difference $(A-B)$ is the intersection of A and the complement of B, i.e., $A \backslash B=A \cap B^{c}$. Also, note that $A \backslash B$ is not the same as $B \backslash A$ (i.e., non-commutative).

Example. If $A=\{1,2,3,4,5,6\}$ and $B=\{4,5,6\}$, then $A \backslash B=\{1,2,3\}$ and $B \backslash A=\emptyset$.

Depiction of Set Complements and Differences

Figure 5: A^{c} (left) and $A \backslash B$ (right). Created with eulerr R package.

Table of Contents

```
1. What is a Set?
2. What is a Subset?
3. The Size of a Set
4. Venn Diagrams (or Euler Diagrams)
5. Unions and Intersections
6. Complements and Differences
```

7. Basic Set Properties

Some Helpful Set Theory Rules

1. $A \cup \emptyset=A$
2. $A \cap \emptyset=\emptyset$
3. $A \cup U=U$
4. $A \cap U=A$
5. $A \cup A^{c}=U$
6. $A \cap A^{c}=\emptyset$
7. $A \cup B=B \cup A$
8. $A \cap B=B \cap A$
9. $A \cup(B \cup C)=(A \cup B) \cup C$
10. $A \cap(B \cap C)=(A \cap B) \cap C$
11. $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
12. $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
13. $(A \cup B)^{c}=A^{c} \cap B^{c}$
14. $(A \cap B)^{c}=A^{c} \cup B^{c}$
15. $A \backslash B=B \backslash A$ if and only if $A=B$
