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What is a Random Variable?

Randomness

According to the Merriam-Webster online dictionary!, the word
random is a noun that means

1. “lacking a definite plan, purpose or pattern” or

2. “relating to, having, or being elements or events with definite
probability of occurrence”

In probability and statistics, we use the second definition, such that a
random process is any action that has a probability distribution.

® Chance and uncertainty are inherent to a random process.

® The opposite of a random process is a “deterministic process”,
which is some action that always results in the same outcome.

"https://www.merriam-webster.com/dictionary /random
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What is a Random Variable?

Random Variables

In probability and statistics, a random variable is an abstraction of the
idea of an outcome from a randomized experiment.

® Typically denoted by capital italicized Roman letters such as X

More formally, a random variable is a function that maps the outcome
of a (random) simple experiment to a real number.

A random variable is an abstract way to talk about experimental
outcomes, which makes it possible to flexibly apply probability theory.
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What is a Random Variable?

Realizations of Random Variables

You cannot observe a random variable X itself. An experimenter. ..
® defines the random variable (i.e., function) of interest, and then

® observes the result of applying function to experimental outcome

The realization of a random variable is the result of applying the
random variable (i.e., function) to an observed experimental outcome.

e This is what the experimenter actually observes.

® Realizations of random variables are typically denoted using
lowercase italicized Roman letters, e.g., x is a realization of X.

The domain of a random variable is the sample space S, i.e., the set of
possible realizations that the random variable can take.
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What is a Random Variable?

Random Variable Example 1

Suppose we flip a fair (two-sided) coin n > 2 times, and assume that
the n flips are independent of one another. Define X as the number of
coin flips that are heads.

Note that X is a random variable given that it is a function (i.e.,
counting the number of heads) that is applied to a random process
(i.e., independently flipping a fair coin n times).

Possible realizations of X include any x € {0,1,...,n}, i.e., we could
observe any number of heads between 0 and n.

Nathaniel E. Helwig (Minnesota) Introduction to Random Variables © August 28, 2020 7 /41



What is a Random Variable?

Random Variable Example 2

Suppose that we draw the first card from a randomly shuffled deck of
52 cards, and define X as the suit of the drawn card.

Note that X is a random variable given that it is a function (i.e., suit
of the card) that is applied to a random process (i.e., drawing the first
card from a shuffled deck).

e [f the deck was sorted, this would be a deterministic process

Possible realizations of X include any x € {1,2,3,4}, where 1 = Clubs,
2 = Diamonds, 3 = Hearts, and 4 = Spades.
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Discrete versus Continuous Random Variables

Two Types of Random Variables

A random variable has a probability distribution that associates
probabilities to realizations of the variable.

Before explicitly defining what such a distribution looks like, it is
important to make the distinction between the two types of random
variables that we could observe.

A random variable is discrete if its domain consists of a finite (or
countably infinite) set of values. A random variable is continuous if its
domain is uncountably infinite.
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Discrete versus Continuous Random Variables

Example of a Discrete Random Variable

Suppose we flip a fair (two-sided) coin n > 2 times, and assume that
the n flips are independent of one another. Define X as the number of
coin flips that are heads.

Note that X is a discrete random variable given that the domain
S ={0,...,n} is a finite set (assuming a fixed number of flips n).

Thus, we could associate a specific probability to each z € S.
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Discrete versus Continuous Random Variables

Example of a Continuous Random Variable

Consider the face of a clock, and suppose that we randomly spin the
second hand around the clock face. Define X as the position where the
second hand stops spinning (see Figure 1).

The random variable X is a continuous random variable given that the
domain S = {z | x is a point on a circle} is an uncountably infinite set.

Thus, we cannot associate a specific probability with any given x € .S,
ie., P(X =z) =0 for any = € S, but we can calculate the probability
that X is in a particular range, e.g., P(3 < X < 6) = 1/4.
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ontinuous Random Va

Example of a Continuous Random Variable (continued)

Figure 1: Clock face with three random positions of the second hand.
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Probability Mass and Density Functions

Probability Mass Function

The probability mass function (PMF) of a discrete random variable X
is the function f(-) that associates a probability with each x € S.

® f(x)y=P(X=z)>0foranyz €S

® ers f({L’) =1

n=5 n =10

0.25
I
0.20
I

P(X =x)
005 0.15
1 | |
P(X =x)
0.00 0.10
1 | |

Figure 2: PMF for coin flipping example with n = 5 and n = 10.
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Probability Mass and Density Functions

Probability Density Function

The probability density function (PDF) of a continuous random
variable X is the function f(-) that associates a probability with each
range of realizations of X.

® f(x)>0for any x € §
. f;f(ac)d:c:P(a<X<b)20for any a,b € S satisfying a < b
® [iegflx)dr =1

Suppose that we randomly spin the second hand around a clock face n
independent times. Define Z; as the position where the second hand
stops spinning on the i-th replication, and define X = % Yo, Z; as the
average of the n spin results. Note that the realizations of X are any
values z € [0, 12], which is the same domain as Z; fori =1,...,n.
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Probability Mass and Density Functions

Probability Density Function (continued)

With n = 1 spin, the PDF is simply a flat line between 0 and 12.
With n = 5 spins, the PDF has a bell shape, where values around the
midpoint of x = 6 have the largest density.

n=1 n=5

© ¥
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Figure 3: PDF for clock spinning example with n =1 and n = 5.

Nathaniel E. Helwig (Minnesota) Introduction to Random Variables © August 28, 2020 17 /41



Cumulative Distribution Function

Table of Contents

4. Cumulative Distribution Function

Nathaniel E. Helwig (Mi S ) Introduction to Random Variables © August 28, 2020 18 /41



Cumulative Distribution Function

Definition of Cumulative Distribution Function

The cumulative distribution function (CDF) of a random variable X is
the function F(-) that returns the probability P(X < z) for any x € S.

Note that the CDF is the same as the probability distribution that was
defined in the “Introduction to Probability” notes, such that the CDF
is a function from S to [0, 1], i.e., F': S — [0, 1].

Probabilities can be written in terms of the CDF, such as
Pla< X <b)=F()— Fl(a)

given that the CDF is related to the PMF (or PDF), such as

® f(x) = F(x) — lim,_,,— F(a) for discrete random variables

° f(zx)= (@) for continuous random variables
dx
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Cumulative Distribution Function

Examples of Cumulative Distribution Functions

CDF can be defined for both discrete and continuous random variables:

® F(z)=)_,c5.<, f(2) for discrete random variables

* F(z) = [*_ f(z)dz for continuous random variables

coin flipping (n =5) clock spinning (n = 5)
. — -—
© | - Y ]
o o
3 ] *———0 8 ]
w S w T
o o
g — §—? T T T T g B — T T T T T T
0 1 2 3 4 5 0 2 4 6 8 10 12
X X

Figure 4: CDF for the coin and clock examples with n = 5.
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Quantile Function

Definition of Quantile Function

The quantile function of a random variable X is the function Q(-) that
returns the realization = such that P(X < z) = p for any p € [0, 1].

Formally, quantile function can be defined as Q(p) = mingeg F(z) > p.
Thus, for any input probability p € [0, 1], the quantile function Q(p)
returns the smallest x € S that satisfies the inequality F'(z) > p.

Note that the quantile function is the inverse of the CDF, such that
Q(+) is a function from [0,1] to S, i.e., @ : [0,1] — S.

e For continuous random variables, we have that Q = F~!
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Quantile Function

Quartiles and Percentiles

The quartiles are most commonly used percentiles:
¢ First Quartile: p = 1/4 returns x that cuts off the lower 25%

® Second Quartile (Median): p = 1/2 returns x that cuts the
distribution in half

¢ Third Quartile: p = 3/4 returns z that cuts off the upper 25%

The 100pth percentile of a distribution is the quantile x such that
100p% of the distribution is below z for any p € (0, 1).

® 10th percentile is the quantile corresponding to p = 1/10

20th percentile is the quantile corresponding to p = 2/10

80th percentile is the quantile corresponding to p = 8/10

90th percentile is the quantile corresponding to p = 9/10
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Quantile Function

Visualization of Quartiles
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Figure 5: PDF and quartiles for clock spinning example with n =1 and n = 5.
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Expected Value and Expectation Operator

What to Expect of a Random Variable

Here we will define a way to measure the “center” of a distribution,
which is useful for understanding what to expect of a random variable.

The expected value of a random variable X is a weighted average of
the realizations x € S with the weights defined by the PMF or PDF.

The expected value of X is defined as = E(X) where E(-) is the
expectation operator, which is defined as

* B(X) =3 _cgxf(x) for discrete random variables

* E(X) = [ cgxf(z)dx for continuous random variables
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Expected Value and Expectation Operator

Insight into the Expectation Operator

To understand the expectation operator E(-), suppose that we have
sampled n independent realizations of some random variable X.

Let z1,...,x, denote the n independent realizations of X, and define
the arithmetic mean as z,, = %2?21 x;.

As the sample size n gets infinitely large, the arithmetic mean
converges to the expected value p, i.e.,

pw=FEX)= lim z,

n—oo

which is due to the weak law of large numbers (which is also known as
Bernoulli’s theorem).
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Expected Value and Expectation Operator

Rules of Expectation Operators

Assume X is a random variable, and the other terms are constants.

X+ + Xp) = B(X1) + -+ + B(X))
b1 X1+ +0pXy) = i E(Xy) + - + 0, E(X))

B (I 6:%;) = (-1 6;) B (I, %)
6. £ <H§:1 ijj) =l b E(X;) if Xi,..., X, are independent

A
3|

Rules 3-5 are true regardless of whether X1, ..., X, are independent.
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Expected Value and Expectation Operator

Expectation Operator Example 1
For the coin flipping example, X = >"" | Z; where Z; is the i-th flip.
Applying rule 3, we have that E(X) =" | E(Z;).

Since the coin is assumed to be fair, the expected value of Z; is

1
E(Z) =) af(z)=0 (;) +1 (;) _1
=0
for any given i € {1,...,n}.

The expected value of X can be written as E(X) = 2?21(1/2) =n/2
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Expected Value and Expectation Operator

Expectation Operator Example 2

For the clock spinning example, note that X = >"" | a;Z; where Z; is
the i-th clock spin and a; = 1/n foralli=1,...,n

Applying rule 4, we have that E(X) =1Y" | E(Z;) =1 Y1 E(Z).

Note that f(z) = 5 for z € [0,12], which implies that

1 12 101,172 1
E(Z) = dz = — | =22 144 —-0)=6
(2) 12/0 T [22 L_O 21 )=

which implies that E(X) = 13" 6 = 1(6n) = 6.
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Variance and Standard Deviation

Measuring the Spread of a Distribution

In this section, we will see that the expectation operator can also be
used to help use quantify the “spread” of a distribution.

The variance of a random variable X is a weighted average of the
squared deviation between a random variable’s realizations and its
expectation with the weights defined according to the PMF or PDF,
ie., 02 = E[(X — p)?] = B(X?) -

* Bl(X — =Y ,cq(x—p)?f(z) for discrete random variables

* BE[(X —p)?] = [,cq(z—p)?f(x)dz for continuous random variables

The variance of X is the expected value of the squared X minus the
square of the expected value of X.
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Variance and Standard Deviation

Insight into the Variance Operator

To gain some insight into the variance, suppose that we have sampled
n independent realizations of some random variable X.

Let z1,...,x, denote the n independent realizations of X, and define
the arithmetic mean of the squared deviations from the average value,
ie, 8 =L1%" (v, —,)% where z, = 2 Y7 | ;.

As the sample size n gets infinitely large, the arithmetic mean of the

squared deviations converges to the variance o2, i.e.,

o2 =E[(X —p)? = lim §

n—oo

which is due to the weak law of large numbers (which is also known as
Bernoulli’s theorem).

Nathaniel E. Helwig (Minnesota) Introduction to Random Variables © August 28, 2020 33 /41



Variance and Standard Deviation

Rules of Variance Operators

Assume X is a random variable, and the other terms are constants.

1. Var(a) =0
2. Var(a + bX) = Var(a) + b*Var(X) = b?0?

3. Var ( Xj) = 1;:1 Var(X;) if Xy,..., X, are independent

7j=1

4. Var (Z§:1 ijj) = J 1 bJVar( ;) if Xy,..., X, are independent

Var (320, ;X ) = S5y B2Var(X;) + 2 50, $42) bibkCov(X;, X,
where Cov(X,, Xy) = E[(X; — p;)(Xk — pg)] is the covariance

ot

Rules 3 and 4 are only true if Xi,..., X, are independent.
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Variance and Standard Deviation

Variance Operator Example 1

For the coin flipping example, remember that X =) | Z; where Z; is
the i-th coin flip.

Applying rule 3 (which is valid because the Z; are independent), we
have that the variance of X can be written as Var(X) = >"" | Var(Z;).

Since the coin is assumed to be fair
1
1 1 1 1 1
- ) = — 2 = — — — — = —
vtz =3 (5) (o) + (1) (2) = (5)
for any given i € {1,...,n}, which uses the fact that E(Z;) = 1/2.

Thus, the variance of X can be written as Var(X) =>"" ,(1/4) = n/4.
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Variance and Standard Deviation

Variance Operator Example 2

For the clock spinning example, remember that X = >"" | a;Z; where
Z; is the i-th clock spin and a; = 1/n for alli=1,... n.

Applying rule 4, we have that Var(X) = n—lg iy Var(Z;). And note
that Var(Z;) = Var(Z) = E(Z?) — E(Z)? for all i = 1,...,n because
the n spins are independent and identically distributed (iid).

Remembering that f(z) = 5 and E(Z) = 6, we just need to calculate

z=12
E(ZZ):l/wszz:l 1;;3 :i(1728—0):48
12 /o 12 |13 0 36

which implies that Var(Z) = 48 — 36 = 12.

z=

Thus, the variance of X is Var(X) = 5 3" 12 =12/n.

n
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Variance and Standard Deviation

Standard Deviation and Standardized Variables

The standard deviation of a random variable X is the square root of
the variance of X, i.e., 0 = /E[(X — u)?].

If X is a random variable with mean ; and variance o2, then
X—p
o

has mean F(Z) = 0 and variance Var(Z) = E(Z?) = 1. Proof:
* Note that Z = a +bX where a = —£ and b = 1
¢ Apply Expectation Rule 2: E(Z) =a+bE(X) =
® Apply Variance Rule 2: Var(Z) = b*Var(X) = o

7 =

A standardized variable has mean E(Z) = 0 and variance F(Z?%) = 1.

Such a variable is typically denoted by Z (instead of X) and may be
referred to as “z-score”.
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Moments of a Distribution

Raw, Central, and Standardized Moments

The k-th moment of a random variable X is the expected value of X,
ie., u), = E(XF).

The k-th central moment of a random variable X is the expected value
of (X —p)¥, ie., up = E[(X — p)¥], where u = E(X) is the expected

value of X.

The k-th standardized moment of a random variable X is the expected
value of (X — p)*/o*, ie., i, = E[(X — pu)*]/o¥, where
o= +/E[(X — p)?] is the standard deviation of X.

Note: The mean f is the first moment and the variance o2 is the
second central moment.
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Moments of a Distribution

Insight into the Moments of Distribution

Letting z1, ..., z, denote the n independent realizations of X, we have

1 n
W = lim — fo
=1

n—00 N 4

where %, = %Z;;l x; and 35, = \/% Yo (@i — zn)2.

Note that these are all results of the law of large numbers, which states
that averages of iid data converge to expectations.
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Moments of a Distribution

Skewness and Kurtosis

fis = E[(X — p)3]/0? is skewness, which measures (lack of) symmetry.
e Negative (or left-skewed) = heavy left tail
® Positive (or right-skewed) = heavy right tail

fis = E[(X — p)*]/o* is kurtosis, which measures peakedness.
e Above 3 is leptokurtic (more peaked than normal)
® Below 3 is platykurtic (less peaked than normal)

Left Skewed Right Skewed Leptokurtic Platykurtic
w g v @ g <3
S E S s
< | < | < | <
S S S S
™ | ™ | ™ | © |
= o = =] = o = °©
S o b= b= S oo
s s S s
pal| pal pal| pal|
s s s s
o | o | < | o |
° T T < T e e T T
-4 -2 0 2 4 -4 -2 0 2 4 4 2 0 2 4 -4 -2 0 2 4
X X X X

Figure 6: Distributions with different values of skewness and kurtosis.
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