Introduction to Random Variables

Nathaniel E. Helwig

Associate Professor of Psychology and Statistics University of Minnesota

August 28, 2020

Copyright © 2020 by Nathaniel E. Helwig

1/41

- 1. What is a Random Variable?
- 2. Discrete versus Continuous Random Variables
- 3. Probability Mass and Density Functions
- 4. Cumulative Distribution Function
- 5. Quantile Function
- 6. Expected Value and Expectation Operator
- 7. Variance and Standard Deviation
- 8. Moments of a Distribution

1. What is a Random Variable?

- 2. Discrete versus Continuous Random Variables
- 3. Probability Mass and Density Functions
- 4. Cumulative Distribution Function
- 5. Quantile Function
- 6. Expected Value and Expectation Operator
- 7. Variance and Standard Deviation
- 8. Moments of a Distribution

Randomness

According to the Merriam-Webster online dictionary¹, the word \underline{random} is a noun that means

- 1. "lacking a definite plan, purpose or pattern" or
- 2. "relating to, having, or being elements or events with definite probability of occurrence"

In probability and statistics, we use the second definition, such that a random process is any action that has a probability distribution.

- Chance and uncertainty are inherent to a random process.
- The opposite of a random process is a "deterministic process", which is some action that always results in the same outcome.

¹https://www.merriam-webster.com/dictionary/random

Random Variables

In probability and statistics, a <u>random variable</u> is an abstraction of the idea of an outcome from a randomized experiment.

• Typically denoted by capital italicized Roman letters such as X

More formally, a random variable is a function that maps the outcome of a (random) simple experiment to a real number.

A random variable is an abstract way to talk about experimental outcomes, which makes it possible to flexibly apply probability theory.

Realizations of Random Variables

You cannot observe a random variable X itself. An experimenter...

- *defines* the random variable (i.e., function) of interest, and then
- *observes* the result of applying function to experimental outcome

The <u>realization</u> of a random variable is the result of applying the random variable (i.e., function) to an observed experimental outcome.

- This is what the experimenter actually observes.
- Realizations of random variables are typically denoted using lowercase italicized Roman letters, e.g., x is a realization of X.

The <u>domain</u> of a random variable is the sample space S, i.e., the set of possible realizations that the random variable can take.

Random Variable Example 1

Suppose we flip a fair (two-sided) coin $n \ge 2$ times, and assume that the *n* flips are independent of one another. Define X as the number of coin flips that are heads.

Note that X is a random variable given that it is a function (i.e., counting the number of heads) that is applied to a random process (i.e., independently flipping a fair coin n times).

Possible realizations of X include any $x \in \{0, 1, ..., n\}$, i.e., we could observe any number of heads between 0 and n.

Random Variable Example 2

Suppose that we draw the first card from a randomly shuffled deck of 52 cards, and define X as the suit of the drawn card.

Note that X is a random variable given that it is a function (i.e., suit of the card) that is applied to a random process (i.e., drawing the first card from a shuffled deck).

• If the deck was sorted, this would be a deterministic process

Possible realizations of X include any $x \in \{1, 2, 3, 4\}$, where 1 = Clubs, 2 = Diamonds, 3 = Hearts, and 4 = Spades.

1. What is a Random Variable?

- 2. Discrete versus Continuous Random Variables
- 3. Probability Mass and Density Functions
- 4. Cumulative Distribution Function
- 5. Quantile Function
- 6. Expected Value and Expectation Operator
- 7. Variance and Standard Deviation
- 8. Moments of a Distribution

Two Types of Random Variables

A random variable has a probability distribution that associates probabilities to realizations of the variable.

Before explicitly defining what such a distribution looks like, it is important to make the distinction between the two types of random variables that we could observe.

A random variable is <u>discrete</u> if its domain consists of a finite (or countably infinite) set of values. A random variable is <u>continuous</u> if its domain is uncountably infinite.

Example of a Discrete Random Variable

Suppose we flip a fair (two-sided) coin $n \ge 2$ times, and assume that the *n* flips are independent of one another. Define X as the number of coin flips that are heads.

Note that X is a discrete random variable given that the domain $S = \{0, ..., n\}$ is a finite set (assuming a fixed number of flips n).

Thus, we could associate a specific probability to each $x \in S$.

Example of a Continuous Random Variable

Consider the face of a clock, and suppose that we randomly spin the second hand around the clock face. Define X as the position where the second hand stops spinning (see Figure 1).

The random variable X is a continuous random variable given that the domain $S = \{x \mid x \text{ is a point on a circle}\}$ is an uncountably infinite set.

Thus, we cannot associate a specific probability with any given $x \in S$, i.e., P(X = x) = 0 for any $x \in S$, but we can calculate the probability that X is in a particular range, e.g., P(3 < X < 6) = 1/4.

Example of a Continuous Random Variable (continued)

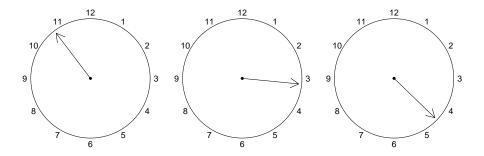


Figure 1: Clock face with three random positions of the second hand.

- 1. What is a Random Variable?
- 2. Discrete versus Continuous Random Variables
- 3. Probability Mass and Density Functions
- 4. Cumulative Distribution Function
- 5. Quantile Function
- 6. Expected Value and Expectation Operator
- 7. Variance and Standard Deviation
- 8. Moments of a Distribution

Probability Mass Function

The probability mass function (PMF) of a discrete random variable X is the function $f(\cdot)$ that associates a probability with each $x \in S$.

•
$$f(x) = P(X = x) \ge 0$$
 for any $x \in S$

•
$$\sum_{x \in S} f(x) = 1$$

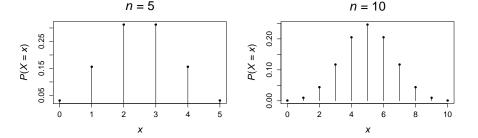


Figure 2: PMF for coin flipping example with n = 5 and n = 10.

Probability Density Function

The probability density function (PDF) of a continuous random variable X is the function $f(\cdot)$ that associates a probability with each range of realizations of X.

•
$$f(x) \ge 0$$
 for any $x \in S$

•
$$\int_a^b f(x) dx = P(a < X < b) \ge 0$$
 for any $a, b \in S$ satisfying $a < b$

•
$$\int_{x \in S} f(x) dx = 1$$

Suppose that we randomly spin the second hand around a clock face n independent times. Define Z_i as the position where the second hand stops spinning on the *i*-th replication, and define $X = \frac{1}{n} \sum_{i=1}^{n} Z_i$ as the average of the n spin results. Note that the realizations of X are any values $x \in [0, 12]$, which is the same domain as Z_i for $i = 1, \ldots, n$.

Probability Density Function (continued)

With n = 1 spin, the PDF is simply a flat line between 0 and 12. With n = 5 spins, the PDF has a bell shape, where values around the midpoint of x = 6 have the largest density.

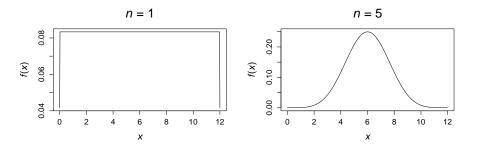


Figure 3: PDF for clock spinning example with n = 1 and n = 5.

- 1. What is a Random Variable?
- 2. Discrete versus Continuous Random Variables
- 3. Probability Mass and Density Functions
- 4. Cumulative Distribution Function
- 5. Quantile Function
- 6. Expected Value and Expectation Operator
- 7. Variance and Standard Deviation
- 8. Moments of a Distribution

Definition of Cumulative Distribution Function

The <u>cumulative distribution function</u> (CDF) of a random variable X is the function $F(\cdot)$ that returns the probability $P(X \le x)$ for any $x \in S$.

Note that the CDF is the same as the probability distribution that was defined in the "Introduction to Probability" notes, such that the CDF is a function from S to [0, 1], i.e., $F : S \to [0, 1]$.

Probabilities can be written in terms of the CDF, such as

$$P(a < X \le b) = F(b) - F(a)$$

given that the CDF is related to the PMF (or PDF), such as

f(x) = F(x) - lim_{a→x⁻} F(a) for discrete random variables
f(x) = dF(x)/dx for continuous random variables

Examples of Cumulative Distribution Functions

CDF can be defined for both discrete and continuous random variables:

- $F(x) = \sum_{z \in S, z \le x} f(z)$ for discrete random variables
- $F(x) = \int_{-\infty}^{x} f(z) dz$ for continuous random variables

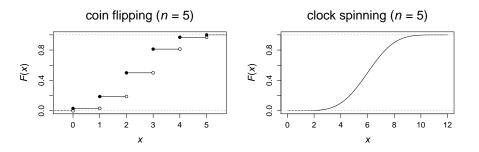


Figure 4: CDF for the coin and clock examples with n = 5.

- 1. What is a Random Variable?
- 2. Discrete versus Continuous Random Variables
- 3. Probability Mass and Density Functions
- 4. Cumulative Distribution Function
- 5. Quantile Function
- 6. Expected Value and Expectation Operator
- 7. Variance and Standard Deviation
- 8. Moments of a Distribution

Definition of Quantile Function

The quantile function of a random variable X is the function $Q(\cdot)$ that returns the realization x such that $P(X \leq x) = p$ for any $p \in [0, 1]$.

Formally, quantile function can be defined as $Q(p) = \min_{x \in S} F(x) \ge p$. Thus, for any input probability $p \in [0, 1]$, the quantile function Q(p) returns the smallest $x \in S$ that satisfies the inequality $F(x) \ge p$.

Note that the quantile function is the inverse of the CDF, such that $Q(\cdot)$ is a function from [0, 1] to S, i.e., $Q : [0, 1] \to S$.

• For continuous random variables, we have that $Q = F^{-1}$

Quartiles and Percentiles

The quartiles are most commonly used percentiles:

- First Quartile: p = 1/4 returns x that cuts off the lower 25%
- Second Quartile (Median): p = 1/2 returns x that cuts the distribution in half
- Third Quartile: p = 3/4 returns x that cuts off the upper 25%

The 100*p*th percentile of a distribution is the quantile x such that 100p% of the distribution is below x for any $p \in (0, 1)$.

- 10th percentile is the quantile corresponding to p = 1/10
- 20th percentile is the quantile corresponding to p = 2/10
- 80th percentile is the quantile corresponding to p = 8/10
- 90th percentile is the quantile corresponding to p = 9/10

Visualization of Quartiles

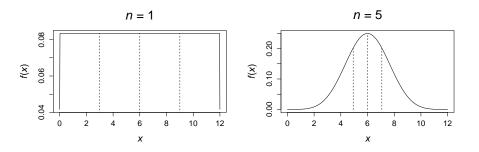


Figure 5: PDF and quartiles for clock spinning example with n = 1 and n = 5.

- 1. What is a Random Variable?
- 2. Discrete versus Continuous Random Variables
- 3. Probability Mass and Density Functions
- 4. Cumulative Distribution Function
- 5. Quantile Function
- 6. Expected Value and Expectation Operator
- 7. Variance and Standard Deviation
- 8. Moments of a Distribution

What to Expect of a Random Variable

Here we will define a way to measure the "center" of a distribution, which is useful for understanding what to expect of a random variable.

The expected value of a random variable X is a weighted average of the realizations $x \in S$ with the weights defined by the PMF or PDF.

The expected value of X is defined as $\mu = E(X)$ where $E(\cdot)$ is the expectation operator, which is defined as

- $E(X) = \sum_{x \in S} xf(x)$ for discrete random variables
- $E(X) = \int_{x \in S} x f(x) dx$ for continuous random variables

Insight into the Expectation Operator

To understand the expectation operator $E(\cdot)$, suppose that we have sampled *n* independent realizations of some random variable *X*.

Let x_1, \ldots, x_n denote the *n* independent realizations of *X*, and define the arithmetic mean as $\bar{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$.

As the sample size n gets infinitely large, the arithmetic mean converges to the expected value μ , i.e.,

$$\mu = E(X) = \lim_{n \to \infty} \bar{x}_n$$

which is due to the *weak law of large numbers* (which is also known as Bernoulli's theorem).

Rules of Expectation Operators

Assume X is a random variable, and the other terms are constants.

1.
$$E(a) = a$$

2. $E(a + bX) = E(a) + bE(X) = a + b\mu$
3. $E(X_1 + \dots + X_p) = E(X_1) + \dots + E(X_p)$
4. $E(b_1X_1 + \dots + b_pX_p) = b_1E(X_1) + \dots + b_pE(X_p)$
5. $E\left(\prod_{j=1}^p b_jX_j\right) = \left(\prod_{j=1}^p b_j\right)E\left(\prod_{j=1}^p X_j\right)$
6. $E\left(\prod_{j=1}^p b_jX_j\right) = \prod_{j=1}^p b_jE(X_j)$ if X_1, \dots, X_p are independent

Rules 3-5 are true regardless of whether X_1, \ldots, X_p are independent.

Expectation Operator Example 1

For the coin flipping example, $X = \sum_{i=1}^{n} Z_i$ where Z_i is the *i*-th flip.

Applying rule 3, we have that $E(X) = \sum_{i=1}^{n} E(Z_i)$.

Since the coin is assumed to be fair, the expected value of Z_i is

$$E(Z_i) = \sum_{x=0}^{1} xf(x) = 0\left(\frac{1}{2}\right) + 1\left(\frac{1}{2}\right) = \frac{1}{2}$$

for any given $i \in \{1, \ldots, n\}$.

The expected value of X can be written as $E(X) = \sum_{i=1}^{n} (1/2) = n/2$

Expectation Operator Example 2

For the clock spinning example, note that $X = \sum_{i=1}^{n} a_i Z_i$ where Z_i is the *i*-th clock spin and $a_i = 1/n$ for all i = 1, ..., n.

Applying rule 4, we have that $E(X) = \frac{1}{n} \sum_{i=1}^{n} E(Z_i) = \frac{1}{n} \sum_{i=1}^{n} E(Z)$.

Note that $f(z) = \frac{1}{12}$ for $z \in [0, 12]$, which implies that

$$E(Z) = \frac{1}{12} \int_0^{12} z dz = \frac{1}{12} \left[\frac{1}{2} z^2 \right]_{z=0}^{z=12} = \frac{1}{24} (144 - 0) = 6$$

which implies that $E(X) = \frac{1}{n} \sum_{i=1}^{n} 6 = \frac{1}{n} (6n) = 6.$

- 1. What is a Random Variable?
- 2. Discrete versus Continuous Random Variables
- 3. Probability Mass and Density Functions
- 4. Cumulative Distribution Function
- 5. Quantile Function
- 6. Expected Value and Expectation Operator
- 7. Variance and Standard Deviation
- 8. Moments of a Distribution

Measuring the Spread of a Distribution

In this section, we will see that the expectation operator can also be used to help use quantify the "spread" of a distribution.

The <u>variance</u> of a random variable X is a weighted average of the squared deviation between a random variable's realizations and its expectation with the weights defined according to the PMF or PDF, i.e., $\sigma^2 = E[(X - \mu)^2] = E(X^2) - \mu^2$.

•
$$E[(X - \mu)^2] = \sum_{x \in S} (x - \mu)^2 f(x)$$
 for discrete random variables

• $E[(X - \mu)^2] = \int_{x \in S} (x - \mu)^2 f(x) dx$ for continuous random variables

The variance of X is the expected value of the squared X minus the square of the expected value of X.

Insight into the Variance Operator

To gain some insight into the variance, suppose that we have sampled n independent realizations of some random variable X.

Let x_1, \ldots, x_n denote the *n* independent realizations of *X*, and define the arithmetic mean of the squared deviations from the average value, i.e., $\tilde{s}_n^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x}_n)^2$ where $\bar{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$.

As the sample size n gets infinitely large, the arithmetic mean of the squared deviations converges to the variance σ^2 , i.e.,

$$\sigma^2 = E[(X - \mu)^2] = \lim_{n \to \infty} \tilde{s}_n^2$$

which is due to the *weak law of large numbers* (which is also known as Bernoulli's theorem).

Rules of Variance Operators

Assume X is a random variable, and the other terms are constants.

1.
$$\operatorname{Var}(a) = 0$$

2. $\operatorname{Var}(a + bX) = \operatorname{Var}(a) + b^2 \operatorname{Var}(X) = b^2 \sigma^2$
3. $\operatorname{Var}\left(\sum_{j=1}^p X_j\right) = \sum_{j=1}^p \operatorname{Var}(X_j)$ if X_1, \dots, X_p are independent
4. $\operatorname{Var}\left(\sum_{j=1}^p b_j X_j\right) = \sum_{j=1}^p b_j^2 \operatorname{Var}(X_j)$ if X_1, \dots, X_p are independent
5. $\operatorname{Var}\left(\sum_{j=1}^p b_j X_j\right) = \sum_{j=1}^p b_j^2 \operatorname{Var}(X_j) + 2\sum_{j=2}^p \sum_{k=1}^{j-1} b_j b_k \operatorname{Cov}(X_j, X_k),$
where $\operatorname{Cov}(X_j, X_k) = E[(X_j - \mu_j)(X_k - \mu_k)]$ is the covariance

Rules 3 and 4 are only true if X_1, \ldots, X_p are independent.

Variance Operator Example 1

For the coin flipping example, remember that $X = \sum_{i=1}^{n} Z_i$ where Z_i is the *i*-th coin flip.

Applying rule 3 (which is valid because the Z_i are independent), we have that the variance of X can be written as $\operatorname{Var}(X) = \sum_{i=1}^{n} \operatorname{Var}(Z_i)$.

Since the coin is assumed to be fair

$$\operatorname{Var}(Z_i) = \sum_{x=0}^{1} (x - 1/2)^2 f(x) = \left(\frac{1}{4}\right) \left(\frac{1}{2}\right) + \left(\frac{1}{4}\right) \left(\frac{1}{2}\right) = \left(\frac{1}{4}\right)$$

for any given $i \in \{1, \ldots, n\}$, which uses the fact that $E(Z_i) = 1/2$.

Thus, the variance of X can be written as $\operatorname{Var}(X) = \sum_{i=1}^{n} (1/4) = n/4$. Nathaniel E. Helwig (Minnesota) Introduction to Random Variables © August 28, 2020 35/41

Variance Operator Example 2

For the clock spinning example, remember that $X = \sum_{i=1}^{n} a_i Z_i$ where Z_i is the *i*-th clock spin and $a_i = 1/n$ for all $i = 1, \ldots, n$.

Applying rule 4, we have that $\operatorname{Var}(X) = \frac{1}{n^2} \sum_{i=1}^n \operatorname{Var}(Z_i)$. And note that $\operatorname{Var}(Z_i) = \operatorname{Var}(Z) = E(Z^2) - E(Z)^2$ for all $i = 1, \ldots, n$ because the *n* spins are independent and identically distributed (iid).

Remembering that $f(z) = \frac{1}{12}$ and E(Z) = 6, we just need to calculate

$$E(Z^2) = \frac{1}{12} \int_0^{12} z^2 dz = \frac{1}{12} \left[\frac{1}{3} z^3 \right]_{z=0}^{z=12} = \frac{1}{36} (1728 - 0) = 48$$

which implies that Var(Z) = 48 - 36 = 12.

Thus, the variance of X is $\operatorname{Var}(X) = \frac{1}{n^2} \sum_{i=1}^n 12 = 12/n$.

Nathaniel E. Helwig (Minnesota) Introduction to Random Variables

Standard Deviation and Standardized Variables

The standard deviation of a random variable X is the square root of the variance of X, i.e., $\sigma = \sqrt{E[(X - \mu)^2]}$.

If X is a random variable with mean μ and variance σ^2 , then

$$Z = \frac{X - \mu}{\sigma}$$

has mean E(Z) = 0 and variance $Var(Z) = E(Z^2) = 1$. Proof:

- Note that Z = a + bX where $a = -\frac{\mu}{\sigma}$ and $b = \frac{1}{\sigma}$
- Apply Expectation Rule 2: $E(Z) = a + bE(X) = -\frac{\mu}{\sigma} + \frac{\mu}{\sigma} = 0$
- Apply Variance Rule 2: $\operatorname{Var}(Z) = b^2 \operatorname{Var}(X) = \frac{\sigma^2}{\sigma^2} = 1$

A <u>standardized variable</u> has mean E(Z) = 0 and variance $E(Z^2) = 1$. Such a variable is typically denoted by Z (instead of X) and may be referred to as "z-score".

- 1. What is a Random Variable?
- 2. Discrete versus Continuous Random Variables
- 3. Probability Mass and Density Functions
- 4. Cumulative Distribution Function
- 5. Quantile Function
- 6. Expected Value and Expectation Operator
- 7. Variance and Standard Deviation
- 8. Moments of a Distribution

Raw, Central, and Standardized Moments

The <u>k-th moment</u> of a random variable X is the expected value of X^k , i.e., $\mu'_k = E(X^k)$.

The <u>k-th central moment</u> of a random variable X is the expected value of $(X - \mu)^k$, i.e., $\mu_k = E[(X - \mu)^k]$, where $\mu = E(X)$ is the expected value of X.

The <u>k-th standardized moment</u> of a random variable X is the expected value of $(X - \mu)^k / \sigma^k$, i.e., $\tilde{\mu}_k = E[(X - \mu)^k] / \sigma^k$, where $\sigma = \sqrt{E[(X - \mu)^2]}$ is the standard deviation of X.

Note: The mean μ is the first moment and the variance σ^2 is the second central moment.

Insight into the Moments of Distribution

Letting x_1, \ldots, x_n denote the *n* independent realizations of *X*, we have

$$\mu'_{k} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} x_{i}^{k}$$
$$\mu_{k} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x}_{n})^{k}$$
$$\tilde{\mu}_{k} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_{i} - \bar{x}_{n}}{\tilde{s}_{n}}\right)^{k}$$

where
$$\bar{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$$
 and $\tilde{s}_n = \sqrt{\frac{1}{n} \sum_{i=1}^n (x_i - \bar{x}_n)^2}$.

Note that these are all results of the law of large numbers, which states that averages of iid data converge to expectations.

Nathaniel E. Helwig (Minnesota) Introduction to Random Variables © August 28, 2020 40/41

Skewness and Kurtosis

 $\tilde{\mu}_3 = E[(X - \mu)^3] / \sigma^3$ is <u>skewness</u>, which measures (lack of) symmetry.

- Negative (or left-skewed) = heavy left tail
- Positive (or right-skewed) = heavy right tail

 $\tilde{\mu}_4 = E[(X - \mu)^4] / \sigma^4$ is <u>kurtosis</u>, which measures peakedness.

- Above 3 is leptokurtic (more peaked than normal)
- Below 3 is platykurtic (less peaked than normal)

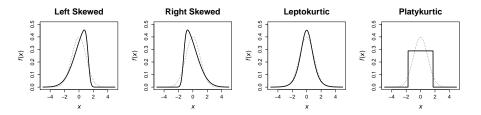


Figure 6: Distributions with different values of skewness and kurtosis.