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1 What is a Random Variable?

The concept of “randomness” is fundamental to the field of statistics. As mentioned in the

probability theory notes, the science of statistics is concerned with assessing the uncertainty

of inferences drawn from random samples of data. Now that we’ve defined some basic

concepts related to set operations and probability theory, we can more formally discuss

what it means for things to be random.

Definition. According to the Merriam-Webster online dictionary1, the word random means

“lacking a definite plan, purpose or pattern” or “relating to, having, or being elements or

events with definite probability of occurrence”. In probability and statistics, we use the sec-

ond definition, such that a random process is any action that has a probability distribution.

The concept of uncertainty is inherent to the definition of randomness. For any random

process, we cannot be certain about the action’s outcome because there is some element of

chance involved. Note that the opposite of a random process is a “deterministic process”,

which is some action that always results in the same outcome.

Example 1. Flipping a two-sided (heads-tails) coin is a random process because we do

not know if we will observe a heads or tails. Flipping a one-sided (heads-heads) coin is a

deterministic process because we know that we will always observe a heads.

Example 2. Drawing the first card from a shuffled deck of 52 cards is a random process

because we do not know which card we will select. Drawing the first card from a sorted deck

of 52 cards is a deterministic process because we will select the same card each time.
1https://www.merriam-webster.com/dictionary/random
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Definition. In probability and statistics, a random variable is an abstraction of the idea of

an outcome from a randomized experiment. More formally, a random variable is a function

that maps the outcome of a (random) simple experiment to a real number. Random variables

are typically denoted by capital italicized Roman letters such as X.

A random variable is an abstract way to talk about experimental outcomes, which makes

it possible to flexibly apply probability theory. Note that you cannot observe a random

variable X itself, i.e., you cannot observe the function that maps experimental outcomes to

numbers. The experimenter defines the random variable (i.e., function) of interest, and then

observes the result of applying the defined function to an experimental outcome.

Definition. The realization of a random variable is the result of applying the random vari-

able (i.e., function) to an observed outcome of a random experiment. This is what the

experimenter actually observes. The realization of a random variable is typically denoted

using lowercase italicized Roman letters, e.g., x is a realization of X.

Definition. The domain of a random variable is the sample space S, i.e., the set of possible

realizations that the random variable can take.

Example 3. Suppose we flip a fair (two-sided) coin n ≥ 2 times, and assume that the n

flips are independent of one another. Define X as the number of coin flips that are heads.

Note that X is a random variable given that it is a function (i.e., counting the number of

heads) that is applied to a random process (i.e., independently flipping a fair coin n times).

Possible realizations of the random variable X include any x ∈ {0, 1, . . . , n}, i.e., we could

observe any number of heads between 0 and n.

Example 4. Suppose that we draw the first card from a randomly shuffled deck of 52

cards, and define X as the suit of the drawn card. Note that X is a random variable

given that it is a function (i.e., suit of the card) that is applied to a random process (i.e.,

drawing the first card from a shuffled deck). Possible realizations of the random variable X

include any x ∈ {1, 2, 3, 4}, where 1 = Clubs, 2 = Diamonds, 3 = Hearts, and 4 = Spades.

Note that it is not necessary to code the suits using numeric values, i.e., we could write

that x ∈ {Clubs,Diamonds,Hearts, Spades}. However, mapping the suits onto numbers is

(i) notationally more convenient given that we can more compactly denote the possibilities,

and (ii) technically more correct given our definition of a random variable.
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2 Discrete versus Continuous Random Variables

A random variable has a probability distribution that associates probabilities to realizations

of the variable. Before explicitly defining what such a distribution looks like, it is important

to make the distinction between the two types of random variables that we could observe.

Definition. A random variable is discrete if its domain consists of a finite (or countably

infinite) set of values. A random variable is continuous if its domain is uncountably infinite.

Example 5. Suppose we flip a fair (two-sided) coin n ≥ 2 times, and assume that the n flips

are independent of one another. Define X as the number of coin flips that are heads. The

random variable X is a discrete random variable given that the domain S = {0, . . . , n} is a

finite set (assuming a fixed number of flips n). Thus, we could associate a specific probability

to each x ∈ S. See Example 13 from the “Introduction to Probability Theory” notes for an

example of the probability distribution with n = 3.

Example 6. Consider the face of a clock, and suppose that we randomly spin the second

hand around the clock face. Define X as the position where the second hand stops spinning

(see Figure 1). The random variable X is a continuous random variable given that the

domain S = {x | x is a point on a circle} is an uncountably infinite set. Thus, we cannot

associate a specific probability with any given x ∈ S, i.e., P (X = x) = 0 for any x ∈ S, but

we can calculate the probability that X is in a particular range, e.g., P (3 < X < 6) = 1/4.
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Figure 1: Clock face with three random positions of the second hand.

Introduction to Random Variables 3 Nathaniel E. Helwig



Copyright c© August 27, 2020 by NEH

3 Probability Mass and Density Functions

For discrete random variables, we can enumerate all of the possible realizations of the random

variable, and associate a specific probability with each possible realization. In contrast, for

continuous random variables, we cannot enumerate all of the possible realizations of the

random variable, so it is impossible to associate a specific probability with each possible

realization. As a result, we must define the probabilities of discrete and continuous random

variable occurrences using distinct (but related) concepts.

Definition. The probability mass function (PMF) of a discrete random variable X is the

function f(·) that associates a probability with each x ∈ S. In other words, the PMF of X

is the function that returns P (X = x) for each x in the domain of X.

Any PMF must define a valid probability distribution, with the properties:

• f(x) = P (X = x) ≥ 0 for any x ∈ S

•
∑

x∈S f(x) = 1

Example 7. See Figure 2 for the PMF corresponding to the coin flipping example with

n = 5 and n = 10 independent flips. As we might expect, the most likely realizations of

X are those in which we observe approximately n/2 heads. Note that it is still possible to

observe x = 0 or x = n heads, but these extreme results are less likely to occur.
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Figure 2: Probability mass function for coin flipping example with n = 5 and n = 10.
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Definition. The probability density function (PDF) of a continuous random variable X is

the function f(·) that associates a probability with each range of realizations of X. The area

under the PDF between a and b returns P (a < X < b) for any a, b ∈ S satisfying a < b.

Any PDF must define a valid probability distribution, with the properties:

• f(x) ≥ 0 for any x ∈ S

•
∫ b
a
f(x)dx = P (a < X < b) ≥ 0 for any a, b ∈ S satisfying a < b

•
∫
x∈S f(x)dx = 1

Example 8. Suppose that we randomly spin the second hand around a clock face n inde-

pendent times. Define Zi as the position where the second hand stops spinning on the i-th

replication, and define X = 1
n

∑n
i=1 Zi as the average of the n spin results. Note that the

realizations of X are any values x ∈ [0, 12], which is the same domain as Zi for i = 1, . . . , n.

See Figure 3 for the PDF with n = 1 and n = 5 independent spins. Note that with n = 1

spin, the PDF is simply a flat line between 0 and 12, which implies that P (x < X < x+ 1)

is equal for any x ∈ {0, . . . , 11}. This makes sense given that, for any given spin, the second

hand could land anywhere on the clock face with equal probability. With n = 5 spins, the

PDF has a bell shape, where values around the midpoint of x = 6 have the largest density.

With n = 5 spins, we have that
∫ 8

4
f(x)dx = P (4 < X < 8) ≈ 0.80 (i.e., about 80% of the

realizations of X are between 4 and 8).
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Figure 3: Probability density function for clock spinning example with n = 1 and n = 5.
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4 Cumulative Distribution Function

Definition. The cumulative distribution function (CDF) of a random variable X is the

function F (·) that returns the probability P (X ≤ x) for any x ∈ S. Note that the CDF is

the same as the probability distribution that was defined in Section 4 of the “Introduction

to Probability” notes, such that the CDF is a function from S to [0, 1], i.e., F : S → [0, 1].

Any CDF must define a valid probability distribution, i.e., 0 ≤ F (x) ≤ 1 for any x ∈ S,

which comes from the fact that F (x) = P (X ≤ x) is a probability calculation. Note that a

CDF can be defined for both discrete and continuous random variables:

• F (x) =
∑

z∈S,z≤x f(z) for discrete random variables

• F (x) =
∫ x
−∞ f(z)dz for continuous random variables

Furthermore, note that probabilities can be written in terms of the CDF, such as

P (a < X ≤ b) = F (b)− F (a)

given that the CDF is related to the PMF (or PDF), such as

• f(x) = F (x)− lima→x− F (a) for discrete random variables

• f(x) = dF (x)
dx

for continuous random variables
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Figure 4: Cumulative distribution function for the coin and clock examples with n = 5.
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5 Quantile Function

Definition. The quantile function of a random variable X is the function Q(·) that returns

the realization x such that P (X ≤ x) = p for any p ∈ [0, 1]. Note that the quantile function

is the inverse of the CDF, such that Q(·) is a function from [0, 1] to S, i.e., Q : [0, 1]→ S.

More formally, quantile function can be defined as Q(p) = minx∈S F (x) ≥ p, where min

denotes the minimum. Thus, for any input probability p ∈ [0, 1], the quantile function Q(p)

returns the smallest x ∈ S that satisfies the inequality F (x) ≥ p. For continuous random

variables, we have the relationship Q = F−1. There are a handful of quantiles that are quite

popular. The “quartiles” are defined as

• First Quartile: p = 1/4 returns x that cuts off the lower 25%

• Second Quartile (Median): p = 1/2 returns x that cuts the distribution in half

• Third Quartile: p = 3/4 returns x that cuts off the upper 25%

which are some of the most commonly used percentiles.

Definition. The 100pth percentile of a distribution is the quantile x such that 100p% of the

distribution is below x for any p ∈ (0, 1). For example, the 20th percentile is the quantile

corresponding to p = 1/5, such that 20% of the distribution is below Q(1/5).
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Figure 5: Density function and quartiles for clock spinning example with n = 1 and n = 5.
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6 Expected Value and Expectation Operator

We have already defined one way to talk about the “center” of a distribution: the median.

As a reminder, the median of a probability distribution is the quantile value x that cuts the

distribution in half, such that 50% of the distribution is below the median and 50% of the

distribution is above the median, i.e., P (X < x) = P (X > x) = 1/2 if x is the median.

Here we will discuss another way to measure the “center” of a distribution, which is useful

for understanding what to expect of a random variable.

Definition. The expected value of a random variable X is a weighed average where the

weights are defined according to the PMF or PDF. The expected value of X is defined as

µ = E(X) where E(·) is the expectation operator, which is defined as E(X) =
∑

x∈S xf(x)

for discrete random variables or E(X) =
∫
x∈S xf(x)dx for continuous random variables.

To gain some insight into the expectation operator E(·), suppose that we have sampled n

independent realizations of some random variableX. Let x1, . . . , xn denote the n independent

realizations of X, and define the arithmetic mean as x̄n = 1
n

∑n
i=1 xi. As the sample size n

gets infinitely large, the arithmetic mean converges to the expected value µ, i.e.,

µ = E(X) = lim
n→∞

x̄n

which is due to the weak law of large numbers (also known as Bernoulli’s theorem).

Expectation Rules

1. If a ∈ R is fixed constant, then E(a) = a.

2. If X is a random variable with mean µ = E(X), and if a, b ∈ R are fixed constants

with b 6= 0, then E(a+ bX) = E(a) + bE(X) = a+ bµ.

3. E(X1+· · ·+Xp) = E(X1)+· · ·+E(Xp), which reveals that expectations of summations

are summations of expectations (ESSE).

4. E(b1X1 + · · · + bpXp) = b1E(X1) + · · · + bpE(Xp), which reveals that expectations of

weighted summations are summations of weighted expectations (EWSSWE).

Note that rules #3 and #4 are true regardless of whether X1, . . . , Xp are independent.
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Example 9. For the coin flipping example, note that X =
∑n

i=1 Zi where Zi is the i-th

coin flip. Applying the ESSE rule, we have that the expected value of X can be written as

E(X) =
∑n

i=1E(Zi). Since the coin is assumed to be fair, the expected value of Zi has the

form E(Zi) =
∑1

x=0 xf(x) = 0(1/2) + 1(1/2) = 1/2 for any given i ∈ {1, . . . , n}. Thus, the

expected value of X can be written as E(X) =
∑n

i=1(1/2) = n/2. In other words, we would

expect to observe n/2 heads given n independent flips of a fair coin, which makes intuitive

sense (about half of the flips should be expected to be heads if the coin is fair).

Example 10. For the clock spinning example, note that X =
∑n

i=1 aiZi where Zi is the i-th

clock spin and ai = 1/n for all i = 1, . . . , n. Applying the EWSSWE rule, we have that the

expected value of X can be written as E(X) = (1/n)
∑n

i=1E(Zi). And note that E(Zi) =

E(Z1) for all i = 1, . . . , n because the n spins are independent and identically distributed

(iid). Thus, we just need to determine the expected value of a single spin, which has the

form E(Z) =
∫ 12

0
zf(z)dz. The density function for a single clock spin is simply a rectangle

that gives equal density to each observable value between 0 and 12 (see Figure 3), which

implies that f(z) = 1
12

for z ∈ [0, 12] and f(z) = 0 otherwise. This implies that the expected

value of a single spin has the form E(Z) = 1
12

∫ 12

0
zdz = 1

12
[1
2
z2]z=12

z=0 = 1
24

(144 − 0) = 6, so

the expected value of X has the form E(X) = 1
n

∑n
i=1 6 = 1

n
(6n) = 6.

7 Variance and Standard Deviation

As we saw in the previous section, the expectation operator can be used to quantify the

center of a random variable’s distribution, which is useful for understanding what to expect

(i.e., the average value) of the variable. In this section, we will see that the expectation

operator can also be used to help use quantify the “spread” of a distribution.

Definition. The variance of a random variable X is a weighted average of the squared

deviation between a random variable and its expectation, where the weights are defined

according to the PMF or PDF. The variance of X is defined as σ2 = E[(X −µ)2] where E[·]
is the expectation operator: E[(X − µ)2] =

∑
x∈S(x− µ)2f(x) for discrete random variables

or E[(X − µ)2] =
∫
x∈S(x − µ)2f(x)dx for continuous random variables. The variance of X

can be written E[(X − µ)2] = E(X2)− µ2 where µ = E(X). In other words, the variance of

X is the expected value of the squared X minus the square of the expected value of X.
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To gain some insight into the variance, suppose that we have sampled n independent

realizations of some random variable X. Let x1, . . . , xn denote the n independent realizations

of X, and define the arithmetic mean of the squared deviations from the average value, i.e.,

s̃2n = 1
n

∑n
i=1(xi − x̄n)2 where x̄n = 1

n

∑n
i=1 xi. As the sample size n gets infinitely large, the

arithmetic mean of the squared deviations converges to the variance σ2, i.e.,

σ2 = E[(X − µ)2] = lim
n→∞

s̃2n

which is due to the weak law of large numbers (also known as Bernoulli’s theorem).

Variance Rules

1. If a ∈ R is fixed constant, then Var(a) = 0.

2. If X is a random variable with variance σ2 = Var(X), and if a, b ∈ R are fixed constants

with b 6= 0, then Var(a+ bX) = Var(a) + b2Var(X) = b2σ2.

3. For independent variables, Var(X1+ · · ·+Xp) = Var(X1)+ · · ·+Var(Xp), which reveals

that variances of summations are summations of variances (VSSV) when the summed

variables are mutually independent.

4. For independent variables, Var(b1X1+· · ·+bpXp) = b21Var(X1)+· · ·+b2pVar(Xp), which

reveals that variances of weighted summations are summations of weighted variances

(VWSSWV) when the summed variables are mutually independent.

5. More generally, Var(b1X1 + b2X2) = b21Var(X1) + b22Var(X2) + 2b1b2Cov(X1, X2), where

Cov(X1, X2) = E[(X1 − µ1)(X2 − µ2)] is the covariance between X1 and X2.

Note that rules #3 and #4 are only true if X1, . . . , Xp are mutually independent.

Example 11. For the coin flipping example, remember that X =
∑n

i=1 Zi where Zi is the

i-th coin flip. Applying the VSSV rule (which is valid because the Zi are independent), we

have that the variance of X can be written as Var(X) =
∑n

i=1 Var(Zi). Since the coin is

assumed to be fair, Var(Zi) =
∑1

x=0(x− 1/2)2f(x) = (1/4)(1/2) + (1/4)(1/2) = 1/4 for any

given i ∈ {1, . . . , n}, which uses the fact that E(Zi) = 1/2. Thus, the variance of X can be

written as Var(X) =
∑n

i=1(1/4) = n/4.
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Example 12. For the clock spinning example, remember that X =
∑n

i=1 aiZi where Zi

is the i-th clock spin and ai = 1/n for all i = 1, . . . , n. Applying the VWSSWV rule, we

have that the variance of X can be written as Var(X) = 1
n2

∑n
i=1 Var(Zi). And note that

Var(Zi) = Var(Z1) for all i = 1, . . . , n because the n spins are independent and identically

distributed (iid). Thus, we just need to determine the variance of a single spin, which has

the form Var(Z) = E(Z2) − E(Z)2. Remembering that f(z) = 1
12

and E(Z) = 6, we just

need to calculate E(Z2) = 1
12

∫ 12

0
z2dz = 1

12
[1
3
z3]z=12

z=0 = 1
36

(1728−0) = 48. Thus, the variance

of a single spin Z has the form Var(Z) = 48 − 36 = 12, which implies that the variance of

X is Var(X) = 1
n2

∑n
i=1 12 = 12/n.

Definition. The standard deviation of a random variableX is the square root of the variance

of X, i.e., the standard deviation of X is defined as σ =
√
E[(X − µ)2].

If X is a random variable with mean µ and variance σ2, then the transformed variable

Z =
X − µ
σ

has mean E(Z) = 0 and variance Var(Z) = E(Z2) = 1. To prove this result, we can use the

previous expectation and variance rules. First, note that Z = a + bX where a = −µ
σ

and

b = 1
σ
. Applying Expectation Rule #2 gives E(Z) = a+ bE(X) = −µ

σ
+ µ

σ
= 0, and applying

Variance Rule #2 gives Var(Z) = b2Var(X) = σ2

σ2 = 1.

Definition. A standardized variable has mean E(Z) = 0 and variance E(Z2) = 1. Such a

variable is typically denoted by Z (instead of X) and may be referred to as “z-score”.

8 Moments of a Distribution

Definition. The k-th moment of a random variable X is the expected value of Xk, i.e.,

µ′k = E(Xk). The k-th central moment of a random variable X is the expected value of

(X − µ)k, i.e., µk = E[(X − µ)k], where µ = E(X) is the expected value of X. The

k-th standardized moment of a random variable X is the expected value of (X−µ)k/σk, i.e.,

µ̃k = E[(X − µ)k]/σk, where σ =
√
E[(X − µ)2] is the standard deviation of X.

Note: The mean µ is the first moment and the variance σ2 is the second central moment.
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To gain some insight into the moments of a distribution, suppose that we have sampled

n independent realizations of some random variable X. Letting x1, . . . , xn denote the n

independent realizations of X, we have that

µ′k = lim
n→∞

1

n

n∑
i=1

xki

µk = lim
n→∞

1

n

n∑
i=1

(xi − x̄n)k

µ̃k = lim
n→∞

1

n

n∑
i=1

(
xi − x̄n
s̃n

)k

where x̄n = 1
n

∑n
i=1 xi and s̃n =

√
1
n

∑n
i=1(xi − x̄n)2. Note that these are all results of the

law of large numbers, which states that averages of iid data converge to expectations.

Definition. The third standardized moment is referred to as skewness, which is a measure

of the lack of symmetry of a probability distribution. Positive (or right-skewed) distributions

are have heavy right tails. Negative (or left-skewed) distributions have heavy left tails.

Definition. The fourth standardized moment is referred to as kurtosis, which is a measure

of the peakedness of a probability distribution. Kurtosis above 3 is leptokurtic (more peaked

than normal) and kurtosis below 3 is platykurtic (less peaked than normal).
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Figure 6: Density functions for distributions with different values of skewness and kurtosis.
The dotted line in each subplot denotes the density of the standard normal distribution.
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