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Testing a Single Proportion Problem of Interest

Data Generating Assumptions

Suppose that we have collected an independent and identically
distributed (iid) sample of observations x1, . . . , xn.

Assume each observation follows a Bernoulli distribution with
probability of success π, i.e., xi

iid∼ Bern(π).

We want to test a null hypothesis about the probability of success.
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Testing a Single Proportion Problem of Interest

Hypothesis Testing Options

Could test the following hypotheses:

• H0 : π = π0 versus H1 : π 6= π0 (exact H0 with two-sided H1)

• H0 : π ≥ π0 versus H1 : π < π0 (inexact H0 with less than H1)

• H0 : π ≤ π0 versus H1 : π > π0 (inexact H0 with greater than H1)

π0 ∈ (0, 1) is the null hypothesized value of the probability of success

The inexact null hypothesis (with one-sided H1) is often preferred,
because researchers often have an idea about the effect direction.
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Testing a Single Proportion Exact Test

The Exact Null Distribution

If the null hypothesis H0 is true, then X =
∑n

i=1 xi ∼ B(n, π0).

• Binomial PMF: f(x;π) =
(
n
x

)
πx(1− π)n−x for x ∈ {0, 1, . . . , n}

For the directional (i.e., one-sided) tests, the p-values are

• H1 : π < π0, the p-value is computed as p =
∑X

k=0 f(k;π0)

• H1 : π > π0, the p-value is computed as p =
∑n

k=X f(k;π0)

Calculate the probability of being “as or more extreme” than X in the
direction specified by the alternative hypothesis.
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Testing a Single Proportion Exact Test

Two-Sided P-Value Calculations

For two-sided tests, the p-value can be computed as

p =


1 if X = µ0∑X

k=0 f(k;π0) +
∑n

k=n−Y+1 f(k;π0) if X < µ0∑Y−1
k=0 f(k;π0) +

∑n
k=X f(k;π0) if X > µ0

where µ0 = nπ0 is the expected number of successes under H0 and

Y =

{ ∑n
k=dµ0e I (f(k;π0) ≤ f(X;π0)) if X < µ0∑bµ0c
k=0 I (f(k;π0) ≤ f(X;π0)) if X > µ0

with I(·) denoting an indicator function.

These are previous (one-sided) formulas plus an additional term.
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Testing a Single Proportion Exact Test

Example 1

Assume that a researcher suspects that 1% of people in a particular
country have contracted some disease (e.g., COVID-19).

• Goal: test H0 : π = 0.01 versus H1 : π 6= 0.01

Researcher samples n = 1000 individuals and records whether the
individual has antibodies for the disease (X = 1) or not (X = 0).

Researcher finds that X = 19 individuals in the sample test positive for
antibodies.
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Testing a Single Proportion Exact Test

Example 1 (continued)

We could compute this p-value directly, but the binom.test function
in R (R Core Team, 2020) does the hard work for us:

> binom.test(x = 19, n = 1000, p = 0.01)

Exact binomial test

data: 19 and 1000

number of successes = 19, number of trials = 1000, p-value = 0.009584

alternative hypothesis: true probability of success is not equal to 0.01

95 percent confidence interval:

0.01147704 0.02951240

sample estimates:

probability of success

0.019
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Testing a Single Proportion Asymptotic Test

The Asymptotic Null Distribution

If the null hypothesis H0 : π = π0 is true, then

Z =
X − nπ0√
nπ0(1− π0)

·∼ N(0, 1)

if the sample size n is large enough.

We can test null hypotheses about π by comparing the observed Z to
the quantiles of a standard normal distribution.

Yate’s correction for continuity subtracts 1/2 from the numerator

Z =
X − nπ0 − 1/2√
nπ0(1− π0)
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Testing a Single Proportion Asymptotic Test

Example 1 (revisited)

Can implement an asymptotic version of this test using the R code:

> prop.test(x = 19, n = 1000, p = 0.01)

1-sample proportions test with continuity correction

data: 19 out of 1000, null probability 0.01

X-squared = 7.298, df = 1, p-value = 0.006903

alternative hypothesis: true p is not equal to 0.01

95 percent confidence interval:

0.01180558 0.03008791

sample estimates:

p

0.019

Note: default use of prop.test implements continuity correction.
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Testing a Single Proportion Confidence Intervals

Different Methods for Proportion Confidence Intervals

Letting z = z1−α/2 denote the 1− α/2 quantile of N(0, 1) distribution

• Normal Approximation: π̂ ± z
√
π̂(1− π̂)/n

• Wilson Score Method:
(

1 + z2

n

)−1(
π̂ + z2

2n ± z
√

π̂(1−π̂)
n + z2

4n2

)
• Agresti-Coull Method: π̃ ± z

√
π̃(1−π̃)
n+z2 where

π̃ =
(

1 + z2

n

)−1 (
π̂ + z2

2n

)
• Arcsin Method: sin2

(
arcsin(

√
p)± z

2
√
n

)
• Clopper-Pearson: [B(α/2;X,n−X + 1), B(1− α/2;X + 1, n−X)

where B(·;α, β) is the quantile function for the beta distribution
with shape parameters α and β
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Testing a Single Proportion Confidence Intervals

R Function for Proportion CIs
prop.ci <- function(x, n, level = 0.95){

p <- x / n

se <- sqrt(p * (1 - p) / n)

z <- qnorm(1 - alpha/2)

normal <- c(p - z * se, p + z * se)

denom <- 1 + z^2 / n

p.adj <- p + z^2 / (2 * n)

se.adj <- sqrt(p * (1 - p) / n + z^2 / (4 * n^2))

wilson <- c(p.adj - z * se.adj, p.adj + z * se.adj) / denom

p.adj <- p.adj / denom

se.adj <- sqrt(p.adj * (1 - p.adj) / (n + z^2))

agresti.coull <- c(p.adj - z * se.adj, p.adj + z * se.adj)

asrp <- asin(sqrt(p))

asinz <- z / (2 * sqrt(n))

arcsin <- c(sin(asrp - asinz)^2, sin(asrp + asinz)^2)

ci.lower <- qbeta(alpha/2, x, n - x + 1)

ci.upper <- qbeta(1 - alpha/2, x + 1, n - x)

clopper.pearson <- c(ci.lower, ci.upper)

ci <- rbind(normal, wilson, agresti.coull, arcsin, clopper.pearson)

rownames(ci) <- c("normal", "wilson", "agresti.coull", "arcsin", "clopper.pearson")

colnames(ci) <- c("lower", "upper")

res <- list(x = x, n = n, level = level, conf.int = ci)

return(res)

} # end prop.ci
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Testing a Single Proportion Confidence Intervals

Example 1 Confidence Intervals

> prop.ci(x = 19, n = 1000)$conf.int

lower upper

normal 0.01053827 0.02746173

wilson 0.01219689 0.02948446

agresti.coull 0.01200381 0.02967753

arcsin 0.01146726 0.02837989

clopper.pearson 0.01147704 0.02951240

Clopper-Pearson from binom.test, and Wilson from prop.test:

> binom.test(x = 19, n = 1000, p = 0.01)$conf.int

[1] 0.01147704 0.02951240

attr(,"conf.level")

[1] 0.95

> prop.test(x = 19, n = 1000, p = 0.01, correct = FALSE)$conf.int

[1] 0.01219689 0.02948446

attr(,"conf.level")

[1] 0.95
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Testing Proportion Difference
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Testing Proportion Difference Problem of Interest

Assumptions and Hypotheses

xi
iid∼ Bern(πx) for i = 1, . . . , nx and yi

iid∼ Bern(πy) for i = 1, . . . , ny,
and all observations are independent of one another.

We could test three different hypotheses:

• H0 : πx = πy vs H1 : πx 6= πy (exact H0 with two-sided H1)

• H0 : πx ≥ πy vs H1 : πx < πy (inexact H0 with less than H1)

• H0 : πx ≤ πy vs H1 : πx > πy (inexact H0 with greater than H1)

In many applications, the directional alternatives are preferable.
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Testing Proportion Difference Fisher’s Exact Test

The Exact Null Distribution

Fisher’s exact test involves forming the 2× 2 contingency table

Success Failure Total

Population 1 a b a+ b = nx
Population 2 c d c+ d = ny

Total a+ c = n1 b+ d = n0 a+ b+ c+ d = n

• a =
∑nx

i=1 xi is the number of successes for population 1

• b = nx − a is the number of observed failures for population 1

• c =
∑ny

i=1 yi is the number of successes for population 2

• d = ny − c is the number of observed failures for population 2
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Testing Proportion Difference Fisher’s Exact Test

The Exact Null Distribution (continued)

Conditioned on the marginals of the table, Fisher showed that the
probability of observing a particular combination of cell values was
given by the hypergeometric distribution.

Assuming that the row marginals nx = a+ b and ny = c+ d are fixed
and the column marginals n1 = a+ c and n0 = b+ d are fixed, the
probability of observing a successes in population 1 is given by

f(a;nx, ny, n1) =

(
nx

a

)(
ny

n1−a
)(

nx+ny

n1

)
which is the PMF of the hypergeometric distribution.
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Testing Proportion Difference Fisher’s Exact Test

P-Values for Fisher’s Exact Test

For the one-sided tests, the p-values are simple to compute, given that
they just involve summing the hypergeometric PMF for a number of
successes as or more extreme than a (in the direction of H1)

• H1 : πx < πy, the p-value is p =
∑a

k=0 f(k;nx, ny, n1)

• H1 : πx > πy, the p-value is p =
∑n1

k=a f(k;nx, ny, n1)

For the two-sided tests, the p-value can be computed as

p =

aU∑
k=aL

f(k;nx, ny, n1)I (f(k;nx, ny, n1) ≤ f(a;nx, ny, n1)δ)

where aL = max(0, nx − n0) and aU = min(nx, n1). The fisher.test

function in R includes a tolerance factor of δ = 1.0000001
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Testing Proportion Difference Fisher’s Exact Test

Example 2: Problem Setup

Contingency table from Table 4 of Radelet and Pierce (1991):

Death Penalty
Defendant Yes No Total

White 53 430 483
Black 15 176 191

Total 68 606 674

Want to test H0 : πx = πy versus H1 : πx 6= πy

• πx is probability of receiving death penalty for white defendants

• πy is probability of receiving death penalty for black defendants
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Testing Proportion Difference Fisher’s Exact Test

Example 2: Estimates and P-Value

The sample estimates of the probability are

π̂x = 53/483 = 0.10973085 and π̂y = 15/191 = 0.07853403

but is this difference significant?

The probability of the observed table is given by

P (a = 53 | nx = 483, ny = 191, n1 = 68, n0 = 606) =

(
483
53

)(
191
15

)(
674
68

) = 0.05632907

and the p-value for the two-sided alternative hypothesis is given by

p =

68∑
k=0

(
483
k

)(
191
15

)(
674
68

) I

((
483
k

)(
191
15

)(
674
68

) ≤ 0.05632907

)
= 0.2577816
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Testing Proportion Difference Fisher’s Exact Test

Example 2: R Implementation

> xtab <- matrix(c(53, 15, 430, 176), 2, 2)

> colnames(xtab) <- c("Yes", "No")

> rownames(xtab) <- c("White", "Black")

> xtab

Yes No

White 53 430

Black 15 176

> fisher.test(xtab)

Fisher’s Exact Test for Count Data

data: xtab

p-value = 0.2578

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

0.777655 2.837046

sample estimates:

odds ratio

1.445462
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Testing Proportion Difference Asymptotic Test

The Asymptotic Null Distribution

For large n, we have π̂x
·∼ N

(
πx,

πx(1−πx)
nx

)
and π̂y

·∼ N
(
πy,

πy(1−πy)
ny

)
.

If the null hypothesis H0 : πx = πy is true, then

Z =
π̂x − π̂y√

π̂(1− π̂)(1/nx + 1/ny)

·∼ N(0, 1)

for large enough n, where π̂ = (a+ c)/(nx + ny) is the common
proportion estimate.

Can test null hypotheses about πx − πy by comparing Z to a N(0, 1),
or by comparing Z2 to a χ2

1.
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Testing Proportion Difference Asymptotic Test

Example 2: Asymptotic Inference

> nx <- sum(xtab[1,])

> ny <- sum(xtab[2,])

> px <- xtab[1,1] / nx

> py <- xtab[2,1] / ny

> p0 <- sum(xtab[,1]) / (nx + ny)

> pdif <- px - py

> pdif.se <- sqrt(p0 * (1 - p0) * (1/nx + 1/ny))

> z <- pdif / pdif.se

> z^2

[1] 1.468519

> 1 - pchisq(z^2, df = 1)

[1] 0.2255796
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Testing Proportion Difference Asymptotic Test

Example 2: Asymptotic Inference (continued)

> prop.test(xtab, correct = FALSE)

2-sample test for equality of proportions without continuity correction

data: xtab

X-squared = 1.4685, df = 1, p-value = 0.2256

alternative hypothesis: two.sided

95 percent confidence interval:

-0.01605167 0.07844531

sample estimates:

prop 1 prop 2

0.10973085 0.07853403
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Testing Proportion Difference Confidence Interval

Asymptotic CI for Proportion Difference

The 100(1− α)% confidence interval for πx − πy has the form

π̂x − π̂y ± z1−α/2

√
π̂x(1− π̂x)

nx
+
π̂y(1− π̂y)

ny

where z1−α/2 is the 1− α/2 quantile of the N(0, 1) distribution.

Note that, unlike the denominator of the Z test statistic that was used
for the hypothesis test, the standard error formula for the confidence
interval does not use the pooled proportion estimate.

The confidence interval for πx − πy is not formed under the assumption
that H0 : πx = πy is true.

Nathaniel E. Helwig (Minnesota) Inference for Proportions c© October 17, 2020 26 / 34



Testing Proportion Difference Confidence Interval

Example 2: Confidence Interval

Continuing with the same example, we could form the confidence
interval “by hand”, but the prop.test function outputs this result for
us (see previous example).

> pdif <- px - py

> pdif.se <- sqrt(px * (1 - px) / nx + py * (1 - py) / ny)

> c(pdif - qnorm(0.975) * pdif.se, pdif + qnorm(0.975) * pdif.se)

[1] -0.01605167 0.07844531
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Testing Proportion Difference Odds, Relative Risk, Odds Ratios, and Phi

Odds of Success

The odds of success is the ratio of the probability of success over the
probability of failure, i.e., odds = π

1−π where π = P (X = 1) and
1− π = P (X = 0).

If someone says that “the odds are A to B” this means that the
probability of success is A

A+B and the probability of failure is B
A+B .

For example, if the odds are 3 to 1, this means that the probability of
success is 3/4 and the probability of failure is 1/4.
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Testing Proportion Difference Odds, Relative Risk, Odds Ratios, and Phi

Risk Ratio and Odds Ratio

The relative risk, also known as the risk ratio, is the ratio of the
probability of success for two populations, i.e., RR = πx/πy, where
πx = P (X = 1) and πy = P (Y = 1).

The odds ratio is the ratio of the odds of success for two populations

OR =
πx/(1− πx)

πy/(1− πy)
=
πx(1− πy)
πy(1− πx)

=
ad

bc

where (a, b, c, d) denote the entries of the 2× 2 contingency table.
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Testing Proportion Difference Odds, Relative Risk, Odds Ratios, and Phi

Phi Coefficient

The φ coefficient is another statistic that can be used to measure the
strength of association in a 2× 2 contingency table.

The φ coefficient is defined as

φ =
ad− bc√

(a+ b)(c+ d)(a+ c)(b+ d)

and note that φ = 0 indicates no association between the variables.

The φ coefficient is related to Pearson’s chi-square test statistic, i.e.,
φ =

√
X2/n, which will be discussed in the next chapter.
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Testing Proportion Difference Odds, Relative Risk, Odds Ratios, and Phi

Example 2: Odds and Relative Risk

The odds of receiving the death penalty are

White :
π̂x

1− π̂x
= 0.1232558 and Black :

π̂y
1− π̂y

= 0.08522727

so the odds of the death penalty are larger for white defendants.

The relative risk of receiving a death penalty verdict is given by

RR = π̂x/π̂y = 1.397239

so the probability of receiving the death penalty is about 1.4 times
larger for white defendants compared to black defendants.
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Testing Proportion Difference Odds, Relative Risk, Odds Ratios, and Phi

Example 2: Odds Ratio

The odds ratio for receiving the death penalty verdict is

θ̂ =
π̂x/(1− π̂x)

π̂y/(1− π̂y)
=

(53)(176)

(430)(15)
= 1.446202

so the odds of receiving the death penalty is about 1.45 times larger for
white defendants compared to black defendants.

The output of the fisher.test function provides this odds ratio
estimate, as well as a 95% confidence interval for the odds ratio.
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Testing Proportion Difference Odds, Relative Risk, Odds Ratios, and Phi

Example 2: Odds Ratio Asymptotic CI

The fisher.test function uses an exact method to obtain the 95%
confidence interval, which is [0.777655, 2.837046].

We could calculate the confidence interval using an asymptotic
argument as well (forms the interval on log-scale).

• log(θ̂)
·∼ N(0, V ) where V = 1

a + 1
b + 1

c + 1
d

> OR <- xtab[1,1] * xtab[2,2] / (xtab[1,2] * xtab[2,1])

> logOR <- log(OR)

> logOR.se <- sqrt(1/xtab[1,1] + 1/xtab[2,2] + 1/xtab[1,2] + 1/xtab[2,1])

> logci <- c(logOR - qnorm(.975) * logOR.se, logOR + qnorm(.975) * logOR.se)

> exp(logci)

[1] 0.7941306 2.6336964
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