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1 Testing a Single Proportion

1.1 Problem of Interest

Suppose that we have collected an independent and identically distributed (iid) sample of

observations x1, . . . , xn, where each observation is assumed to follow a Bernoulli distribution

with probability of success π, i.e., xi
iid∼ Bern(π). Furthermore, suppose that we want to test

a null hypothesis about the probability of success. As a reminder from the previous chapter,

we could test the following hypotheses:

• H0 : π = π0 versus H1 : π 6= π0 (exact H0 with two-sided H1)

• H0 : π ≥ π0 versus H1 : π < π0 (inexact H0 with less than H1)

• H0 : π ≤ π0 versus H1 : π > π0 (inexact H0 with greater than H1)

where π0 ∈ (0, 1) is the null hypothesized value of the probability of success.

1.2 Exact Test

If the null hypothesis H0 is true, then the random variable X =
∑n

i=1 xi follows a binomial

distribution with size n and probability of success π0, i.e., X ∼ B(n, π0). Thus, we can use

X as a test statistic to compute an exact p-value for testing the null hypothesis of interest.

As a reminder, the p-value for testing H0 is the probability of observing a test statistic as or

more extreme than the observed test statistic under the assumption that H0 is true. What
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it means to be “as or more extreme than the observed test statistic” will depend on the type

of null hypothesis is being tested.

As a reminder, the binomial probability mass function has the form

f(x; π) =

(
n

x

)
πx(1− π)n−x

for any input x ∈ {0, 1, . . . , n}. For the directional (i.e., one-sided) tests, the p-values are

• H0 : π ≥ π0 versus H1 : π < π0, the p-value is computed as p =
∑X

k=0 f(k; π0)

• H0 : π ≤ π0 versus H1 : π > π0, the p-value is computed as p =
∑n

k=X f(k; π0)

given that we just need to calculate the probability of being “as or more extreme” than X

in the direction specified by the alternative hypothesis.

For the two-sided test H0 : π = π0 versus H1 : π 6= π0, the p-value is a bit more

complicated given that we need to calculate the probability of being “as or more extreme”

than X in both directions. For two-sided tests, the p-value can be computed as

p =


1 if X = µ0∑X

k=0 f(k; π0) +
∑n

k=n−Y+1 f(k; π0) if X < µ0∑Y−1
k=0 f(k; π0) +

∑n
k=X f(k; π0) if X > µ0

where µ0 = nπ0 is the expected number of successes under the null hypothesis and

Y =

{ ∑n
k=dµ0e I (f(k; π0) ≤ f(X; π0)) if X < µ0∑bµ0c
k=0 I (f(k; π0) ≤ f(X; π0)) if X > µ0

with I(·) denoting an indicator function.

To understand the formulas for the two-sided p-value calculations, note that when X < µ0

the p-value formula contains the p-value formula used for the “less than” alternative plus a

term that sums up the probabilities of observing an X that would be equivalently extreme in

the upper tail. Similarly, when X > µ0 the p-value formula contains the p-value formula used

for the “greater than” alternative plus a term that sums up the probabilities of observing an

X that would be equivalently extreme in the lower tail. When the null hypothesized value

is π0 = 0.5, the two-tailed p-value will simply be two times the one-tailed p-value.
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Example 1. Assume that a researcher suspects that 1% of people in a particular coun-

try have contracted some disease (e.g., COVID-19), and wants to test the null hypothesis

H0 : π = 0.01 versus the alternative hypothesis H1 : π 6= 0.01. To test this hypothesis, the

researcher collects a random sample of n = 1000 individuals and records whether the indi-

vidual has antibodies for the disease (X = 1) or not (X = 0). Suppose that the researcher

finds that X = 19 individuals in the sample test positive for antibodies. We could use the

above formula for calculating the two-sided p-value; however, the binom.test function in R

does the hard work for us:

> binom.test(x = 19, n = 1000, p = 0.01)

Exact binomial test

data: 19 and 1000

number of successes = 19, number of trials = 1000, p-value = 0.009584

alternative hypothesis: true probability of success is not equal to 0.01

95 percent confidence interval:

0.01147704 0.02951240

sample estimates:

probability of success

0.019

The observed p-value is p = 0.009584, so using a standard significance level of α = 0.05 or

α = 0.01, we would reject the null hypothesis that 1% of people have contracted the disease.

Example 2. Consider the previous example, but now suppose that the researcher believes

that the percentage of people who have contracted the disease is less than or equal to 1%

of the population. This would involve testing the null hypothesis H0 : π ≤ 0.01 versus the

alternative hypothesis H1 : π > 0.01. To test this hypothesis, we would just need to change

the default of the “alternative” argument in the binom.test function from “two-sided” to

“greater”. Assuming that we observe the same number of individuals with antibodies, i.e.,

X = 19, the p-value for testing the one-sided hypothesis would be p = 0.006905. Thus, using

a standard significance level, we would reject the researcher’s hypothesis that H0 : π ≤ 0.01

in favor of the alternative hypothesis H1 : π > 0.01.
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> binom.test(x = 19, n = 1000, p = 0.01, alternative = "greater")

Exact binomial test

data: 19 and 1000

number of successes = 19, number of trials = 1000, p-value = 0.006905

alternative hypothesis: true probability of success is greater than 0.01

95 percent confidence interval:

0.01247677 1.00000000

sample estimates:

probability of success

0.019

1.3 Asymptotic Test

Given that an exact test is possible, we would not really want to use this asymptotic test,

which only works well for large n. However, it is pedagogically useful to introduce this

asymptotic test for a single proportion, given that we will leverage these ideas for testing the

multiple proportions. As a reminder, for large enough n, the number of success X =
∑n

i=1 xi

is approximately normally distributed with mean E(X) = nπ and variance Var(X) = nπ(1−
π). So, if the null hypothesis is true, then

Z =
X − nπ0√
nπ0(1− π0)

·∼ N(0, 1)

for large enough n. Thus, we can test null hypotheses about π by comparing the observed

Z to the quantiles of a standard normal distribution. This sort of test is implemented in

the prop.test function in R. Note that the default use of the prop.test function uses

Yate’s correction for continuity, which involves subtracting 1/2 from the numerator in the

calculation of Z, i.e.,

Z =
X − nπ0 − 1/2√
nπ0(1− π0)

when using the continuity correction. The continuity correction is typically a good thing to

do if you have small samples, because it avoids overly-optimistic proportion estimates.
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Example 3. Revisiting the previous example of testing the null hypothesis H0 : π = 0.01

versus the alternative hypothesis H1 : π 6= 0.01, we could implement an asymptotic version

of this test in R using the code

> prop.test(x = 19, n = 1000, p = 0.01)

1-sample proportions test with continuity correction

data: 19 out of 1000, null probability 0.01

X-squared = 7.298, df = 1, p-value = 0.006903

alternative hypothesis: true p is not equal to 0.01

95 percent confidence interval:

0.01180558 0.03008791

sample estimates:

p

0.019

which produces a p-value that is similar to the p-value obtained from the exact test.

1.4 Confidence Intervals

Letting z = z1−α/2 denote the 1−α/2 quantile of the standard normal distribution, we could

form a confidence interval for π using the various methods:

• Normal Approximation: π̂ ± z
√
π̂(1− π̂)/n

• Wilson Score Method:
(

1 + z2

n

)−1(
π̂ + z2

2n
± z
√

π̂(1−π̂)
n

+ z2

4n2

)
• Agresti-Coull Method: π̃ ± z

√
π̃(1−π̃)
n+z2

where π̃ =
(

1 + z2

n

)−1 (
π̂ + z2

2n

)
• Arcsin Method: sin2

(
arcsin(

√
p)± z

2
√
n

)
• Clopper-Pearson: [B(α/2;X,n−X + 1), B(1− α/2;X + 1, n−X) where B(·;α, β) is

the quantile function for the beta distribution with shape parameters α and β
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Note that the first method (i.e., the normal approximation) is what is typically taught in

introductory statistics courses; however, this method tends to perform the worst of all of the

methods. This is because the normal approximation method is a large sample (asymptotic)

method that performs well for large n but does not necessarily perform well for finite n. The

last method (i.e., the Clooper-Pearson method) is an exact method, which uses the relation-

ship between the Binomal and Beta distributions to form the confidence interval. However,

this method tends to be conservative, i.e., it may not produce the shortest possible interval

that has the desired confidence level. The other three methods are various approximations

that are designed to be (i) more accurate than the asymptotic normal approximation, and

(ii) less conservative than the exact Clopper-Pearson method.

Example 4. The prop.ci function given in the Appendix forms the various confidence

intervals. Continuing with the same example as before:

> prop.ci(x = 19, n = 1000)$conf.int

lower upper

normal 0.01053827 0.02746173

wilson 0.01219689 0.02948446

agresti.coull 0.01200381 0.02967753

arcsin 0.01146726 0.02837989

clopper.pearson 0.01147704 0.02951240

As you can see, all of the methods aside from the normal approximation give a similar

interval, with the Clopper-Pearson interval being the widest. Also, note that the Clopper-

Pearson interval is the same as the interval produced by the binom.test function, and the

Wilson interval is the same as that produced by the prop.test function.

> binom.test(x = 19, n = 1000, p = 0.01)$conf.int

[1] 0.01147704 0.02951240

attr(,"conf.level")

[1] 0.95

> prop.test(x = 19, n = 1000, p = 0.01, correct = FALSE)$conf.int

[1] 0.01219689 0.02948446

attr(,"conf.level")

[1] 0.95
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2 Testing Proportion Difference

2.1 Problem of Interest

Suppose that xi
iid∼ Bern(πx) for i = 1, . . . , nx and yi

iid∼ Bern(πy) for i = 1, . . . , ny, and

assume that all xi and yi are independent of one another. Furthermore, suppose that we

want to test a null hypothesis about the difference in the probability of successes for the two

populations. As in the one sample case, we could test three different hypotheses:

• H0 : πx = πy versus H1 : πx 6= πy (exact H0 with two-sided H1)

• H0 : πx ≥ πy versus H1 : πx < πy (inexact H0 with less than H1)

• H0 : πx ≤ πy versus H1 : πx > πy (inexact H0 with greater than H1)

2.2 Exact Test

Fisher derived a method for exactly testing null hypotheses about proportion differences.

Fisher’s exact test involves forming the 2× 2 contingency table

Success Failure Total

Population 1 a b a+ b = nx

Population 2 c d c+ d = ny

Total a+ c = n1 b+ d = n0 a+ b+ c+ d = n

where a =
∑nx

i=1 xi is the number of observed successes for population 1 (the “x” group),

b = nx − a is the number of observed failures for population 1, c =
∑ny

i=1 yi is the number of

observed successes for population 2 (the “y” group), d = ny − c is the number of observed

failures for population 2, and n = nx + ny is the total sample size. Fixing the marginals of

the table, Fisher showed that the probability of observing a particular combination of cell

values was given by the hypergeometric distribution.

Specifically, assuming that the row marginals nx = a + b and ny = c + d are fixed and

the column marginals n1 = a + c and n0 = b + d are fixed, the probability of observing a

successes in population 1 is given by

f(a;nx, ny, n1) =

(
nx

a

)(
ny

n1−a

)(
nx+ny

n1

)
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which is the probability mass function of the hypergeometric distribution. This implies that

the (conditional) p-values for testing null hypotheses about differences in proportions can

be computed directly from the hypergeometric probability mass function. Note that these

p-values are “conditional” in the sense that they are conditioned on the fixed row marginals

(nx and ny) and column marginals (n1 and n0).

For the directional (one-sided) tests, the p-values are simple to compute, given that they

just involve summing the hypergeometric probability mass function for a number of successes

as or more extreme than the observed a (in the direction of H1), i.e.,

• H0 : πx ≥ πy versus H1 : πx < πy, the p-value is p =
∑a

k=0 f(k;nx, ny, n1)

• H0 : πx ≤ πy versus H1 : πx > πy, the p-value is p =
∑n1

k=a f(k;nx, ny, n1)

For the two-sided hypothesis H0 : πx = πy versus H1 : πx 6= πy, the p-value is a bit more

complicated given that we need to calculate the probability of being “as or more extreme”

than a in both directions. For the two-sided tests, the p-value can be computed as

p =

aU∑
k=aL

f(k;nx, ny, n1)I (f(k;nx, ny, n1) ≤ f(a;nx, ny, n1)δ)

where aL = max(0, nx − n0) and aU = min(nx, n1). Note that this p-value calculation sums

up the probabilities for all tables (with the same marginals) that have probabilities smaller

than or equal to the observed table’s probability of f(a;nx, ny, n1).

The fisher.test function in R includes a tolerance factor of δ = 1.0000001, which

ensures that outcomes that are essentially as extreme as the observed table are included in the

p-value calculation. This is often useful because evaluating the hypergeometric probability

mass function can be slightly inexact when the row and column marginals are moderate to

large—because it is necessary to calculate factorials of large numbers. However, this could

inflate the p-value if there are tables with probabilities that are just slightly larger than

the observed table’s probability. Note that for any δ > 1, the Fisher test may be a bit

conservative (i.e., return p-values that are slightly too large), especially if the sample size is

large, because a large n means that there exists many possible tables. So, when conducting

two-sided Fisher exact tests in R, it may be useful to compare the results of the Fisher test

obtained from R’s fisher.test function with a manual calculation of the p-value using the

hypergeometric distribution.
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Example 5. The following contingency table is from Table 4 of Radelet and Pierce (1991),

which cross-classifies individuals who received a death penalty sentence by race:

Death Penalty

Defendant Yes No Total

White 53 430 483

Black 15 176 191

Total 68 606 674
Suppose that we want to test the null hypothesis that the probability of receiving the death

penalty is the same for both white and black defendants, i.e., H0 : πx = πy, versus the

two-sided alternative that these two probabilities are different, i.e., H1 : πx 6= πy. Note that

the sample estimates of the probability are

π̂x = 53/483 = 0.10973085 and π̂y = 15/191 = 0.07853403

but is this difference significant? The probability of the observed table is given by

P (a = 53 | nx = 483, ny = 191, n1 = 68, n0 = 606) =

(
483
53

)(
191
15

)(
674
68

) = 0.05632907

and the p-value for the two-sided alternative hypothesis is given by

p =
68∑
k=0

(
483
k

)(
191
15

)(
674
68

) I

((
483
k

)(
191
15

)(
674
68

) ≤ 0.05632907

)
= 0.2577816

so we fail to reject the null hypothesis H0 : πx = πy using any standard significance level.

We can use the fisher.test function in R to confirm our results:

> xtab <- matrix(c(53, 15, 430, 176), 2, 2)

> colnames(xtab) <- c("Yes", "No")

> rownames(xtab) <- c("White", "Black")

> xtab

Yes No

White 53 430

Black 15 176
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> fisher.test(xtab)

Fisher’s Exact Test for Count Data

data: xtab

p-value = 0.2578

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

0.777655 2.837046

sample estimates:

odds ratio

1.445462

2.3 Asymptotic Test

Given that an exact test is possible, we would not really want to use this asymptotic test,

which only works well for large n = nx +ny. However, it is pedagogically useful to introduce

this asymptotic test for the equality of two proportions, given that we will leverage these

ideas for testing the multiple proportions (in our discussion of chi-square tests next week).

As a reminder, for large enough nx, the number of success a =
∑nx

i=1 xi is approximately

normally distributed with mean E(a) = nxπx and variance Var(a) = nxπx(1−πx). Similarly,

for large enough ny, the number of success c =
∑ny

i=1 yi is approximately normally distributed

with mean E(c) = nyπy and variance Var(c) = nyπy(1 − πy). So, for large enough samples,

the proportion estimates are approximately normal with π̂x
·∼ N(πx, πx(1 − πx)/nx) and

π̂y
·∼ N(πy, πy(1− πy)/ny). If the null hypothesis H0 : πx = πy is true, then

Z =
π̂x − π̂y√

π̂(1− π̂)(1/nx + 1/ny)

·∼ N(0, 1)

for large enough n, where π̂ = (a+ c)/(nx + ny) is the common proportion estimate—which

is the correct thing to use under the assumption H0 : πx = πy is true. Thus, we can test

null hypotheses about πx − πy by comparing the observed Z to the quantiles of a standard

normal distribution (or by comparing Z2 to the quantiles of a χ2
1 distribution).
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Example 6. Revisiting the example that we used for Fisher’s exact test, we could use the

asymptotic test. The R code to do this “by hand” is pretty simple, but the prop.test

function in R does the work for us:

> nx <- sum(xtab[1,])

> ny <- sum(xtab[2,])

> px <- xtab[1,1] / nx

> py <- xtab[2,1] / ny

> p0 <- sum(xtab[,1]) / (nx + ny)

> pdif <- px - py

> pdif.se <- sqrt(p0 * (1 - p0) * (1/nx + 1/ny))

> z <- pdif / pdif.se

> z^2

[1] 1.468519

> 1 - pchisq(z^2, df = 1)

[1] 0.2255796

> prop.test(xtab, correct = FALSE)

2-sample test for equality of proportions without continuity correction

data: xtab

X-squared = 1.4685, df = 1, p-value = 0.2256

alternative hypothesis: two.sided

95 percent confidence interval:

-0.01605167 0.07844531

sample estimates:

prop 1 prop 2

0.10973085 0.07853403

Using the asymptotic test, we would fail to reject the null hypothesis H0 : πx = πy, and

the p-value is quite similar to what we obtained using Fisher’s exact test.
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2.4 Confidence Intervals

It is typical to use the large sample (normal) approximation to form confidence intervals for

differences in proportions. The 100(1− α)% confidence interval for πx − πy has the form

π̂x − π̂y ± z1−α/2

√
π̂x(1− π̂x)

nx
+
π̂y(1− π̂y)

ny

where z1−α/2 is the 1− α/2 quantile of the standard normal distribution. Note that, unlike

the denominator of the Z test statistic that was used for the hypothesis test, the standard

error formula for the confidence interval does not use the pooled proportion estimate. This

is because the standard error used in the denominator of Z is the appropriate standard error

under the assumption that H0 : πx = πy is true. In contrast, the confidence interval for

πx − πy is not formed under the assumption that H0 : πx = πy is true, so the standard error

formula uses the individual estimates of the proportions. Thus, in the case of inference with

proportions, the confidence interval will not use the same standard error as is used for the

test of the null hypothesis—because the parameters of interest (πx and πy) appear within

the standard error formula.

Example 7. Continuing with the same example, we could form the confidence interval “by

hand”, but the prop.test function outputs this result for us (see previous example).

> pdif <- px - py

> pdif.se <- sqrt(px * (1 - px) / nx + py * (1 - py) / ny)

> c(pdif - qnorm(0.975) * pdif.se, pdif + qnorm(0.975) * pdif.se)

[1] -0.01605167 0.07844531

2.5 Odds, Relative Risk, Odds Ratios, and Phi

Definition. The odds of success is the ratio of the probability of success over the probability

of failure, i.e., odds = π/(1− π) where π = P (X = 1) and 1− π = P (X = 0).

If someone says that “the odds are A to B” this means that the probability of success is

A/(A+ B) and the probability of failure is B/(A+ B). For example, if the odd are 3 to 1,

this means that the probability of success is 3/4 and the probability of failure is 1/4.
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Definition. The relative risk, also known as the risk ratio, is the ratio of the probability of

success for two populations, i.e., RR = πx/πy, where πx = P (X = 1) and πy = P (Y = 1).

Definition. The odds ratio is the ratio of the odds of success for two populations, i.e.,

OR =
πx/(1− πx)
πy/(1− πy)

=
πx(1− πy)
πy(1− πx)

=
ad

bc

where (a, b, c, d) denote the entries of the 2× 2 contingency table.

Definition. The φ coefficient is another statistic that can be used to measure the strength

of association in a 2× 2 contingency table. The φ coefficient is defined as

φ =
ad− bc√

(a+ b)(c+ d)(a+ c)(b+ d)

and note that φ = 0 this indicates no association between the variables. Note that the φ

coefficient is related to Pearson’s chi-square test statistic, i.e., φ =
√
X2/n, which will be

discussed in the next chapter.

Example 8. For the death penalty example, the odds of receiving the death penalty are

White : π̂x/(1− π̂x) = 0.1232558 and Black : π̂y/(1− π̂y) = 0.08522727

so the odds of receiving the death penalty are slightly larger for white defendants. The

relative risk of receiving a death penalty verdict is given by

RR = π̂x/π̂y = 1.397239

so the probability of receiving the death penalty is about 1.4 times larger for white defendants

compared to black defendants. The odds ratio for receiving the death penalty verdict is

θ̂ =
π̂x/(1− π̂x)
π̂y/(1− π̂y)

=
(53)(176)

(430)(15)
= 1.446202

so the odds of receiving the death penalty is about 1.45 times larger for white defendants

compared to black defendants.
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The output of the fisher.test function (in Example 5) provides this odds ratio estimate,

as well as a 95% confidence interval for the odds ratio, which is given by [0.777655, 2.837046].

Since this confidence interval contains 1, we would conclude that the odds of receiving the

death penalty verdict are not significantly different for white and black defendants. The

fisher.test function uses an exact method to obtain the 95% confidence interval, but we

could calculate the confidence interval using an asymptotic argument as well. The large

sample confidence interval for the (log of the) odds ratio has the form

log(θ̂)± z1−α/2

√
1

a
+

1

b
+

1

c
+

1

d

Using the asymptotic confidence interval gives a similar result as the exact interval that is

produced by the fisher.test function:

> OR <- xtab[1,1] * xtab[2,2] / (xtab[1,2] * xtab[2,1])

> logOR <- log(OR)

> logOR.se <- sqrt(1/xtab[1,1] + 1/xtab[2,2] + 1/xtab[1,2] + 1/xtab[2,1])

> logci <- c(logOR - qnorm(.975) * logOR.se, logOR + qnorm(.975) * logOR.se)

> exp(logci)

[1] 0.7941306 2.6336964

The estimate of the φ coefficient is given by

φ̂ =
(53)(176)− (430)(15)√

(483)(191)(68)(606)
= 0.04667773

and note that the “X-squared” that is output by the prop.test function (in Example 6) is

related to this φ coefficient estimate, such that

X2 = nφ̂2 = 1.468519
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Appendix

prop.ci <- function(x, n, level = 0.95){

# checks

x <- as.integer(x[1])

if(x < 0) stop("Input ’x’ must be a positive integer")

n <- as.integer(n[1])

if(n < 0) stop("Input ’n’ must be a positive integer")

if(x > n) stop("Inputs must satisfy: x <= n")

level <- as.numeric(level[1])

if(level <= 0 | level >= 1) stop("Input ’level’ must be between 0 and 1")

alpha <- 1 - level

# normal

p <- x / n

se <- sqrt(p * (1 - p) / n)

z <- qnorm(1 - alpha/2)

normal <- c(p - z * se, p + z * se)

# wilson

denom <- 1 + z^2 / n

p.adj <- p + z^2 / (2 * n)

se.adj <- sqrt(p * (1 - p) / n + z^2 / (4 * n^2))

wilson <- c(p.adj - z * se.adj, p.adj + z * se.adj) / denom

# agresti-coull

p.adj <- p.adj / denom

se.adj <- sqrt(p.adj * (1 - p.adj) / (n + z^2))

agresti.coull <- c(p.adj - z * se.adj, p.adj + z * se.adj)

# arcsin

asrp <- asin(sqrt(p))

asinz <- z / (2 * sqrt(n))

arcsin <- c(sin(asrp - asinz)^2, sin(asrp + asinz)^2)

# clopper-pearson

ci.lower <- qbeta(alpha/2, x, n - x + 1)

ci.upper <- qbeta(1 - alpha/2, x + 1, n - x)

clopper.pearson <- c(ci.lower, ci.upper)

# return results

ci <- rbind(normal, wilson, agresti.coull, arcsin, clopper.pearson)

rownames(ci) <- c("normal", "wilson", "agresti.coull", "arcsin", "clopper.pearson")

colnames(ci) <- c("lower", "upper")

res <- list(x = x, n = n, level = level, conf.int = ci)

return(res)

} # end prop.ci
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