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1 Experiments and Events

The field of “probability theory” is a branch of mathematics that is concerned with describing

the likelihood of different outcomes from uncertain processes. Probability theory is the

cornerstone of the field of Statistics, which is concerned with assessing the uncertainty of

inferences drawn from random samples of data. Thus, we need to understand basics of

probability theory to comprehend some of the basic principles used in inferential statistics.

Before defining what the word “probability” means, I will introduce some terminology to

motivate the need for thinking probabilistically.

Definition. A simple experiment is some action that leads to the occurrence of a single

outcome s from a set of possible outcomes S. Note that the single outcome s is referred to

as a sample point, and the set of possible outcomes S is referred to as the sample space.

Example 1. Suppose that you flip a coin n ≥ 2 times and record the number of times

you observe a “heads”. The sample space is S = {0, 1, . . . , n}, where s = 0 corresponds to

observing no heads and s = n corresponds to observing only heads.

Example 2. Suppose that you pick a card at random from a standard deck of 52 playing

cards. The sample points are the individual cards in the deck (e.g., the Queen of Spades is

one possible sample point), and the sample space is the collection of all 52 cards.

Example 3. Suppose that you roll two standard (six-sided) dice and sum the obtained

numbers. The sample space is S = {2, 3, . . . , 11, 12}, where s = 2 corresponds to rolling

“snake eyes” (i.e., two 1’s) and s = 12 corresponds to rolling “boxcars” (i.e., two 6’s).
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Definition. An event A refers to any possible subspace of the sample space S, i.e., A ⊆ S,

and an elementary event is an event that contains a single sample point s.

Example 4. For the coin flipping example, we could define the events

• A = {0} (i.e., we observe no heads)

• B = {1, 2} (i.e., we observe 1 or 2 heads)

• C = {c | c is an even number} (i.e., we observe an even number of heads)

Example 5. For the playing card example, we could define the events

• A = {Queen of Spades} (i.e., we draw the Queen of Spades)

• B = {b | b is a Queen} (i.e., we draw a card that is a Queen)

• C = {c | c is a Spade} (i.e., we draw a card that is a Spade)

Example 6. For the dice rolling example, we could define the events

• A = {2} (i.e., we roll snake eyes)

• B = {7, 11} (i.e., we roll natural or yo-leven)

• C = {c | c is an even number} (i.e., we roll dice that sum to an even number)

For each of the above examples, A is an elementary event, whereas B and C are not

elementary events. Note that this is assuming that 0 is considered an even number, which

ensures that C is a non-elementary event when there are only n = 2 coin flips.

Definition. A sure event is an event that always occurs, and an impossible event (or null

event) is an event that never occurs.

Example 7. For the coin flipping example, E = {e | e is an integer satisfying 0 ≤ e ≤ n}
is a sure event and I = {i | i > n} is an impossible event.

Example 8. For the playing card example, E = {e | e is a Club, Diamond, Heart, or Spade}
is a sure event and I = {Joker} is an impossible event.

Example 9. For the dice rolling example, E = {e | e is an integer satisfying 2 ≤ e ≤ 12}
is a sure event and I = {i | i > 12} is an impossible event.
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Definition. Two events A and B are said to be mutually exclusive if A ∩ B = ∅, i.e., if

one event occurs, then the other event can not occur. Two events A and B are said to be

exhaustive if A ∪B = S, i.e., if one of the two events must occur.

Example 10. For the coin flipping example, the two events A = {0} and B = {n} are mutu-

ally exclusive events, whereas A = {a | a is an even number} and B = {b | b is an odd number}
are exhaustive events.

Example 11. For the playing card example, the two events A = {a | a is a Spade} and

B = {b | b is a Club} are mutually exclusive events, whereas A = {a | a is a Club or Spade}
and B = {b | b is a Diamond or Heart} are exhaustive events.

Example 12. For the dice rolling example, the two events A = {2} and B = {12} are mutu-

ally exclusive events, whereas A = {a | a is an even number} and B = {b | b is an odd number}
are exhaustive events.

2 What is a Probability?

Definition. A probability is a real number (between 0 and 1) that we assign to events in

a sample space to represent their likelihood of occurrence. The notation P (A) denotes the

probability of the event A ⊆ S.

There are two differing perspectives on how to interpret what a probability actually means:1

• The “physical” interpretation views a probability as the relative frequency of events

that would occur in the long run, i.e., if the simple experiment were repeated a very

large number of times. This interpretation is used in Frequentist statistical inference.

• The “evidential” interpretation views a probability as means of representing the subjec-

tive plausibility of a statement, regardless of whether any random process is involved.

This interpretation is used in Bayesian statistical inference.

We will use the “physical” interpretation, given that this course is focused on Frequentist

statistical inference. But there is some merit to the “evidential” interpretation of probability

in a variety of real-world applications (because the long run isn’t always relevant).

1For a discussion, see https://en.wikipedia.org/wiki/Probability_interpretations
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3 Axioms of Probability

Regardless of which interpretation you prefer, a probability must satisfy the three axioms of

probability (Kolmogorov, 1933), which are the building blocks of all probability theory.

Definition. The three probability axioms

1. P (A) ≥ 0 (non-negativity)

2. P (S) = 1 (unit measure)

3. P (A ∪B) = P (A) + P (B) if A ∩B = ∅ (additivity)

define a probability measure that makes it possible to calculate the probability of events.

Note that the probability axioms should be interpreted as follows:

• The first axiom states that the probability of an event A ⊆ S must be non-negative.

• The second axiom states that (a) the probability of an event A ⊆ S must not exceed

one, and (b) the probability that at least one elementary event s in the sample space

S occurs must equal one. This axiom is a requirement on the sample space S, such

that some valid outcome must be observed when the simple experiment is conducted.

• The third axiom states that the probability of mutually exclusive events must be the

summation of the probabilities of the events.

Together, these three axioms are all that is needed to compute probabilities for any simple

experiment—which is pretty remarkable! For each of the three examples (i.e., coin flipping,

card drawing, and dice rolling), you can verify that

(i) the probability of observing any event is greater than or equal to zero

(ii) the probability of observing the entire sample space is equal to one

(iii) the probability of observing mutually exclusive events is the summation of probabilities

Note that it is okay if these points seem somewhat opaque given that we have yet to formally

specify the concept of a probability distribution, which we will do in the next section.
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4 Probability Distributions

Definition. A probability distribution F (·) is a mathematical function that assigns proba-

bilities to outcomes of a simple experiment. Thus, a probability distribution is a function

from the sample space S to the interval [0, 1], which can be denoted as F : S → [0, 1].

Example 13. Consider the coin flipping example with n = 3 coin flips. The sample space

is S = {0, 1, 2, 3}. If we assume that the coin is “fair” (i.e., equal chance of observing Heads

and Tails) and that the n flips are “independent” (i.e., unrelated to one another), then the

probability of each elementary event is as follows:

s P ({s}) Observed flip sequence

0 1/8 (T, T, T )

1 3/8 (H,T, T ), (T,H, T ), (T, T,H)

2 3/8 (H,H, T ), (H,T,H), (T,H,H)

3 1/8 (H,H,H)

Although there are only four elements in the sample space, i.e., |S| = 4, there are a

total of 2n = 8 possible sequences that we could observe when flipping two coins. Given our

assumptions, each of the 8 possible sequences is equally likely. As a result, to compute the

probability of each s ∈ S, we simply need to count all of the relevant sequences and divide by

the total number of possible sequences, which is displayed in the P ({s}) column of the table.

The probability distribution is specified by P ({s}), such that P ({s}) defines the probability

of observing each elementary event s ∈ S. Note that the probability distribution satisfies the

three probability axioms, given that (i) P (A) > 0 for any event A ⊆ S, (ii)
∑3

s=0 P ({s}) = 1,

and (iii) P ({s} ∪ {s′}) = P ({s}) + P ({s′}) for any s, s′ ∈ S (with s 6= s′).

Some example probability calculations:

• P ({0} ∩ {3}) = 0

• P ({0} ∪ {3}) = P ({0}) + P ({3}) = 2/8

• P ({a | a is less than 2}) = P ({0}) + P ({1}) = 4/8

• P ({a | a is less than or equal to 2}) =
∑2

s=0 P ({s}) = 1− P ({3}) = 7/8
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Example 14. Consider the dice rolling example. The sample space is S = {2, 3, . . . , 11, 12}.
If we assume that the dice are “fair” (i.e., equal chance of observing each outcome {1, . . . , 6}
on a single roll) and that the two rolls are “independent” (i.e., unrelated to one another),

then the probability of each elementary event is as follows:

s P ({s}) Observed roll sequence

2 1/36 (1, 1)

3 2/36 (1, 2), (2, 1)

4 3/36 (1, 3), (2, 2), (3, 1)

5 4/36 (1, 4), (2, 3), (3, 2), (4, 1)

6 5/36 (1, 5), (2, 4), (3, 3), (4, 2), (5, 1)

7 6/36 (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)

8 5/36 (2, 6), (3, 5), (4, 4), (5, 3), (6, 2)

9 4/36 (3, 6), (4, 5), (5, 4), (6, 3)

10 3/36 (4, 6), (5, 5), (6, 4)

11 2/36 (5, 6), (6, 5)

12 1/36 (6, 6)

Although there are only 11 elements in the sample space, i.e., |S| = 11, there are a

total of 62 = 36 possible sequences that we could observe when rolling two dice. Given our

assumptions, each of the 36 possible sequences is equally likely. As a result, to compute the

probability of each s ∈ S, we simply need to count all of the relevant sequences and divide by

the total number of possible sequences, which is displayed in the P ({s}) column of the table.

The probability distribution is specified by P ({s}), such that P ({s}) defines the probability

of observing each elementary event s ∈ S. Note that the probability distribution satisfies the

three probability axioms, given that (i) P (A) > 0 for any event A ⊆ S, (ii)
∑12

s=2 P ({s}) = 1,

and (iii) P ({s} ∪ {s′}) = P ({s}) + P ({s′}) for any s, s′ ∈ S (with s 6= s′).

Some example probability calculations:

• P ({2} ∩ {12}) = 0

• P ({2} ∪ {12}) = P ({2}) + P ({12}) = 2/36

• P ({7} ∪ {11}) = P ({7}) + P ({11}) = 8/36
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5 Joint Events

Thus far, we have considered simple experiments where the outcome of interest is a singular

event (e.g., the sum of two dice). In such cases, the sample space consists of sample points

that are one-dimensional elements. We could easily extend the ideas of probability theory

to experiments where the sample points are d-dimensional elements with d ≥ 2.

Definition. A joint event refers to an outcome of a simple experiment where the sample

point is two-dimensional. In this case, the sample points have the form s = (a, b), where a

and b are the two events that combine to form the joint event.

Example 15. Suppose that you flip a coin n = 2 times and record the outcome of each

coin flip (instead of recording the number of heads). In this case, the sample space is

S = {(a, b) | a ∈ {H,T}, b ∈ {H,T}}, where a and b denote the outcomes of the first and

second coin flip, respectively. Note that the sample space has size |S| = 4 and the elementary

events are defined as S = {(T, T ), (H,T ), (T,H), (H,H)}.

Example 16. Suppose that you pick a card at random from a standard deck of 52 playing

cards and record both the value and suit of the card separately. In this case, the sample

space is S = {(a, b) | a ∈ {2, 3, . . . , 9, 10, J,Q,K,A}, b ∈ {Club, Diamond, Heart, Spade}}.
Note that the sample space has size |S| = 52, given that a could take 13 different values and

b could take 4 different values (and 13× 4 = 52).

Example 17. Suppose that we roll two dice and record the value of each dice (instead of

summing the values). In this case, the sample space is S = {(a, b) | 1 ≤ a ≤ 6, 1 ≤ b ≤ 6},
where a and b denote the outcomes of the first and second dice roll, respectively. Note that

the sample space has size |S| = 36. See Example 14 for the 36 elementary events.

Definition. Two events are independent of one another if the probability of the joint event

is the product of the probabilities of the separate events, i.e., if P (A ∩B) = P (A)P (B).

Definition. The conditional probability of A given B, denoted as P (A|B), is the probability

that A and B occur given that B has occurred, i.e., P (A|B) = P (A ∩B)/P (B).

If A and B are independent of one another, then P (A|B) = P (A) and P (B|A) = P (B).

In other words, when A and B are independent, knowing that one of the events has occurred

tells us nothing about the likelihood of the other event occurring.
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Example 18. For the coin flipping example, if we assume that the coin is fair and the

two flips are independent, then P (s) = (1/2)(1/2) = 1/4 for any s ∈ S. In other words,

if we independently flip a fair coin two times, each of the possible outcomes in the sample

space S = {(T, T ), (H,T ), (T,H), (H,H)} is equally likely to occur. Furthermore, if we

define A = {first flip is heads} and B = {second flip is heads}, then P (B|A) = P (B) = 1/2.

Thus, the events A and B are independent of one another—which we already knew because

we assumed that the two coin flips were independent. Now suppose that we define another

event as C = {both flips are heads}. Then we have the following probabilities:

• P (A ∩ C) = P (B ∩ C) = 1/4

• P (Ac ∩ C) = P (Bc ∩ C) = 0

• P (C|A) = P (C|B) = (1/4)/(1/2) = 1/2

• P (C|Ac) = P (C|Bc) = 0/(1/2) = 0

Example 19. For the card drawing example, note that P (s) = 1/52 for any s ∈ S, given that

we have equal probability of drawing any card in the deck. Suppose that we define the events

A = {the card is a King} and B = {the card is a face card}. Note that P (A) = 4/52 given

that there are four Kings in a deck, and P (B) = 12/52 given that there are 12 face cards in a

deck. The probability of the joint event is P (A∩B) = 4/52 given that A ⊂ B. This implies

that P (A|B) = (4/52)/(12/52) = 4/12, i.e., if we draw a face card, then the probability of it

being a King is 1/3. The opposite conditional probability is P (B|A) = (4/52)/(4/52) = 1,

i.e., if we draw a King, then it must be a face card. Thus, the events A and B are dependent.

Example 20. For the dice rolling example, if we assume that the dice are fair and the two

rolls are independent, then P (s) = (1/6)(1/6) = 1/36 for any s ∈ S. Suppose that we define

the events A = {the sum of the dice is equal to 7} and B = {the first dice is a 1 or 2}. The

probabilities of the marginal events are P (A) = 6/36 and P (B) = 2/6, and the probability

of the joint event is P (A ∩ B) = 2/36 (see Example 14). This implies that P (A|B) =

(2/36)/(2/6) = 2/12, i.e., if the first roll is 1 or 2, then the probability of the sum being 7

is equal to 1/6. The opposite conditional probability is P (B|A) = (2/36)/(6/36) = 2/6, i.e.,

if the sum of the dice is 7, then the probability of the first roll being 1 or 2 is equal to 1/3.

Thus, the events A and B are dependent.
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6 Bayes’ Theorem

Bayes’ theorem (due to Reverend Thomas Bayes, 1763) states that

P (A|B) =
P (B|A)P (A)

P (B)
and P (B|A) =

P (A|B)P (B)

P (A)

which is due to the fact that P (A ∩ B) = P (B|A)P (A) = P (A|B)P (B). Note that Bayes’

theorem has important consequences because it allows us to derive unknown conditional

probabilities from known quantities. This theorem is the foundation of Bayesian statistics,

where the goal is to derive the posterior distribution P (A|B) given the assumed distribution

for the data given the parameters P (B|A) and the prior distribution P (A).

7 Basic Probability Properties

Some general results of probability theory:

1. 0 ≤ P (A) ≤ 1

2. P (Ac) = 1− P (A)

3. P (A ∪ Ac) = 1

4. P (S) = 1

5. P (∅) = 1− P (S) = 0

6. P (A ∪B) = P (A) + P (B)− P (A ∩B)

7. P (A ∪B) ≤ P (A) + P (B)

8. P (A ∩B) ≤ P (A ∪B)

9. If A ⊆ B, then P (A) ≤ P (B)

10. If A ⊆ B, then P (B\A) = P (B)− P (A)

11. P (A|B) = P (A ∩B)/P (B) = P (B|A)P (A)/P (B)

12. P (A|B) = P (A)P (B) if A and B are independent
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