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Probability Distribution Background

Distribution, Mass, and Density Functions

A random variable X has a cumulative distribution function (CDF)
F (·), which is a function from the sample space S to the interval [0, 1].

• F (x) = P (X ≤ x) for any given x ∈ S
• 0 ≤ F (x) ≤ 1 for any x ∈ S and F (a) ≤ F (b) for all a ≤ b

F (·) has an associated function f(·) that is referred to as a probability
mass function (PMF) or probability distribution function (PDF).

• PMF (discrete): f(x) = P (X = x) for all x ∈ S
• PDF (continuous):

∫ b
a f(x)dx = F (b)− F (a) = P (a < X < b)
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Probability Distribution Background

Parameters and Statistics

A parameter θ = t(F ) refers to a some function of a probability
distribution that is used to characterize the distribution.

• µ = E(X) and σ2 = E[(X − µ)2] are parameters

Given a sample of data x = (x1, . . . , xn)>, a statistic T = s(x) is some
function of the sample of data.

• x̄ = 1
n

∑n
i=1 xi and s2 = 1

n−1

∑n
i=1(xi − x̄)2 are statistics

Parametric distributions have a finite number of parameters, which
characterize the form of the CDF and PMF (or PDF).

• The parameters define a family of distributions
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Discrete Distributions

Bernoulli Distribution

A Bernoulli trial refers to a simple experiment that has two possible
outcomes. The two outcomes are x = 0 (failure) and x = 1 (success),
and the probability of success is denoted by p = P (X = 1).

• One parameter: p ∈ [0, 1]

• Notation: X ∼ Bern(p) or X ∼ B(1, p)

The Bernoulli distribution has properties:

• PMF: f(x) =

{
1− p if x = 0
p if x = 1

• CDF: F (x) =


0 if x < 0

1− p if 0 ≤ x < 1
1 if x = 1

• Mean: E(X) = p

• Variance: Var(X) = p(1− p)
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Discrete Distributions

Bernoulli Distribution Example

Suppose we flip a coin and record the outcome as 0 (tails) or 1 (heads).

This experiment is an example of a Bernoulli trial, and the random
variable X (the outcome of a coin flip) follows a Bernoulli distribution.
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Figure 1: Bernoulli PMF with p = 1/2 (left) and p = 3/4 (right).
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Discrete Distributions

Binomial Distribution

If X =
∑n

i=1 Zi where the Zi are independent and identically
distributed Bernoulli trials with probability of success p, then the
random variable X follows a binomial distribution.

• Two parameters: n ∈ {1, 2, 3, . . .} and p ∈ [0, 1]

• Notation: X ∼ B(n, p)

The binomial distribution has the properties:

• PMF: f(x) =
(
n
x

)
px(1− p)n−x where

(
n
x

)
= n!

x!(n−x)!

• CDF: F (x) =
∑bxc

i=0

(
n
i

)
pi(1− p)n−i

• Mean: E(X) = np

• Variance: Var(X) = np(1− p)
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Discrete Distributions

Binomial Distribution Example

Suppose that we flip a coin n ≥ 1 independent times, and assume that
each flip Zi has probability of success (i.e., heads) p ∈ [0, 1].

If we define X to be the total number of observed heads, then
X =

∑n
i=1 Zi follows a binomial distribution with parameters n and p.
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Figure 2: Binomial PMF with n ∈ {5, 10} and p = 1/2.
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Discrete Distributions

Limiting Distribution of Binomial

As the number of independent trials n→∞, we have that

X − np√
np(1− p)

→ Z ∼ N(0, 1)

where N(0, 1) denotes a standard normal distribution (later defined).

In other words, the normal distribution is the limiting distribution of
the binomial for large n.

Note that the binomial distribution (depicted on the previous slide)
looks reasonably bell-shaped for n = 10.

Nathaniel E. Helwig (Minnesota) Common Probability Distributions c© August 28, 2020 11 / 28



Discrete Distributions

Discrete Uniform Distribution

Suppose that a simple random experiment has possible outcomes
x ∈ {a, a+ 1, . . . , b− 1, b} where a ≤ b and m = 1 + b− a, and all m
possible outcomes are equally likely, i.e., if P (X = x) = 1/m.

• Two parameters: the two endpoints a and b (with a < b)

• Notation: X ∼ U{a, b}

The discrete uniform distribution has the properties:

• PMF: f(x) = 1/m

• CDF: F (x) = (1 + bxc − a)/m

• Mean: E(X) = (a+ b)/2

• Variance: Var(X) = [(b− a+ 1)2 − 1]/12
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Discrete Distributions

Discrete Uniform Distribution Example

Suppose we roll a fair dice and let x ∈ {1, . . . , 6} denote the number of
dots that are observed. The random variable X follows a discrete
uniform distribution with a = 1 and b = 6.
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Figure 3: Discrete uniform distribution PDF and CDF with a = 1 and b = 6.
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Continuous Distributions
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Continuous Distributions

Normal Distribution

The normal (or Gaussian) distribution is the most well-known and
commonly used probability distribution. The normal distribution is
quite important because of the central limit theorem (later defined).

• Two parameters: the mean µ and the variance σ2

• Notation: X ∼ N(µ, σ2)

The standard normal distribution refers to a normal distribution where
µ = 0 and σ2 = 1, which is typically denoted by Z ∼ N(0, 1).

The normal distribution has the properties:

• PDF: f(x) = 1
σ
√

2π
exp

(
−1

2

(x−µ
σ

)2)
where exp(x) = ex

• CDF: F (x) = Φ
(x−µ

σ

)
where Φ(x) = 1√

2π

∫ x
−∞ e

−z2/2dz

• Mean: E(X) = µ

• Variance: Var(X) = σ2
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Continuous Distributions

Normal Distribution Visualizations

The CDF has a elongated “S” shape, which is called an ogive.
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Figure 4: Normal distribution PDFs and CDFs with different µ and σ2.
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Continuous Distributions

Chi-Square Distribution

If X =
∑k

i=1 Z
2
i where the Zi are independent standard normal

distributions, then the random variable X follows a chi-square
distribution with degrees of freedom k.

• One parameter: the degrees of freedom k

• Notation: X ∼ χ2
k or X ∼ χ2(k)

The chi-square distribution has the properties:

• PDF: f(x) = 1
2k/2Γ(k/2)

xk/2−1e−x/2 where Γ(x) =
∫∞

0 tx−1e−tdt

is the gamma function

• CDF: F (x) = 1
Γ(k/2)γ

(
k
2 ,

x
2

)
where γ(u, v) =

∫ v
0 t

u−1e−tdt is the
lower incomplete gamma function

• Mean: E(X) = k

• Variance: Var(X) = 2k
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Continuous Distributions

Chi-Square Distribution Visualization

χ2(k) distribution approaches normal distribution as k →∞

0 2 4 6 8 10

0.
0

0.
2

0.
4

Chi−Square PDFs

x

f(
x

)

k  = 1
k  = 2
k  = 3
k  = 4
k  = 5
k  = 6

0 2 4 6 8 10

0.
0

0.
4

0.
8

Chi−Square CDFs

x
F

(x
)

k  = 1
k  = 2
k  = 3
k  = 4
k  = 5
k  = 6

Figure 5: Chi-square distribution PDFs and CDFs with different DoF.

Nathaniel E. Helwig (Minnesota) Common Probability Distributions c© August 28, 2020 18 / 28



Continuous Distributions

F Distribution

A random variable X has an F distribution if the variable has the form

X =
U/m

V/n

where U ∼ χ2(m) and V ∼ χ2(n) are independent chi-square variables.
• Two parameters: the two degrees of freedom parameters m and n
• Notation: X ∼ Fm,n or X ∼ F (m,n)

The F distribution has the properties:

• PDF: f(x) =

√
(xm)mnn

(xm+n)m+n

xB(m
2
,n
2

) where B(u, v) =
∫ 1

0 t
u−1(1− t)v−1dt

• CDF: F (x) = I xm
xm+n

(
m
2 ,

n
2

)
where Ix(u, v) = B(x;u,v)

B(u,v) and

B(x;u, v) =
∫ x

0 t
u−1(1− t)v−1dt

• Mean: E(X) = n
n−2 assuming that n > 2

• Variance: Var(X) = 2n2(m+n−2)
m(n−2)2(n−4)

assuming that n > 4
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Continuous Distributions

F Distribution Visualization

Note that if X ∼ F (m,n), then X−1 ∼ F (n,m)
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Figure 6: F distribution PDFs and CDFs with different DoF.
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Continuous Distributions

Continuous Uniform Distribution

Suppose that a simple random experiment has an infinite number of
possible outcomes x ∈ [a, b] where −∞ < a < b <∞, and all possible
outcomes are equally likely.

• Two parameters: the two endpoints a and b

• Notation: X ∼ U [a, b] or X ∼ U(a, b) (closed or open interval)

The continuous uniform distribution has the properties:

• PDF: f(x) = 1
b−a if x ∈ [a, b] (note that f(x) = 0 otheriwse)

• CDF: F (x) = x−a
b−a if x ∈ [a, b] (note that F (x) = 0 if x < a and

F (x) = 1 if x > b)

• Mean: E(X) = (a+ b)/2

• Variance: Var(X) = (b− a)2/12
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Continuous Distributions

Continuous Uniform Distribution Visualization
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Figure 7: Continuous uniform PDF and CDF with a = 0 and b = 12.
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Central Limit Theorem

Central Limit Theorem

Let x1, . . . , xn denote an independent and identically distributed (iid)
sample of data from some probability distribution F with mean µ and
variance σ2 <∞.

The central limit theorem reveals that as the sample size n→∞
√
n(x̄n − µ)

d−→ N(0, σ2)

where x̄n = 1
n

∑n
i=1 xi is the sample mean.

For a large enough n, the sample mean x̄n is approximately normally
distributed with mean µ and variance σ2/n, i.e., x̄n ∼̇ N(µ, σ

2

n ).
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Central Limit Theorem

Central Limit Theorem Visualization
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]. Note that µ = 1/2
and σ2 = 1/4 for both distributions. The histograms depict the approximate
sampling distribution of x̄n and the lines denote the N(µ, σ2/n) density.
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Affine Transformations of Normal Variables

Definition of Affine Transformation

Another reason that the normal distribution is so popular for applied
research is the fact that normally distributed variables are convenient
to work with. This is because affine transformations of normal
variables are also normal variables.

Given a collection of variables X1, . . . , Xp, an affine transformation has
the form Y = a+ b1X1 + · · · bpXp, where a is an offset (intercept) term
and bj is the weight/coefficient that is applied to the j-th variable.

• Linear transformations are a special case with a = 0
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Affine Transformations of Normal Variables

Affine Transformations of Normals

If the random variable X is normally distributed, i.e., if X ∼ N(µ, σ2),
then the random variable Y = a+ bX is also normally distributed, i.e.,
Y ∼ N(µY , σ

2
Y ) where µY = E(Y ) = a+ bµ and σ2

Y = Var(Y ) = b2σ2.

If we define Y = a+
∑p

j=1 bjXj , then the mean and variance of Y are

µY = E(Y ) = a+

p∑
j=1

bjµj

σ2
Y = Var(Y ) =

p∑
j=1

b2jσ
2
j + 2

p∑
j=2

j−1∑
k=1

bjbkσjk

where σjk = E[(Xj − µj)(Xk − µk)]. If the collection of variables
(X1, . . . , Xp) are multivariate normal, then Y ∼ N(µY , σ

2
Y ).
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