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1 Overview

As a reminder, a random variable X has an associated probability distribution F (·), also

know as a cumulative distribution function (CDF), which is a function from the sample

space S to the interval [0, 1], i.e., F : S → [0, 1]. For any given x ∈ S, the CDF returns

the probability F (x) = P (X ≤ x), which uniquely defines the distribution of X. In general,

the CDF can take any form as long as it defines a valid probability statement, such that

0 ≤ F (x) ≤ 1 for any x ∈ S and F (a) ≤ F (b) for all a ≤ b.

As another reminder, a probability distribution has an associated function f(·) that

is referred to as a probability mass function (PMF) or probability distribution function

(PDF). For discrete random variables, the PMF is a function from S to the interval [0, 1]

that associates a probability with each x ∈ S, i.e., f(x) = P (X = x). For continuous random

variables, the PDF is a function from S to R+ that associates a probability with each range

of realizations of X, i.e.,
∫ b
a
f(x)dx = F (b)− F (a) = P (a < X < b).

Probability distributions that are commonly used for statistical theory or applications

have special names. In this chapter, we will cover a few probability distributions (or families

of distributions) that are frequently used for basic and applied statistical analyses. As we

shall see, the families of common distributions are characterized by their parameters, which

typically have a practical interpretation for statistical applications.

Definition. In statistics, a parameter θ = t(F ) refers to a some function of a probability

distribution that is used to characterize the distribution. For example, the expected value

µ = E(X) and the variance σ2 = E((X − µ)2) are parameters that are commonly used to

describe the location and spread of probability distributions.
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2 Discrete Distributions

2.1 Bernoulli Distribution

Definition. In statistics, a Bernoulli trial refers to a simple experiment that has two possible

outcomes, i.e., |S| = 2. The two outcomes are x = 0 (failure) and x = 1 (success), and the

probability of success is denoted by p = P (X = 1). It does not matter which of the two

results we call the “success”, given that the probability of the “failure” is simply 1− p.

The probability distribution associated with a Bernoulli trial is known as a Bernoulli

distribution, which depends on the parameter p. The Bernoulli distribution has properties:

• PMF: f(x) =

{
1− p if x = 0

p if x = 1

• CDF: F (x) =


0 if x < 0

1− p if 0 ≤ x < 1

1 if x = 1

• Mean: E(X) = p

• Variance: Var(X) = p(1− p)

Example 1. Suppose we flip a coin once and record the outcome as 0 (tails) or 1 (heads).

This experiment is an example of a Bernoulli trial, and the random variable X (which

denotes the outcome of a single coin flip) follows a Bernoulli distribution. A fair coin has

equal probability of heads and tails, so p = 1/2 if the coin is fair. But note that the Bernoulli

distribution applies to unfair coins as well, e.g., if the probability of heads is p = 3/4, the

random variable X still follows a Bernoulli distribution.

Example 2. Suppose we roll a fair dice and let y ∈ {1, . . . , 6} denote the number of dots.

Furthermore, suppose we define x = 0 if y ∈ {1, 2, 3} and x = 1 if y ∈ {4, 5, 6}. Then the

random variable X follows a Bernoulli distribution with p = 1/2. Now suppose that we

change the definition of X, such that x = 0 if y < 6 and x = 1 if y = 6; in this case, the

random variable X follows a Bernoulli distribution with p = 1/6.

In both of these examples, note that there are two possible outcomes for X (0 and 1),

and the distribution of these outcomes is determined by the probability of success p.

Common Probability Distributions 2 Nathaniel E. Helwig



2.2 Binomial Distribution Copyright c© August 27, 2020 by NEH

2.2 Binomial Distribution

The binomial distribution is related to the Bernoulli distribution. If X =
∑n

i=1 Zi where the

Zi are independent and identically distributed Bernoulli trials with probability of success p,

then the random variable X follows a binomial distribution. Note that a binomial distribu-

tion has two parameters: n ∈ {1, 2, 3, . . .} and p ∈ [0, 1]. The number of Bernoulli trials n

(sometimes called the “size” parameter) is known by the design of the experiment, whereas

the probability of success may unknown.

The binomial distribution has the properties:

• PMF: f(x) =
(
n
x

)
px(1− p)n−x where

(
n
x

)
= n!

x!(n−x)!
is the binomial coefficient

• CDF: F (x) =
∑bxc

i=0

(
n
i

)
pi(1− p)n−i

• Mean: E(X) = np

• Variance: Var(X) = np(1− p)

Example 3. Suppose that we flip a coin n ≥ 1 independent times, and assume that each flip

Zi has probability of success p ∈ [0, 1], where a result of heads is considered a “success”. If

we define X to be the total number of observed heads, then X =
∑n

i=1 Zi follows a binomial

distribution with parameters n and p. See Figures 2 and 4 in the Random Variables notes

for depictions of the PMF and CDF for the coin flipping example with p = 1/2.

If X follows a binomial distribution with parameters n and p, it is typical to write

X ∼ B(n, p), where the ∼ symbol should be read as “is distributed as”. Note that if n = 1,

then the Binomial distribution is equivalent to the Bernoulli distribution, i.e., the Bernoulli

distribution is a special case of the Binomial distribution when there is only one Bernoulli

trial. As the number of independent trials n→∞, we have that

X − np√
np(1− p)

→ Z ∼ N(0, 1)

where N(0, 1) denotes a standard normal distribution (later defined). In other words, the

normal distribution is the limiting distribution of the binomial for large n.
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2.3 Discrete Uniform Distribution

Suppose that a simple random experiment has possible outcomes x ∈ {a, a+ 1, . . . , b− 1, b}
where a ≤ b and m = 1 + b − a. If all of the m possible outcomes are equally likely, i.e., if

P (X = x) = 1/m for any x ∈ {a, . . . , b}, the distribution is referred to as a discrete uniform

distribution, which depends on two parameters: the two endpoints a and b.

The discrete uniform distribution has the properties:

• PMF: f(x) = 1/m

• CDF: F (x) = (1 + bxc − a)/m

• Mean: E(X) = (a+ b)/2

• Variance: Var(X) = [(b− a+ 1)2 − 1]/12

If X follows a discrete uniform distribution with parameters a and b, it is typical to write

X ∼ U{a, b}. Note that there also exists a continuous uniform distribution (later described),

which has a similar notation. Thus, whenever you are using a uniform distribution, it is

important to be clear whether or not you’re assuming a discrete or continuous distribution.

Example 4. Suppose we roll a fair dice and let x ∈ {1, . . . , 6} denote the number of dots.

The random variable X follows a discrete uniform distribution with a = 1 and b = 6.
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Figure 1: Discrete uniform distribution PDFs and CDFs with m = 6 possible outcomes.
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3 Continuous Distributions

3.1 Normal Distribution

The normal (or Gaussian) distribution is the most well-known and commonly used proba-

bility distribution. The normal distribution is quite important because of the central limit

theorem, which is discussed in the following section. The normal distribution is a family of

probability distributions defined by two parameters: the mean µ and the variance σ2.

The normal distribution has the properties:

• PDF: f(x) = 1
σ
√

2π
exp

(
−1

2

(
x−µ
σ

)2
)

where exp(x) = ex is the exponential function

• CDF: F (x) = Φ
(
x−µ
σ

)
where Φ(x) = 1√

2π

∫ x
−∞ e

−z2/2dz is the standard normal CDF

• Mean: E(X) = µ

• Variance: Var(X) = σ2

To denote that X follows a normal distribution with mean µ and variance σ2, it is typical

to write X ∼ N(µ, σ2) where the ∼ symbol should be read as “is distributed as”.

Definition. The standard normal distribution refers to a normal distribution where µ = 0

and σ2 = 1. Standard normal variables are typically denoted by Z ∼ N(0, 1).
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Figure 2: Normal distribution PDFs and CDFs with various different means and variances.
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3.2 Chi-Square Distribution

The chi-square distribution is related to the normal distribution. If X =
∑k

i=1 Z
2
i where

the Zi are independent standard normal distributions, then the random variable X follows a

chi-square distribution with degrees of freedom k. The chi-square distribution is defined by a

single parameter: the degrees of freedom k. Note that since the chi-square is the summation

of squared standard normal variables, we have that X > 0.

The chi-square distribution has the properties:

• PDF: f(x) = 1
2k/2Γ(k/2)

xk/2−1e−x/2 where Γ(x) =
∫∞

0
tx−1e−tdt is the gamma function

• CDF: F (x) = 1
Γ(k/2)

γ
(
k
2
, x

2

)
where γ(u, v) =

∫ v
0
tu−1e−tdt is the lower incomplete

gamma function

• Mean: E(X) = k

• Variance: Var(X) = 2k

To denote that X follows a chi-square distribution with degrees of freedom k, it is typical

to write X ∼ χ2
k or X ∼ χ2(k), where the symbol χ is the Greek letter “chi”. Because the chi-

square distribution is related to the normal distribution, the chi-square distribution is used

(almost) as frequently as the normal distribution. In particular, the chi-square distribution

is often used to assess the “goodness of fit” of a statistical model.
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Figure 3: Chi-square distribution PDFs and CDFs with various different degrees of freedom.
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3.3 F Distribution

The F distribution is related to the chi-square distribution. A random variable X has an F

distribution if the variable can be written as

X =
U/m

V/n

where U ∼ χ2(m) and V ∼ χ2(n) are independent chi-square random variables. The F

distribution depends on two parameters: the two degrees of freedom parameters m and n.

The F distribution has the properties:

• PDF: f(x) =

√
(xm)mnn

(xm+n)m+n

xB(m
2
,n
2

)
where B(u, v) =

∫ 1

0
tu−1(1− t)v−1dt is the beta function

• CDF: F (x) = I xm
xm+n

(
m
2
, n

2

)
where Ix(u, v) = B(x;u,v)

B(u,v)
is the regularized incomplete

beta function and B(x;u, v) =
∫ x

0
tu−1(1− t)v−1dt is the incomplete beta function

• Mean: E(X) = n
n−2

assuming that n > 2

• Variance: Var(X) = 2n2(m+n−2)
m(n−2)2(n−4)

assuming that n > 4

To denote that X follows an F distribution with degrees of freedom (m,n), it is typical

to write X ∼ Fm,n or X ∼ F (m,n). Note that the F distribution was conceptualized by

George Snedecor, who called it the F distribution in honor of R. A. Fisher.
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Figure 4: F distribution PDFs and CDFs with various different degrees of freedom.
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3.4 Continuous Uniform Distribution

Suppose that a simple random experiment has an infinite number of possible outcomes

x ∈ [a, b] where −∞ < a < b < ∞. If all of the possible outcomes are equally likely,

the distribution is referred to as a continuous uniform distribution, which depends on two

parameters: the two endpoints a and b.

The continuous uniform distribution has the properties:

• PDF: f(x) = 1
b−a if x ∈ [a, b] (note that f(x) = 0 otheriwse)

• CDF: F (x) = x−a
b−a if x ∈ [a, b] (note that F (x) = 0 if x < a and F (x) = 1 if x > b)

• Mean: E(X) = (a+ b)/2

• Variance: Var(X) = (b− a)2/12

If X follows a continuous uniform distribution with parameters a and b, it is typical to

write X ∼ U [a, b] or X ∼ U(a, b). Note that U [a, b] assumes that the interval is closed,

whereas the notation U(a, b) assumes that the interval is open.

Example 5. Suppose that we randomly spin the second hand around the face of a clock,

and define X as the position where the second hand stops spinning. The random variable

X follows a continuous uniform distribution with a = 0 and b = 12.
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Figure 5: Continuous uniform distribution PDF and CDF with a = 0 and b = 12.

Common Probability Distributions 8 Nathaniel E. Helwig



Copyright c© August 27, 2020 by NEH

4 Central Limit Theorem

Let x1, . . . , xn denote an independent and identically distributed (iid) sample of data from

some probability distribution F with mean µ and variance σ2 < ∞. The central limit

theorem reveals that as the sample size n→∞, we have that

√
n(x̄n − µ)

d−→ N(0, σ2)

where x̄n = 1
n

∑n
i=1 xi is the sample mean. Note that the symbol

d−→ should be read as

“converges in distribution to”. This theorem reveals that, for a large enough sample size n,

the sample mean x̄n is approximately normally distributed with mean µ and variance σ2/n,

i.e., x̄n ∼̇ N(µ, σ
2

n
) where the symbol ∼̇ should be read as “is approximately distributed as”.
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Figure 6: The central limit theorem. Top: X ∼ B(1, 1/2). Bottom: X ∼ U [2−
√

12
4

, 2+
√

12
4

].
Note that µ = 1/2 and σ2 = 1/4 for both distributions. The histograms depict the approxi-
mate sampling distribution of x̄n and the lines denote the N(µ, σ2/n) density.
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5 Affine Transformations of Normal Variables

Another reason that the normal distribution is so popular for applied research is the fact

that normally distributed variables are convenient to work with. This is because affine

transformations of normal variables are also normal variables.

Definition. Given a collection of variables X1, . . . , Xp, an affine transformation has the form

Y = a+ b1X1 + · · · bpXp, where a is an offset (intercept) term and bj is the weight/coefficient

that is applied to the j-th variable.

As a reminder from our Introduction to Random Variables chapter, if X is a random

variable with mean µ = E(X) and variance σ2 = E((X−µ)2), then the affine transformation

Y = a + bX has mean µY = E(Y ) = a + bµ and variance σ2
Y = Var(Y ) = b2σ2. If the

random variable X is normally distributed, i.e., if X ∼ N(µ, σ2), then the random variable

Y = a+ bX is also normally distributed, i.e., Y ∼ N(µY , σ
2
Y ).

As a reminder from our Introduction to Random Variables chapter, if X1 and X2 are

random variables with means µj = E(Xj) and variances σ2
j = E((Xj − µj)2) for j ∈ {1, 2},

then the affine transformation Y = a+ b1X1 + b2X2 has mean and variance

µY = E(Y ) = a+ b1µ1 + b2µ2

σ2
Y = Var(Y ) = b2

1σ
2
1 + b2

2σ
2
2 + 2b1b2σ12

where σ12 = E[(X1−µ1)(X2−µ2)] is the covariance between X1 and X2. Note that σ12 = 0

if X1 and X2 are independent of one another, but the converse is only true if X1 and X2 are

normally distributed. If the random variables X1 and X2 are normally distributed, then the

random variable Y = a+ b1X1 + b2X2 is also normally distributed, i.e., Y ∼ N(µY , σ
2
Y ).

More generally, if we define Y = a+
∑p

j=1 bjXj, then the mean and variance of Y are

µY = E(Y ) = a+

p∑
j=1

bjµj

σ2
Y = Var(Y ) =

p∑
j=1

b2
jσ

2
j + 2

p∑
j=2

j−1∑
k=1

bjbkσjk

where σjk = E[(Xj − µj)(Xk − µk)]. If the collection of variables (X1, . . . , Xp) have a

multivariate normal distribution, then Y ∼ N(µY , σ
2
Y ).
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