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Parameters and Statistics

Probability Distribution Reminders

A random variable X has a cumulative distribution function (CDF)
denoted by F (x) = P (X ≤ x) that describes the probabilistic nature of
the random variable X.

F (·) has an associated probability mass function (PMF) or probability
density function (PDF) denoted by f(x).

• PMF: f(x) = P (X = x) for discrete variables

• PDF:
∫ b
a f(x) = P (a < X < b) for continuous variables

The functions F (·) and f(·) are typically assumed to depend on a finite
number of parameters, where a parameter θ = t(F ) is some function of
the probability distribution.
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Parameters and Statistics

Inferences and Statistics

Given a sample of n independent and identically distributed (iid)
observations from some distribution F , inferential statistical analyses
are concerned with inferring things about the population from which
the sample was collected.

To form inferences, researchers often make assumptions about the form
of F , e.g., F is a normal distribution, and then use the sample of data
to form educated guesses about the population parameters.

Given a sample of data x = (x1, . . . , xn)>, a statistic T = s(x) is some
function of the sample of data. Not all statistics are created equal. . .

• Some are useful for estimating parameters or testing hypotheses
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Sampling Distribution

Statistics are Random Variables

Assume that xi
iid∼ F for i = 1, . . . , n, where the notation

iid∼ denotes
that the xi are iid observations from the distribution F .

• x = (x1, . . . , xn)> denotes the sample of data as an n× 1 vector

Each xi is assumed to be an independent realization of a random
variable X ∼ F , so any valid statistic T = s(x) will be a random
variable with a probability distribution.

• By “valid” I mean that T must depend on the xi values

The sampling distribution of a statistic T = s(x) refers to the
probability distribution of T .
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Sampling Distribution

Sampling Distribution Properties

Suppose that we collect R independent realizations of the vector x, and
let Tr = s(xr) denote the r-th realization of the statistic. The sampling
distribution is the probability distribution of {Tr}Rr=1 as the number of
independent realizations R→∞.

The sampling distribution depends on the distribution of data.

• if xi
iid∼ F and yi

iid∼ G, then the statistics T = s(x) and U = s(y)
will have different sampling distributions if F and G are different.

Sometimes the sampling distribution will be known as n→∞.

• CLT or asymptotic normality of MLEs

• Question of interest is: how large does n need to be?

Nathaniel E. Helwig (Minnesota) Parameter Estimation c© August 30, 2020 8 / 40



Estimates and Estimators

Table of Contents

1. Parameters and Statistics

2. Sampling Distribution

3. Estimates and Estimators

4. Quality of Estimators

5. Estimation Frameworks

Nathaniel E. Helwig (Minnesota) Parameter Estimation c© August 30, 2020 9 / 40



Estimates and Estimators

Definition of Estimates and Estimators

Given a sample of data x1, . . . , xn where xi
iid∼ F , an estimate of a

parameter θ = t(F ) is some function of the sample θ̂ = g(x) that is
meant to approximate θ.

An estimator refers to the function g(·) that is applied to the sample to
obtain the estimate θ̂.

Standard notation in statistics, where a “hat” (i.e.,ˆ) is placed on top
of the parameter to denote that θ̂ is an estimate of θ.

• θ̂ should be read as “theta hat”

• should interpret θ̂ as some estimate of the parameter θ
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Estimates and Estimators

Examples of Estimates and Estimators

Example. Suppose that we have a sample of data x1, . . . , xn where

xi
iid∼ F , which denotes any generic distribution, and the population

mean µ = E(X) is the parameter of interest. The sample mean
x̄ = 1

n

∑n
i=1 xi provides an estimate of the parameter µ, so we could

also write it as x̄ = µ̂.

Example. Similarly, suppose that we have a sample of data x1, . . . , xn

where xi
iid∼ F and the population variance σ2 = E[(X − µ)2] is the

parameter of interest. The sample variance s2 = 1
n−1

∑n
i=1(xi − x̄)2

provides an estimate of the parameter σ2, so we could also write it as
s2 = σ̂2. Another reasonable estimate would be s̃2 = 1

n

∑n
i=1(xi − x̄)2.
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Quality of Estimators

Overview

Like statistics, not all estimators are created equal. Some estimators
produce “better” estimates of the intended population parameters.

There are several ways to talk about the “quality” of an estimator:

• its expected value (bias)

• its uncertainty (variance)

• both its bias and variance (MSE)

• its asymptotic properties (consistency)

MSE is typically the preferred way to measure an estimator’s quality.
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Quality of Estimators

Bias of an Estimator

The bias of an estimator refers to the difference between the expected
value of the estimate θ̂ = g(x) and the parameter θ = t(F ), i.e.,

Bias(θ̂) = E(θ̂)− θ

where the expectation is calculated with respect to F .

• An estimator is “unbiased” if Bias(θ̂) = 0

Despite the negative connotations of the word “bias”, it is important to
note that biased estimators can be a good thing (see Helwig, 2017).

• Ridge regression (Hoerl and Kennard, 1970)

• Least absolute shrinkage and selection operator (LASSO)
regression (Tibshirani, 1996)

• Elastic Net regression (Zou and Hastie, 2005)
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Quality of Estimators

Bias Example 1: The Mean

Given a sample of data x1, . . . , xn where xi
iid∼ F and F has mean

µ = E(X), the sample mean x̄ = 1
n

∑n
i=1 xi is an unbiased estimate of

the population mean µ.

To prove that x̄ is an unbiased estimator, we can use the expectation
rules from Introduction to Random Variables chapter. Specifically,
note that E(x̄) = 1

n

∑n
i=1E(xi) = 1

n

∑n
i=1 µ = µ.
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Quality of Estimators

Bias Example 2: The Variance (part 1)

Given a sample of data x1, . . . , xn where xi
iid∼ F and F has mean

µ = E(X) and variance σ2 = E[(X − µ)2], the sample variance
s2 = 1

n−1
∑n

i=1(xi − x̄)2 is an unbiased estimate of σ2.

To prove that s2 is unbiased, first note that

n∑
i=1

(xi − x̄)2 =

n∑
i=1

x2i − 2x̄

n∑
i=1

xi + nx̄2 =

n∑
i=1

x2i − nx̄2

which implies that E(s2) = 1
n−1

[∑n
i=1E(x2i )− nE(x̄2)

]
.

Now note that σ2 = E(x2i )− µ2, which implies that E(x2i ) = σ2 + µ2.
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Quality of Estimators

Bias Example 2: The Variance (part 2)

Also, note that we can write

x̄2 =

(
1

n

n∑
i=1

xi

)2

=
1

n2

 n∑
i=1

x2i + 2

n∑
i=2

i−1∑
j=1

xixj


and applying the expectation operator gives

E(x̄2) =
1

n2

n∑
i=1

E(x2i ) +
2

n2

n∑
i=2

i−1∑
j=1

E(xi)E(xj)

=
1

n
(σ2 + µ2) +

n− 1

n
µ2

given that E(xixj) = E(xi)E(xj) for all i 6= j because xi and xj are

independent, and
∑n

i=2

∑i−1
j=1 µ

2 = n(n−1)
2 µ2.
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Quality of Estimators

Bias Example 2: The Variance (part 3)

Putting all of the pieces together gives

E(s2) =
1

n− 1

(
n∑
i=1

E(x2i )− nE(x̄2)

)

=
1

n− 1

(
n(σ2 + µ2)− (σ2 + µ2)− (n− 1)µ2

)
= σ2

which completes the proof that E(s2) = σ2.

This result can be used to show that s̃2 = 1
n

∑n
i=1(xi − x̄)2 is biased:

• E
(
s̃2
)

= E
(
n−1
n s2

)
= n−1

n E
(
s2
)

= n−1
n σ2

• n−1
n < 1 for any finite n, so s̃2 has a downward bias
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Quality of Estimators

Variance of a Estimator

The variance of an estimator refers to second central moment of the
estimator’s probability distribution, i.e.,

Var(θ̂) = E

((
θ̂ − E(θ̂)

)2)
where both expectations are calculated with respect to F .

The standard error of an estimator is the square root of the variance of
the estimator, i.e., SE(θ̂) = Var(θ̂)1/2.

We would like an estimator that is both reliable (low variance) and
valid (low bias), but there is a trade-off between these two concepts.
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Quality of Estimators

Variance of the Sample Mean

Given a sample of data x1, . . . , xn where xi
iid∼ F and F has mean

µ = E(X) and variance σ2 = E[(X − µ)2], the sample mean

x̄ = 1
n

∑n
i=1 xi has a variance of Var(x̄) = σ2

n .

To prove that this is the variance of x̄, we can use the variance rules
from the Introduction to Random Variables chapter, i.e.,

Var(x̄) = Var

(
1

n

n∑
i=1

xi

)
=

1

n2

n∑
i=1

Var(xi) =
σ2

n

given that the xi are independent and Var(xi) = σ2 for all i = 1, . . . , n.
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Quality of Estimators

Variance of the Sample Variance

Given a sample of data x1, . . . , xn where xi
iid∼ F and F has mean

µ = E(X) and variance σ2 = E[(X − µ)2], the sample variance
s2 = 1

n−1
∑n

i=1(xi − x̄)2 has a variance of

Var(s2) =
1

n

(
µ4 −

n− 3

n− 1
σ4
)

where µ4 = E[(X − µ)4] is the fourth central moment of X.

• The proof of this is too tedious to display on the slides

• Bonus points for anyone who can prove this formula

The above result can be used to show that

• Var(s̃2) = Var
(
n−1
n s2

)
= (n−1)2

n3

(
µ4 − n−3

n−1σ
4
)
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Quality of Estimators

Mean Squared Error of an Estimator

The mean squared error (MSE) of an estimator refers to the expected
squared difference between the parameter θ = t(F ) and the estimate
θ̂ = g(x), i.e.,

MSE(θ̂) = E
(

(θ̂ − θ)2
)

where the expectation is calculated with respect to F .

Although not obvious from its definition, MSE can be decomposed as

MSE(θ̂) = Bias(θ̂)2 + Var(θ̂)

where the first term is squared bias and the second term is variance.
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Quality of Estimators

MSE = Bias2 + Variance

To prove this relationship holds for any estimator, first note that
(θ̂ − θ)2 = θ̂2 − 2θ̂θ + θ2, and applying the expectation operator gives

E
(

(θ̂ − θ)2
)

= E(θ̂2)− 2θE(θ̂) + θ2

given that the parameter θ is assumed to be an unknown constant.

Next, note that we can write the squared bias and variance as

Bias(θ̂)2 =
(
E(θ̂)− θ

)2
= E(θ̂)2 − 2θE(θ̂) + θ2

Var(θ̂) = E(θ̂2)− E(θ̂)2

and adding these two terms together gives

Bias(θ̂)2 + Var(θ̂) = E(θ̂)2 − 2θE(θ̂) + θ2 + E(θ̂2)− E(θ̂)2

= E(θ̂2)− 2θE(θ̂) + θ2

which is the form of the MSE given on the previous slide.
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Quality of Estimators

Consistency of an Estimator

Given a sample of data x1, . . . , xn with xi
iid∼ F , an estimator θ̂ = g(x)

of a parameter θ = t(F ) is said to be consistent if θ̂
p−→ θ as n→∞.

The notation
p−→ should be read as “converges in probability to”, which

means that the probability that θ̂ 6= θ goes to zero as n gets large.

Note that any reasonable estimator should be consistent. Otherwise,
collecting more data will not result in better estimates.

All of the estimators that we’ve discussed (i.e., x̄, s2 and s̃2) are
consistent estimators.
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Quality of Estimators

Efficiency of an Estimator

Given a sample of data x1, . . . , xn with xi
iid∼ F , an estimator θ̂ = g(x)

of a parameter θ = t(F ) is said to be efficient if it is the best possible
estimator for θ using some loss function.

The chosen loss function is often MSE, so the most efficient estimator
is the one with the smallest MSE compared to all other estimators of θ.

If you have two estimators θ̂1 = g1(x) and θ̂2 = g2(x), we would say
that θ̂1 is more efficient than θ̂2 if MSE(θ̂1) < MSE(θ̂2).

• If θ̂1 and θ̂2 are both unbiased, the most efficient estimator is the
one with the smallest variance
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Estimation Frameworks

Least Squares Estimation

A simple least squares estimate of a parameter θ = t(F ) is the estimate

θ̂ = g(x) that minimizes a least squares loss function of the form

n∑
i=1

(h(xi)− θ)2

where h(·) is some user-specified function (typically h(x) = x).

Least squares estimation methods can work well for mean parameters
and regression coefficients, but will not work well for all parameters.

• Variance parameters are best estimated using other approahces

Nathaniel E. Helwig (Minnesota) Parameter Estimation c© August 30, 2020 27 / 40



Estimation Frameworks

Least Squares Estimation Example

Given a sample of data x1, . . . , xn where xi
iid∼ F , suppose that we want

to find the least squares estimate of µ = E(X).

The least squares loss function is

LS(µ|x) =

n∑
i=1

(xi − µ)2 =

n∑
i=1

x2i − 2µ

n∑
i=1

xi + nµ2

where x = (x1, . . . , xn) is the observed data vector.

Taking the derivative of the function with respect to µ gives

dLS(µ|x)

dµ
= −2

n∑
i=1

xi + 2nµ

and setting the derivative to 0 and solving for µ gives µ̂ = 1
n

∑n
i=1 xi.

• The sample mean x̄ is the least squares estimate of µ
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Estimation Frameworks

Method of Moments Estimation

Assume that X ∼ F where the probability distribution F depends on
parameters θ1, . . . , θp.

Also, suppose that the first p moments of X can be written as

µj = E(Xj) = mj(θ1, . . . , θp)

where mj(·) is some known function for j = 1, . . . , p.

Given data xi
iid∼ F for i = 1, . . . , n, the method of moments estimates

of the parameters are the values θ̂1, . . . , θ̂p that solve the equations

µ̂j = mj(θ̂1, . . . , θ̂p)

where µ̂j = 1
n

∑n
i=1 x

j
i is the j-th sample moment for j = 1, . . . , p.
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Estimation Frameworks

Method of Moments: Normal Distribution

Suppose that xi
iid∼ N(µ, σ2) for i = 1, . . . , n. The first two moments of

the normal distribution are µ1 = µ and µ2 = µ2 + σ2.

The first two sample moments are µ̂1 = 1
n

∑n
i=1 xi = x̄ and

µ̂2 = 1
n

∑n
i=1 x

2
i = x̄2 + s̃2, where s̃2 = 1

n

∑n
i=1(xi − x̄)2 .

Thus, the method of moments estimates of µ and σ2 are given by
µ̂ = x̄ and σ̂2 = s̃2.
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Estimation Frameworks

Method of Moments: Uniform Distribution

Suppose that xi
iid∼ U [a, b] for i = 1, . . . , n. The first two moments of

the uniform distribution are µ1 = 1
2(a+ b) and µ2 = 1

3(a2 + ab+ b2).

Solving the first equation gives b = 2µ1 − a and plugging this into the
second equation gives µ2 = 1

3

(
a2 − 2aµ1 + 4µ21

)
, which is a simple

quadratic function of a.

Applying the quadratic formula (see here) gives a = µ1 −
√

3
√
µ2 − µ21,

and plugging this into b = 2µ1 − a produces b = µ1 +
√

3
√
µ2 − µ21.

Using µ̂1 and µ̂2 in these equations gives the methods of moments
estimates of a and b.

Nathaniel E. Helwig (Minnesota) Parameter Estimation c© August 30, 2020 31 / 40

https://en.wikipedia.org/wiki/Quadratic_formula


Estimation Frameworks

Likelihood Function and Log-Likelihood Function

Suppose that xi
iid∼ F for i = 1, . . . , n where the distribution F depends

on the vector of parameters θ = (θ1, . . . , θp)
>.

The likelihood function has the form

L(θ|x) =

n∏
i=1

f(xi|θ)

where f(xi|θ) is the probability mass function (PMF) or probability
density function (PDF) corresponding to the distribution function F .

The log-likelihood function is the logarithm of the likelihood function:

`(θ|x) = log (L(θ|x)) =

n∑
i=1

log (f(xi|θ))

where log(·) = ln(·) is the natural logarithm function.
Nathaniel E. Helwig (Minnesota) Parameter Estimation c© August 30, 2020 32 / 40



Estimation Frameworks

Maximum Likelihood Estimation

Suppose that xi
iid∼ F for i = 1, . . . , n where the distribution F depends

on the vector of parameters θ = (θ1, . . . , θp)
>.

The maximum likelihood estimates (MLEs) are the parameter values
that maximize the likelihood (or log-likelihood) function, i.e.,

θ̂MLE = arg max
θ∈Θ

L(θ|x) = arg max
θ∈Θ

`(θ|x)

where Θ = Θ1× · · · ×Θp is the joint parameter space with Θj denoting
the parameter space for the j-th parameter, i.e., θj ∈ Θj for all j.

Maximum likelihood estimates have desirable large sample properties:

• consistent: θ̂MLE → θ as n→∞
• asymptotically efficient: Var(θ̂MLE) ≤ Var(θ̂) as n→∞
• functionally invariant: if θ̂MLE is the MLE of θ, then h(θ̂MLE) is

the MLE of h(θ) for any continuous function h(·)
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Estimation Frameworks

MLE for Normal Distribution

Suppose that xi
iid∼ N(µ, σ2) for i = 1, . . . , n. Assuming that

X ∼ N(µ, σ2), the probability density function can be written as

f(x|µ, σ2) =
1√

2πσ2
exp

(
− 1

2σ2
(x− µ)2

)

This implies that the log-likelihood function has the form

`(µ, σ2|x) = − 1

2σ2

n∑
i=1

(xi − µ)2 − n

2
log(σ2)− c

where c = (n/2) log(2π) is a constant with respect to µ and σ2.
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Estimation Frameworks

MLE for Normal Distribution (part 2)

Maximizing `(µ, σ2|x) with respect to µ is equivalent to minimizing

`1(µ|x) =

n∑
i=1

(xi − µ)2

which is the least squares loss function that we encountered before.

We can use the same approach as before to derive the MLE:

• Take the derivative of `1(µ|x) with respect to µ

• Equate the derivative to zero and solve for µ

The MLE of µ is the sample mean, i.e., µ̂MLE = x̄ = 1
n

∑n
i=1 xi.
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Estimation Frameworks

MLE for Normal Distribution (part 3)

Maximizing `(µ, σ2|x) with respect to σ2 is equivalent to minimizing

`2(σ
2|µ̂,x) =

1

σ2

n∑
i=1

(xi − x̄)2 + n log(σ2)

Taking the derivative of `2(σ
2|µ̂,x) with respect to σ2 gives

d`2(σ
2|µ̂,x)

σ2
= − 1

σ4

n∑
i=1

(xi − x̄)2 +
n

σ2

Equating the derivative to zero and solving for σ2 reveals that
σ̂2MLE = s̃2 = 1

n

∑n
i=1(xi − x̄)2.
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Estimation Frameworks

MLE for Binomial Distribution

Suppose that xi
iid∼ B[N, p] for i = 1, . . . , n. Assuming that

X ∼ B[N, p], the probability density function can be written as

f(x|N, p) =

(
N

x

)
px(1− p)N−x =

N !

x!(N − x)!
px(1− p)N−x

This implies that the log-likelihood function has the form

`(p|x, N) = log(p)

n∑
i=1

xi + log(1− p)

(
nN −

n∑
i=1

xi

)
+ c

where c = n log(N !)−
∑n

i=1[log(xi!) + log((N − xi)!)] is a constant.
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Estimation Frameworks

MLE for Binomial Distribution (part 2)

Taking the derivative of the log-likelihood with respect to p gives

d`(p|x, N)

dp
=

1

p

n∑
i=1

xi −
1

1− p

(
nN −

n∑
i=1

xi

)

Setting the derivative to zero and multiplying by p(1− p) reveals that
the MLE satisfies

(1− p)nx̄− pn (N − x̄) = 0 → x̄− pN = 0

Solving the above equation for p reveals that the MLE of p is

p̂MLE =
1

nN

n∑
i=1

xi =
x̄

N
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Estimation Frameworks

MLE for Uniform Distribution

Suppose that xi
iid∼ U [a, b] for i = 1, . . . , n. Assuming that X ∼ U [a, b],

the probability density function can be written as

f(x|a, b) =
1

b− a

This implies that the log-likelihood function has the form

`(a, b|x) = −
n∑
i=1

log(b− a) = −n log(b− a)

Maximizing `(a, b|x) is equivalent to minimizing log(b− a) with the
requirements that a ≤ xi for all i = 1, . . . , n and b ≥ xi for all i.

• MLEs are âMLE = min(xi) = x(1) and b̂MLE = max(xi) = x(n)
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