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1 Parameter and Statistics

As a reminder, a random variable X has a cumulative distribution function (CDF) denoted

by F (x) = P (X ≤ x) that describes the probabilistic nature of the random variable X. The

probability distribution F (·) has an associated probability mass function (PMF) or proba-

bility density function (PDF) denoted by f(x). The functions F (·) and f(·) are typically

assumed to depend on a finite number of parameters, where a parameter θ = t(F ) is some

function of the probability distribution. For most of the probability distributions used in

applied statistics, there are a small number of parameters (e.g., 1 or 2) that, along with the

form of F (x), completely characterize the distribution of the random variable.

Given a sample of n independent and identically distributed (iid) observations from some

distribution F , inferential statistical analyses are concerned with inferring things about the

population from which the sample was collected. To form inferences, researchers often make

assumptions about the form of F , e.g., F is a normal distribution, and then use the sample

of data to form educated guesses about the population parameters. As we shall see in the

following section, such guesses are referred to as “estimates” of the parameters. But first we

will define the concept of a “statistic”, which is related to a concept of an estimator.

Definition. Given a sample of data x = (x1, . . . , xn)>, a statistic T = s(x) is some function

of the sample of data.

The term “statistic” is very general—any function of the sample of data can be referred to

as statistic. As we shall see throughout this course, not all statistics are created equal. More

specifically, some statistics can be useful for estimating parameters or testing hypotheses,

whereas other statistics are less useful for those purposes.
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2 Sampling Distributions

Assume that xi
iid∼ F for i = 1, . . . , n, where the notation

iid∼ denotes that the xi are iid

observations from the distribution F . Let x = (x1, . . . , xn)> denote the sample of data

collected into an n × 1 vector. Each xi is assumed to be an independent realization of a

random variable X ∼ F , so any valid statistic T = s(x) will be a random variable with

a probability distribution. Note that by “valid” I mean that the function s(·) must return

some result T that depends on the xi values. For example, if we defined s(x) = 0, this would

not be a valid statistic because the result is always zero regardless of the data sample.

Definition. The sampling distribution of a statistic T = s(x) refers to the probability

distribution of T . Suppose that we collect R independent realizations of the vector x, and

let Tr = s(xr) denote the r-th realization of the statistic. The sampling distribution is the

probability distribution of {Tr}Rr=1 as the number of independent realizations R→∞.

In general, the sampling distribution of a statistic depends on the distribution of the

sample of data. In other words, if xi
iid∼ F and yi

iid∼ G, then the statistics T = s(x) and

U = s(y) will have different sampling distributions if F and G are different distributions.

However, as we saw with the central limit theorem, in some special cases the sampling

distribution of a statistic will be known as n → ∞. Of course, in practice the question of

interest is: how large does n need to be? This question does not have any simple answer

because it will depend on the properties of the data generating distribution. For highly

skewed and/or leptokurtic distributions, the sample size may need to be very large (e.g.,

n > 1000) for a statistic’s limiting distribution to be reasonably applicable.

3 Estimates and Estimators

Definition. Given a sample of data x1, . . . , xn where xi
iid∼ F , an estimate of a parameter

θ = t(F ) is some function of the sample θ̂ = g(x) that is meant to approximate θ. An

estimator refers to the function g(·) that is applied to the sample to obtain the estimate θ̂.

The above definition uses standard notation in statistic, where a “hat” (i.e.,ˆ) is placed

on top of the parameter to denote that θ̂ is an estimate of θ. Note that the notation θ̂ should

be read as “theta hat”, which you should interpret as some estimate of the parameter θ.
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Example 1. Suppose that we have a sample of data x1, . . . , xn where xi
iid∼ B(1, p), which

denotes a Bernoulli distribution, and the probability of success p = E(X) is the parameter

of interest. The sample mean x̄ = 1
n

∑n
i=1 xi provides an estimate of the parameter p, so we

could also write it as x̄ = p̂.

Example 2. More generally, suppose that we have a sample of data x1, . . . , xn where xi
iid∼ F ,

which denotes any generic distribution, and the population mean µ = E(X) is the parameter

of interest. The sample mean x̄ = 1
n

∑n
i=1 xi provides an estimate of the parameter µ, so we

could also write it as x̄ = µ̂.

Example 3. Similarly, suppose that we have a sample of data x1, . . . , xn where xi
iid∼ F and

the population variance σ2 = E[(X − µ)2] is the parameter of interest. The sample variance

s2 = 1
n−1

∑n
i=1(xi − x̄)2 provides an estimate of the parameter σ2, so we could also write it

as s2 = σ̂2. Another reasonable estimate would be s̃2 = 1
n

∑n
i=1(xi − x̄)2.

4 Quality of Estimators

Like statistics, not all estimators are created equal. More specifically, some estimators pro-

duce “better” estimates of the intended population parameters.

4.1 Bias of an Estimator

Definition. The bias of an estimator refers to the difference between the expected value of

the estimate θ̂ = g(x) and the parameter θ = t(F ), which can be written as

Bias(θ̂) = E(θ̂)− θ

where the expectation is calculated with respect to F .

An estimator is “unbiased” if Bias(θ̂) = 0. Unbiased estimators are often preferred,

and it is definitely bad if an estimator has too much bias. However, despite the negative

connotations of the word “bias”, it is important to note that biased estimators can be a

good thing (see Helwig, 2017). Note that many modern statistically methods (e.g., LASSO

or Elastic Net) purposely add bias to estimators for the purpose of reducing the variance of

the estimator (later discussed), which often leads to better prediction performance.
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Example 4. Given a sample of data x1, . . . , xn where xi
iid∼ F and F has mean µ = E(X),

the sample mean x̄ = 1
n

∑n
i=1 xi is an unbiased estimate of the population mean µ. To

prove that x̄ is an unbiased estimator, we can use the expectation rules from Introduction

to Random Variable chapter. Specifically, note that E(x̄) = 1
n

∑n
i=1E(xi) = 1

n

∑n
i=1 µ = µ.

Example 5. Given a sample of data x1, . . . , xn where xi
iid∼ F and F has mean µ = E(X)

and variance σ2 = E[(X − µ)2], the sample variance s2 = 1
n−1

∑n
i=1(xi − x̄)2 is an unbiased

estimate of the population variance σ2. To prove that s2 is unbiased, first note that

n∑
i=1

(xi − x̄)2 =
n∑
i=1

x2
i − 2x̄

n∑
i=1

xi + nx̄2 =
n∑
i=1

x2
i − nx̄2

which implies that E(s2) = 1
n−1

[
∑n

i=1E(x2
i )− nE(x̄2)]. Now we need to recognize that

σ2 = E(x2
i )− µ2, which implies that E(x2

i ) = σ2 + µ2. Also, note that we can write

x̄2 =

(
1

n

n∑
i=1

xi

)2

=
1

n2

(
n∑
i=1

x2
i + 2

n∑
i=2

i−1∑
j=1

xixj

)

and applying the expectation operator gives

E(x̄2) =
1

n2

n∑
i=1

E(x2
i ) +

2

n2

n∑
i=2

i−1∑
j=1

E(xi)E(xj)

=
1

n
(σ2 + µ2) +

n− 1

n
µ2

given that E(xixj) = E(xi)E(xj) for all i 6= j because xi and xj are independent, and∑n
i=2

∑i−1
j=1 µ

2 = n(n−1)
2

µ2. Putting all of the pieces together gives

E(s2) =
1

n− 1

(
n∑
i=1

E(x2
i )− nE(x̄2)

)
=

1

n− 1

(
n(σ2 + µ2)− (σ2 + µ2)− (n− 1)µ2

)
= σ2

which completes the proof that E(s2) = σ2.
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Example 6. Given a sample of data x1, . . . , xn where xi
iid∼ F and F has mean µ = E(X)

and variance σ2 = E[(X−µ)2], the sample variance s̃2 = 1
n

∑n
i=1(xi− x̄)2 is a biased estimate

of the population variance σ2. To prove that s̃2 is biased, note that s̃2 = n−1
n
s2, so we have

E
(
s̃2
)

= E

(
n− 1

n
s2

)
=
n− 1

n
E
(
s2
)

=
n− 1

n
σ2

which reveals that s̃2 is a biased estimator of σ2. Given that n−1
n

< 1 for any finite n, the

estimate s̃2 will always be systematically too small. However, for large enough n, we have

that n−1
n
≈ 1, so this bias becomes negligible as n→∞.

Example 7. Given a sample of data x1, . . . , xn where xi
iid∼ F and F has mean µ = E(X)

and variance σ2 = E[(X − µ)2], the sample standard deviation s =
√

1
n−1

∑n
i=1(xi − x̄)2 is

a biased estimate of the population standard deviation σ. This is because the square root

is a non-linear (concave) function, which is not commutable with the expectation operator,

i.e.,
√
E(X) 6= E(

√
X). Using Jensen’s inequality, we know that s has a downwards bias,

i.e., E(s) < σ, but the extent of the downward bias differs depending on the distribution F

and the sample size n. If F is a normal distribution, then E(s) = c(n)σ, where the constant

c(n) =
√

2
n−1

Γ(n
2

)

Γ(n−1
2

)
→ 1 as n→∞, i.e., for large enough n the downward bias is negligible.

4.2 Variance and Standard Error of an Estimator

Definition. The variance of an estimator refers to second central moment of the estimator’s

probability distribution, i.e.,

Var(θ̂) = E

((
θ̂ − E(θ̂)

)2
)

where both expectations are calculated with respect to F . The standard error of an estimator

is the square root of the variance of the estimator, i.e., SE(θ̂) = Var(θ̂)1/2.

To connect these ideas back to our psychological measurement chapter, note that relia-

bility is analogous to precision (the inverse of variance), and validity is analogous to bias. In

an ideal world, we would have an estimator that is both reliable (low variance) and valid (low

bias). However, there is often a trade-off between these two concepts, such that decreasing

the variance of an estimator increases the bias (and vice versa).
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Example 8. Given a sample of data x1, . . . , xn where xi
iid∼ F and F has mean µ = E(X) and

variance σ2 = E[(X − µ)2], the sample mean x̄ = 1
n

∑n
i=1 xi has a variance of Var(x̄) = σ2

n
.

To prove that this is the variance of x̄, we can use the variance rules from the Introduction

to Random Variables chapter, i.e.,

Var(x̄) = Var

(
1

n

n∑
i=1

xi

)
=

1

n2

n∑
i=1

Var(xi) =
σ2

n

given that the xi are independent and Var(xi) = σ2 for all i = 1, . . . , n.

4.3 Mean Squared Error of an Estimator

Definition. The mean squared error (MSE) of an estimator refers to the expected squared

difference between the parameter θ = t(F ) and the estimate θ̂ = g(x), i.e.,

MSE(θ̂) = E
(

(θ̂ − θ)2
)

where the expectation is calculated with respect to F .

Although not obvious from its definition, an estimator’s MSE can be decomposed as

MSE(θ̂) = Bias(θ̂)2 + Var(θ̂)

where the first term is the squared bias and the second term is the variance. To prove this

relationship holds for any estimator, first note that (θ̂ − θ)2 = θ̂2 − 2θ̂θ + θ2, and applying

the expectation operator gives

E
(

(θ̂ − θ)2
)

= E(θ̂2)− 2θE(θ̂) + θ2

given that the parameter θ is assumed to be an unknown constant. Next, note that we can

write the squared bias and variance as

Bias(θ̂)2 =
(
E(θ̂)− θ

)2

= E(θ̂)2 − 2θE(θ̂) + θ2

Var(θ̂) = E(θ̂2)− E(θ̂)2
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and adding these two terms together gives

Bias(θ̂)2 + Var(θ̂) = E(θ̂)2 − 2θE(θ̂) + θ2 + E(θ̂2)− E(θ̂)2

= E(θ̂2)− 2θE(θ̂) + θ2

which is the form of the MSE given above.

This relationship reveals that, if an estimator is unbiased, then its variance is equal to

its MSE. This relationship also reveals that having an estimator that has a small amount of

bias may be a good thing—if adding a small bias can substantially reduce the variance of

the estimator, then a biased estimator can have a smaller MSE than an unbiased estimator.

The classic example of a quality biased estimator is the ridge regression estimator (Hoerl

and Kennard, 1970). Other popular biased estimators for regression include the LASSO

(Tibshirani, 1996) and the Elastic Net (Zou and Hastie, 2005).

4.4 Consistency and Efficiency

Definition. Given a sample of data x1, . . . , xn with xi
iid∼ F , an estimator θ̂ = g(x) of a

parameter θ = t(F ) is said to be consistent if θ̂
p−→ θ as n → ∞. The notation

p−→ should

be read as “converges in probability to”. Colloquially, this means that the probability that

θ̂ 6= θ goes to zero as n gets infinitely large.

Note that any reasonable estimator should be consistent. If you are using an inconsistent

estimator, then collecting more data will not necessarily result in better estimates of the

population parameter—which is problematic! All of the estimators that we’ve discussed in

this chapter (i.e., x̄, s2 and s̃2) are consistent estimators.

Definition. Given a sample of data x1, . . . , xn with xi
iid∼ F , an estimator θ̂ = g(x) of a

parameter θ = t(F ) is said to be efficient if it is the best possible estimator for θ using some

loss function. In most cases, the chosen loss function is MSE, so the most efficient estimator

is the one with the smallest MSE compared to all other estimators of θ.

If you have two estimators θ̂1 = g1(x) and θ̂2 = g2(x), we would say that θ̂1 is more

efficient than θ̂2 if MSE(θ̂1) < MSE(θ̂2). Note that having an inefficient estimator is not

ideal, but it is not terrible as long as the estimator is consistent. For example, suppose

an estimator θ̂2 is slightly less efficient than θ̂1, but the estimator θ̂1 is substantially more

computationally costly. Then we may prefer the estimator θ̂2 in practice.
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5 Estimation Frameworks

5.1 Least Squares Estimation

Definition. A simple least squares estimate of a parameter θ = t(F ) is the estimate θ̂ = g(x)

that minimizes a least squares loss function of the form

n∑
i=1

(h(xi)− θ)2

where h(·) is some user-specified function (typically the identity function, i.e., h(x) = x).

Example 9. Given a sample of data x1, . . . , xn where xi
iid∼ F , suppose that we want to find

the least squares estimate of µ = E(X). The least squares loss function is

LS(µ|x) =
n∑
i=1

(xi − µ)2

where x = (x1, . . . , xn) is the observed data vector. Note that the notation LS(µ|x) denotes

the the least squares loss function is a function of µ given the data x. To find the least

squares estimate, we will first expand the right hand side, such as

n∑
i=1

(xi − µ)2 =
n∑
i=1

x2
i − 2µ

n∑
i=1

xi + nµ2

Next, we will take the derivative of the function with respect to µ, such as

dLS(µ|x)

dµ
= −2

n∑
i=1

xi + 2nµ

which implies that we want to find the value of µ that satisfies −2
∑n

i=1 xi+2nµ = 0. Solving

for the value of µ that satisfies this condition reveals that

µ̂ = x̄ =
1

n

n∑
i=1

xi

so the sample mean x̄ is the least squares estimate of µ.
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5.2 Method of Moments Estimation

The method of least squares works well for mean parameters and regression coefficients, but

does not work (and may not even be feasible) for estimating other types of parameters. One

general approach for estimating parameters is the method of moments estimation.

Definition. Suppose that X ∼ F where the probability distribution F depends on param-

eters θ1, . . . , θp. Furthermore, suppose that the first p moments of X can be written as

µj = E(Xj) = mj(θ1, . . . , θp) where mj(·) is some known function for j = 1, . . . , p. Given a

sample of data xi
iid∼ F for i = 1, . . . , n, the method of moments estimates of the parameters

are the values θ̂1, . . . , θ̂p that solve the equations

µ̂j = mj(θ̂1, . . . , θ̂p)

where µ̂j = 1
n

∑n
i=1 x

j
i is the j-th sample moment for j = 1, . . . , p.

Example 10. Suppose that xi
iid∼ N(µ, σ2) for i = 1, . . . , n. The first two moments of

the normal distribution are µ1 = µ and µ2 = µ2 + σ2. The first two sample moments are

µ̂1 = 1
n

∑n
i=1 xi = x̄ and µ̂2 = 1

n

∑n
i=1 x

2
i = x̄2 + s̃2, where s̃2 = 1

n

∑n
i=1(xi − x̄)2 . Thus, the

method of moments estimates of µ and σ2 are given by µ̂ = x̄ and σ̂2 = s̃2.

Example 11. Suppose that xi
iid∼ U [a, b] for i = 1, . . . , n. The first two moments of the

continuous uniform distribution are µ1 = 1
2
(a+ b) and µ2 = 1

3
(a2 + ab+ b2). Solving the first

equation gives b = 2µ1 − a and plugging this into the second equation gives

µ2 =
1

3

(
a2 + a(2µ1 − a) + (2µ1 − a)2

)
=

1

3

(
a2 − 2aµ1 + 4µ2

1

)
which is a simple quadratic function of a. Applying the quadratic formula (see here) gives

a = µ1 −
√

3
√
µ2 − µ2

1

and plugging this back into our solution for b = 2µ1 − a gives

b = µ1 +
√

3
√
µ2 − µ2

1

Using µ̂1 and µ̂2 in these equations gives the methods of moments estimates of a and b.
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5.3 Maximum Likelihood Estimation

Methods of moments (MM) estimates can work well in certain situations, and they often

produce consistent estimates. Also, they have the benefit of being simple to derive in many

situations. However, parameter estimates obtained by the MM approach tend to be worse

estimates (i.e., less efficient) than those obtained by maximum likelihood estimation.

Definition. Suppose that xi
iid∼ F for i = 1, . . . , n where the distribution F depends on the

vector of parameters θ = (θ1, . . . , θp)
>. The likelihood function has the form

L(θ|x) =
n∏
i=1

f(xi|θ)

where f(xi|θ) is the probability mass function (PMF) or probability density function (PDF)

corresponding to the distribution function F . The log-likelihood function is the natural

logarithm of the likelihood function, which has the form

`(θ|x) = log (L(θ|x)) =
n∑
i=1

log (f(xi|θ))

where log(·) = ln(·) is the natural logarithm function.

Note that the density function f(xi|θ) is a function of the data given the parameters,

whereas the likelihood function L(θ|x) is a function of the parameters given the data. Fur-

thermore, note that the likelihood function is a product of the n density functions f(xi|θ)

because the n observations are assumed to be independent of one another. Thus, the like-

lihood function L(θ|x) is the joint density of the data vector x, but it is interpreted as a

function of the parameters given the data for the purposes of parameter estimation.

Definition. Suppose that xi
iid∼ F for i = 1, . . . , n where the distribution F depends on the

vector of parameters θ = (θ1, . . . , θp)
>. The maximum likelihood estimates (MLEs) are the

parameter values that maximize the likelihood (or log-likelihood) function, i.e.,

θ̂MLE = arg max
θ∈Θ

L(θ|x) = arg max
θ∈Θ

`(θ|x)

where Θ = Θ1×· · ·×Θp is the joint parameter space with Θj denoting the parameter space

for the j-th parameter, i.e., θj ∈ Θj for j = 1, . . . , p.
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Maximum likelihood estimates have desirable large sample properties, i.e, MLEs are. . .

• consistent: θ̂MLE → θ as n→∞

• asymptotically efficient: Var(θ̂MLE) ≤ Var(θ̂) as n→∞

• functionally invariant: if θ̂MLE is the MLE of θ, then h(θ̂MLE) is the MLE of h(θ)

Example 12. Suppose that xi
iid∼ N(µ, σ2) for i = 1, . . . , n. Assuming that X ∼ N(µ, σ2),

the probability density function can be written as

f(x|µ, σ2) =
1√

2πσ2
exp

(
− 1

2σ2
(x− µ)2

)
which implies that the log-likelihood function for x = (x1, . . . , xn)> has the form

`(µ, σ2|x) = − 1

2σ2

n∑
i=1

(xi − µ)2 − n

2
log(σ2)− c

where c = (n/2) log(2π) is a constant with respect to the parameters µ and σ2. Note that

maximizing `(µ, σ2|x) with respect to µ is equivalent to minimizing

`1(µ|x) =
n∑
i=1

(xi − µ)2

which is the same least squares loss function that we encountered before. Thus, using the

same arguments from before, the MLE of µ is the sample mean, i.e., µ̂MLE = x̄ = 1
n

∑n
i=1 xi.

Next, note that maximizing `(µ, σ2|x) with respect to σ2 is equivalent to minimizing

`2(σ2|µ̂,x) =
1

σ2

n∑
i=1

(xi − x̄)2 + n log(σ2)

and taking the derivative of `2(σ2|µ̂,x) with respect to σ2 gives

d`2(σ2|µ̂,x)

σ2
= − 1

σ4

n∑
i=1

(xi − x̄)2 +
n

σ2

Equating the derivative to zero and solving for σ2 reveals that σ̂2
MLE = s̃2 = 1

n

∑n
i=1(xi− x̄)2.
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Example 13. Suppose that xi
iid∼ B[N, p] for i = 1, . . . , n. Assuming that X ∼ B[N, p], the

probability density function can be written as

f(x|N, p) =

(
N

x

)
px(1− p)N−x =

N !

x!(N − x)!
px(1− p)N−x

which implies that the log-likelihood function for x = (x1, . . . , xn)> has the form

`(p|x, N) = log(p)
n∑
i=1

xi + log(1− p)

(
nN −

n∑
i=1

xi

)
+ c

where c = n log(N !)−
∑n

i=1[log(xi!) + log((N − x)!)] is a constant with respect to p. Taking

the derivative of the log-likelihood with respect to p gives

d`(p|x, N)

dp
=

1

p

n∑
i=1

xi −
1

1− p

(
nN −

n∑
i=1

xi

)

and setting the derivative to zero and multiplying by p(1− p) reveals that the MLE satisfies

(1− p)nx̄− pn (N − x̄) = 0 → x̄− pN = 0

Solving the above equation for p reveals that p̂MLE = 1
nN

∑n
i=1 xi = x̄/N is the MLE of p.

Example 14. Suppose that xi
iid∼ U [a, b] for i = 1, . . . , n. Assuming that X ∼ U [a, b], the

probability density function can be written as

f(x|a, b) =
1

b− a

which implies that the log-likelihood function for x = (x1, . . . , xn)> has the form

`(a, b|x) = −
n∑
i=1

log(b− a) = −n log(b− a)

Note that maximizing `(a, b|x) is equivalent to minimizing log(b− a) with the requirements

that a ≤ xi for all i = 1, . . . , n and b ≥ xi for all i = 1, . . . , n. This implies that the MLEs

are âMLE = min(xi) = x(1) and b̂MLE = max(xi) = x(n).
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