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Model Form

One-Way Analysis of Variance Model

The one-way ANalysis Of VAriance (ANOVA) model extends the
independent samples t test problem to the situation with a > 2 groups.

Suppose that we have an independent sample of observations where

yij
ind∼ N(µj , σ

2) for i = 1, . . . , nj and j = 1, . . . , a.

The one-way ANOVA model assumes that

yij = µj + εij

where µj is the mean for the j-th group, and εij
iid∼ N(0, σ2).
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Model Form

Cell Means versus Treatment Effects

The previous form of the model is known as the “cell means” model
form, given that it explicitly writes each group’s mean µj .

We could also write the model in the “treatment effects” model form,
which decomposes the group’s means such as

yij = µ+ τj + εij

where µ is the overall mean that is common to all observations, and τj
is the j-th group’s treatment effect, which satisfies

∑a
j=1 τj = 0.

Note that µj = µ+ τj , which reveals that τj = µj − µ is the j-th
group’s deviation from the overall mean.

Nathaniel E. Helwig (Minnesota) One-Way Analysis of Variance c© October 17, 2020 5 / 44



Parameter Estimation

Table of Contents

1. Model Form

2. Parameter Estimation

3. Sums of Squares

4. Omnibus F Test

5. Multiple Comparisons
Overview
Familywise Error Rate
Methods to Control FWER
Confidence Intervals

Nathaniel E. Helwig (Minnesota) One-Way Analysis of Variance c© October 17, 2020 6 / 44



Parameter Estimation

Least Squares Estimation

To estimate the µj parameters, consider minimizing the least squares
loss function

a∑
j=1

nj∑
i=1

(yij − µj)2 =

a∑
j=1

Lj(µj |yj)

where Lj(·) is the least squares loss function for the j-th group, and
yj = (y1j , . . . , ynjj)

> is the vector of observed data for the j-th group.

The least squares loss function for each group can be written as

Lj(µj |yj) =

nj∑
i=1

(yij − µj)2 =

nj∑
i=1

y2ij − 2µjnj ȳj + njµ
2
j

where ȳj = 1
nj

∑nj

i=1 yij is the j-th group’s sample mean.

Nathaniel E. Helwig (Minnesota) One-Way Analysis of Variance c© October 17, 2020 7 / 44



Parameter Estimation

Least Squares Solution

Taking the derivative of Lj(µj |yj) with respect to µj , setting the
derivative to zero, and solving for µj reveals that

µ̂j = ȳj

is the least squares estimate of the j-th group’s mean.

For the treatment effects parameterization, the overall mean estimate is

µ̂ =
1

a

a∑
j=1

µ̂j =
1

a

a∑
j=1

ȳj

and the treatment effects are estimated using

τ̂j = µ̂j − µ̂
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Sums of Squares

Some Insight to the Model Name

Why do we call it an “analysis of variance” model when we are
analyzing mean differences in the data?

The model is referred to as an “analysis of variance” model because the
model makes it possible to analyze how the variance in the data can be
decomposed into the within and between group variances.

As we shall see, it is possible to decompose...

• the sample variance into within and between group variances

• the corresponding degrees of freedom into with and between DoF
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Sums of Squares

Sum of Squares Total

The sum of squares total is defined as

SST =

a∑
j=1

nj∑
i=1

(yij − ȳ)2

where ȳ = 1
n

∑a
j=1

∑nj

i=1 yij is the overall mean and n =
∑a

j=1 nj is the
total sample size.

Note that if we multiplied the SST quantity by 1
n−1 , this would be the

sample variance of the data ignoring the group membership.

The SST quantity has n− 1 degrees of freedom, given that there are n
independent values and one constraint:

∑a
j=1

∑nj

i=1(yij − ȳ) = 0.
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Sums of Squares

Sum of Squares Between

The sum of square between groups is defined as

SSB =

a∑
j=1

nj∑
i=1

(ȳj − ȳ)2 =

a∑
j=1

nj(ȳj − ȳ)2

which shows how the group means ȳj vary around the overall mean ȳ.

Note that if nj = nk for all j, k, then the SSB quantity is proportional
to the sample variance of the group means.

The SSB quantity has a− 1 degrees of freedom, given that there are a
independent group means and one constraint:

∑a
j=1 nj(ȳj − ȳ) = 0.
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Sums of Squares

Sum of Squares Within

Finally, the sum of squares within groups is defined as

SSW =

a∑
j=1

nj∑
i=1

(yij − ȳj)2

which shows how the data vary around the group means ȳj .

If we multiplied the SSW quantity by 1
n−1 this would be the pooled

estimate of the variance conditioned on the group membership.

The SSW has n− a degrees of freedom because there are n independent
values and a constraints:

∑nj

i=1(yij − ȳj) = 0 for j = 1, . . . , a.
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Sums of Squares

Decomposing the SS and DoF

The degrees of freedom of the three sums of square are additive, i.e.,

dfT = dfB + dfW

where dfT = n− 1 is the SST degrees of freedom, dfB = a− 1 is the SSB
degrees of freedom, and dfW = n− a is the SSW degrees of freedom.

Although it may not be obvious from their definitions, the sums of
squares can be decomposed such as

SST = SSB + SSW

which implies that the total variation (SST) is the summation of the
between group variation (SSB) and the within group variation (SSW).
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Sums of Squares

Proof of SS Decomposition

To prove the relationship, we can write

SST =

a∑
j=1

nj∑
i=1

(yij − ȳj + ȳj − ȳ)2

=

a∑
j=1

nj∑
i=1

(ȳj − ȳ)2 +

a∑
j=1

nj∑
i=1

(yij − ȳj)2 + 2

a∑
j=1

nj∑
i=1

(yij − ȳj) (ȳj − ȳ)

where the first term is the SSB, the second term is the SSW, and the
third term is zero:

a∑
j=1

nj∑
i=1

(yij − ȳj) (ȳj − ȳ) =

a∑
j=1

nj∑
i=1

(
yij ȳj − yij ȳ − ȳ2j + ȳj ȳ

)
=

a∑
j=1

nj ȳ
2
j − nȳ2 −

a∑
j=1

nj ȳ
2
j + nȳ2 = 0
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Sums of Squares

R-squared and Adjusted R-squared

The coefficient of multiple determination (aka R-squared) is defined as

R2 =
SSB

SST
= 1− SSE

SST

which is the proportion of the total variation in the sample of data that
can be accounted for by the group membership.

The adjusted coefficient of multiple determination (or adjusted
R-squared) value is defined as

R2
adj = 1− SSW/dfW

SST/dfT
= 1− σ̂2

s2y

where σ̂2 is the mean squared error (defined in the next section) and s2y
is the sample variance of Y ignoring the group membership.
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Omnibus F Test

Are Any Means Different?

Suppose that we want to test whether there are any meant differences.

This corresponds to testing the null hypothesis H0 : µj = µ ∀j versus
the alternative hypothesis H1 : (∃j)(µj 6= µ).

• Same as testing H0 : τj = 0 ∀j versus H1 : (∃j)(τj 6= 0)

To test the null hypothesis, we can use the F test statistic

F =
SSB/dfB
SSW/dfW

where the numerator is the mean square between (or treatment) and
the denominator is the mean square within (or error).
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Omnibus F Test

ANOVA Table

We typically organize the SS information into an ANOVA table:

Source SS df MS F p-value

SSB
∑a

j=1

∑nj

i=1(ȳj − ȳ)2 a− 1 MSB F p

SSW
∑a

j=1

∑nj

i=1(yij − ȳj)2 n− a MSW

SST
∑a

j=1

∑nj

i=1(yij − ȳ)2 n− 1

MSB = SSB
a−1 , MSW = SSW

n−a , and F = MSB
MSW

Assuming that H0 is true, F ∼ F (dfB, dfW ) = F (a− 1, n− a)

The p-value for testing H0 is given by p = P (Fa−1,n−a > F )
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Omnibus F Test

Estimating the Error Variance

The mean square within is an unbiased estimate of the error variance,
i.e., the quantity

σ̂2 = SSW/dfW

has expectation E(σ̂2) = σ2, where σ2 is the variance of the ε terms in
the ANOVA model.

The unbiasedness of σ̂2 can be proved using a similar approach that
was used in the Parameter Estimation notes to show that the sample
variance (dividing by n− 1) is unbiased.
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Omnibus F Test

The Limitation of the Omnibus Test

This is referred to as an omnibus test because this approach
simultaneously tests the significance of all of the treatment effects.

Note that if we reject the null hypothesis, this does not inform us
which of the group means significantly differ from one another.

As a result, it is necessary to use a different approach if your goal is to
determine which means are significantly different from one another.

Nathaniel E. Helwig (Minnesota) One-Way Analysis of Variance c© October 17, 2020 21 / 44



Omnibus F Test

Memory Example: Data Description

Visual and auditory cues example from Hays (1994) Statistics.

• Does lack of visual/auditory synchrony affect memory?

Total of n = 30 college students participate in memory experiment.

• Watch video of person reciting 50 words

• Try to remember the 50 words (record number correct)

Randomly assign nj = 10 subjects to one of g = 3 video conditions:

• fast: sound precedes lip movements in video

• normal: sound synced with lip movements in video

• slow: lip movements in video precede sound
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Omnibus F Test

Memory Example: Descriptive Statistics

Number of correctly remembered words (yij):

Subject (i) Fast (j = 1) Normal (j = 2) Slow (j = 3)

1 23 27 23
2 22 28 24
3 18 33 21
4 15 19 25
5 29 25 19
6 30 29 24
7 23 36 22
8 16 30 17
9 19 26 20
10 17 21 23∑10
i=1 yij 212 274 218∑10
i=1 y

2
ij 4738 7742 4810
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Omnibus F Test

Memory Example: OLS Estimation (by hand)

The least-squares estimates of µj are the sample means:

µ̂1 = ȳ1 =
1

10

10∑
i=1

yi1 = 212/10 = 21.2

µ̂2 = ȳ2 =
1

10

10∑
i=1

yi2 = 274/10 = 27.4

µ̂3 = ȳ3 =
1

10

10∑
i=1

yi3 = 218/10 = 21.8
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Omnibus F Test

Memory Example: Input Data (in R)

> words <- c(23, 27, 23, 22, 28, 24, 18, 33, 21, 15,

+ 19, 25, 29, 25, 19, 30, 29, 24, 23, 36,

+ 22, 16, 30, 17, 19, 26, 20, 17, 21, 23)

> cond <- factor(rep(c("fast", "normal", "slow"), 10))

> words

[1] 23 27 23 22 28 24 18 33 21 15 19 25 29 25 19 30 29 24 23 36 22 16

[23] 30 17 19 26 20 17 21 23

> cond

[1] fast normal slow fast normal slow fast normal slow

[10] fast normal slow fast normal slow fast normal slow

[19] fast normal slow fast normal slow fast normal slow

[28] fast normal slow

Levels: fast normal slow
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Omnibus F Test

Memory Example: Fit Model (in R)

> # fit anova model

> amod <- aov(words ~ cond)

> amod

Call:

aov(formula = words ~ cond)

Terms:

cond Residuals

Sum of Squares 233.8667 535.6000

Deg. of Freedom 2 27

Residual standard error: 4.453879

Estimated effects may be unbalanced

> amod$coefficients

(Intercept) condnormal condslow

21.2 6.2 0.6
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Omnibus F Test

Memory Example: Omnibus Test (in R)

> # omnibus F test

> anova(amod)

Analysis of Variance Table

Response: words

Df Sum Sq Mean Sq F value Pr(>F)

cond 2 233.87 116.933 5.8947 0.007513 **

Residuals 27 535.60 19.837

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’

Note: we reject H0 but we don’t know which means are different!
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Multiple Comparisons Overview

Forming Linear Combinations

To understand the nature of the mean differences, we need to perform
followup tests (multiple comparisons) to determine where the mean
differences are occurring in the data.

In most cases, we are interested in follow-up tests about linear
combinations of the factor level means.

A linear combination of the factor level means has the form

L =

a∑
j=1

cjµj

where c1, . . . , ca are the coefficients that define the linear combination.
A contrast is a linear combination where

∑a
j=1 cj = 0.
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Multiple Comparisons Overview

Estimating Linear Combinations

Of course, in practice, we don’t know the true population means, so
the linear combination can be estimated such as

L̂ =

a∑
j=1

cjµ̂j

where µ̂j = ȳj are the estimated factor level means.

Note that the variance of the linear combination has the form

Var(L̂) =

a∑
j=1

c2jVar(µ̂j) = σ2
a∑
j=1

c2j
nj

which is due to the fact that Var(µ̂j) = σ2/nj .
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Multiple Comparisons Overview

Testing Hypotheses about Linear Combinations

Suppose we want to test a null hypothesis of the form H0 : L = L0

versus the alternative hypothesis H1 : L 6= L0.

We can use a t test statistic

T0 =
L̂− L0√
V̂ar(L̂)

where V̂ar(L̂) = σ̂2
∑a

j=1 c
2
j/nj uses the MSW to estimate σ2.

Assuming the null hypothesis H0 : L = L0 is true, the test statistic T0
follows a Student’s t distribution with n− a degrees of freedom.
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Multiple Comparisons Familywise Error Rate

Overview of the Problem

If we only wanted to test a single linear combination, we could use a
Student’s t test. However, when there are a > 2 groups, we often want
to test more than a single hypothesis.

For m ≥ 2 tests, the family-wise type I error rate (FWER) is the
probability of making at least one type I error among the m tests.

As a reminder, for a single significance test, the type I error rate is

α = P (Reject H0 | H0 is true)

which is the probability of a false positive (i.e., rejecting a true null).
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Multiple Comparisons Familywise Error Rate

FWER for Independent and Dependent Tests

Suppose we have m significance tests H0k for k = 1, . . . ,m, and assume
that we use a significance level of α for each test.

If the m tests are independent of one another, then the FWER is

FWER = 1− (1− α)m

where (1− α)m is the probability of not making any type I error, which
is simply the product of not making a type I error for each test.

For example. . .

• with m = 3 independent tests, we have FWER = 0.142625

• with m = 5 independent tests, we have FWER = 0.2262191
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Multiple Comparisons Familywise Error Rate

FWER for Dependent Tests

In practice the m tests will not necessarily (or even likely) be
independent of one another.

When the tests are dependent on one another, there is no simple
formula for calculating the FWER.

This is because, when the tests are dependent, the FWER will depend
on the dependence structure of the m tests—which is often unknown.

So what do we do to control the FWER in general cases?
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Multiple Comparisons Methods to Control FWER

Bonferroni Correction

Suppose that we have m tests, and let αk denote the type I error rate
for the k-th test (for k = 1, . . . ,m). Typically αk = α0 ∀k.

According to Boole’s inequality, we know that

FWER ≤
m∑
k=1

P (Reject H0k | H0k is true) =

m∑
k=1

αk

and this can be further simplified to FWER = mα0 if αk = α0 ∀k.

Bonferroni’s solution to the multiple comparison problem is to set the
αk values such that

∑m
k=1 αk = α, where α is the desired FWER.

• If αk = α0 ∀k, Bonferroni’s correction simply sets α0 = α/m
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Multiple Comparisons Methods to Control FWER

Tukey’s Method

Tukey considered the problem of testing all of the a(a− 1)/2 possible
pairwise comparisons of the form H0 : µj − µk = 0 ∀j, k versus the
alternative H1 : (∃j, k)(µj 6= µk).

The variance of any pairwise comparison has the form

Var(L̂jk) = σ2
(

1

nj
+

1

nk

)
which simplifies to Var(L̂jk) = σ2(2/n0) if nj = nk = n0.

To test the (j, k)-th pairwise comparison, Tukey assumed that
nj = nk = n0 ∀j, k, and proposed using the test statistic

q =

√
2L̂jk√

V̂ar(L̂jk)
=
ȳj − ȳk
σ̂/
√
n0
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Multiple Comparisons Methods to Control FWER

Tukey’s Method (continued)

Tukey showed that the test statistic q follows the Studentized range
distribution with degrees of freedom (a, n− a) if H0 is true.

For balanced designs (i.e., when nj = nk = n0 ∀j, k), using Tukey’s
procedure will exactly control the FWER across all a(a− 1)/2 possible
pairwise comparisons.

When the design is unbalanced (i.e., when nj 6= nk for some j, k), the
procedure is known as the Tukey-Kramer method, and the FWER will
be below (but not exactly equal to) the significance level α.
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Multiple Comparisons Methods to Control FWER

Scheffé’s Method

Scheffé considered the problem of testing the significance of all possible
contrasts of the factor level means.

H0 :
∑a

j=1 cjµj = 0 for all coefficients satisfying
∑a

j=1 cj = 0, versus
H1 :

∑a
j=1 cjµj 6= 0 for at least one set of coefficients with

∑a
j=1 cj = 0.

Note that all contrasts are equal to zero if and only if µj = µ ∀j.
• µj = µ ∀j implies that

∑a
j=1 cjµj = µ

∑a
j=1 cj = 0

• ∑a
j=1 cjµj = 0 for all contrasts means µj − µk = 0 ∀j, k

Can use the omnibus F test that we previously discussed for testing
the overall significance of the ANOVA model.
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Multiple Comparisons Confidence Intervals

Confidence Interval for a Single Linear Combination

To form a 100(1− α)% confidence interval for a generic linear
combination L =

∑a
j=1 cjµj , we can use the general formula

L̂± Cα
√

V̂ar(L̂)

where

• L̂ =
∑a

j=1 cjµ̂j =
∑a

j=1 cj ȳj is the estimated linear combination

• V̂ar(L̂) = σ̂2
∑a

j=1 c
2
j/nj is the estimated variance of L̂

• Cα denotes some critical value depending on the confidence level α

When forming a confidence interval for a single linear combination, the

critical value is defined as Cα = t
(1−α/2)
n−a , where t

(1−α/2)
n−a .
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Multiple Comparisons Confidence Intervals

Confidence Intervals for Linear Combinations

For each possible method to control the FWER, the critical value
would be defined as:

• None: Cα = t
(1−α/2)
n−a

• Bonferroni: Cα = t
(1−α/(2m))
n−a

• Tukey: Cα = q
(1−α)
a,n−a/

√
2

• Scheffé: Cα =
√

(a− 1)F
(1−α)
a−1,n−a

When choosing a method, note that. . .

• Bonferroni is applicable to any m tests.

• Tukey’s method is only applicable for pairwise comparisons

• Scheffé’s method is only applicable to contrasts
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Multiple Comparisons Confidence Intervals

Memory Example: Pairwise Comparisons

Revisiting the previous example, suppose that we want to form
confidence intervals for each of the possible pairwise comparisons.

In this case, we could choose between all three FWER correction
methods: Bonferroni, Tukey, and Scheffé.

Of course, we know that Tukey’s method should be preferred for this
situation, but we will still compare the three methods.

The variance of any pairwise comparison Ljk = µj − µk is given by
Var(Ljk) = σ2(2/n0).
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Multiple Comparisons Confidence Intervals

Memory Example: Critical Values

Plugging in the mean squared error for the unknown σ2, we have that

V̂ar(Ljk) = σ̂2(2/n0) = (535.6/27)(2/10) = 1071.2/270 = 3.967407

For a 95% confidence interval, the different critical values that we
could use are given by:

• None: Cα = t
(0.975)
27 = 2.051831

• Bonferroni: Cα = t
(1−0.05/6)
27 = 2.552459

• Tukey: Cα = q
(0.95)
3,27 /

√
2 = 2.479418

• Scheffé: Cα =
√

2F
(0.95)
2,27 = 2.590031

Tukey is preferred because it produces the narrowest confidence
interval that will control the FWER.
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Multiple Comparisons Confidence Intervals

Memory Example: Confidence Intervals by Hand

The three confidence intervals using Tukey’s method are:

• L̂12 ± (q
(0.95)
3,27 /

√
2)

√
V̂ar(Ljk) =

(27.4− 21.2)± (2.479418)
√

3.967407 = [1.2614; 11.1386]

• L̂13 ± (q
(0.95)
3,27 /

√
2)

√
V̂ar(Ljk) =

(21.8− 21.2)± (2.479418)
√

3.967407 = [−4.3386; 5.5386]

• L̂23 ± (q
(0.95)
3,27 /

√
2)

√
V̂ar(Ljk) =

(21.8− 27.4)± (2.479418)
√

3.967407 = [−10.5386;−0.6614]
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Multiple Comparisons Confidence Intervals

Memory Example: Confidence Intervals in R

> TukeyHSD(amod)

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = words ~ cond)

$cond

diff lwr upr p adj

normal-fast 6.2 1.261409 11.1385914 0.0117228

slow-fast 0.6 -4.338591 5.5385914 0.9513012

slow-normal -5.6 -10.538591 -0.6614086 0.0238550
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