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1 Model Form

The one-way ANalysis Of VAriance (ANOVA) model extends the independent samples t test

problem to the situation with a > 2 groups. Suppose that we have an independent sample

of observations where yij
ind∼ N(µj, σ

2) for i = 1, . . . , nj and j = 1, . . . , a. In other words, the

one-way ANOVA model assumes that

yij = µj + εij

where µj is the mean for the j-th group, and the error terms are iid normal variables with

mean zero and homogeneous variance, i.e., εij
iid∼ N(0, σ2). The above form of the model

is known as the “cell means” model form, given that it explicitly writes each group’s mean

using the parameter µj. We could also write the model in the “treatment effects” model

form, which decomposes the group’s means such as

yij = µ+ τj + εij

where µ is the overall mean that is common to all observations, and τj is the j-th group’s

treatment effect, which satisfies
∑a

j=1 τj = 0. To connect the two different forms of the

model, note that µj = µ + τj, which reveals that τj = µj − µ is the j-th group’s deviation

from the overall mean. The treatment effect version of the model tends to be more useful

for comparing differences between the group’s, given that it explicitly parameterizes the

similarity (i.e., µ parameter) and differences (i.e., τj parameters) between the groups.

One-Way Analysis of Variance 1 Nathaniel E. Helwig



Copyright c© October 17, 2020 by NEH

2 Parameter Estimation

To estimate the µj parameters, consider minimizing the least squares loss function

a∑
j=1

nj∑
i=1

(yij − µj)2 =
a∑
j=1

Lj(µj|yj)

where Lj(·) is the least squares loss function for the j-th group, and yj = (y1j, . . . , ynjj)
>

is the vector of observed data for the j-th group. The least squares loss function for each

group can be written as

Lj(µj|yj) =

nj∑
i=1

(yij − µj)2 =

nj∑
i=1

y2ij − 2µjnj ȳj + njµ
2
j

where ȳj = 1
nj

∑nj

i=1 yij is the j-th group’s sample mean. Note that Lj(·) is the same least

squares loss function that we encountered in our Parameter Estimation chapter. Taking the

derivative with respect to µj, setting the derivative to zero, and solving for µj reveals that

µ̂j = ȳj

is the least squares estimate of the j-th group’s mean (which is not too surprising).

Using the treatment effect parameterization, the overall mean is estimated as

µ̂ =
1

a

a∑
j=1

µ̂j =
1

a

a∑
j=1

ȳj

which is simply the average of the group means. The treatment effects have the form

τ̂j = µ̂j − µ̂

and note that the treatment effect estimates solve the “sum of zero” constraint

a∑
j=1

τ̂j =
a∑
j=1

µ̂j − aµ̂j = 0

given that the overall mean is simply the average of the group means.

One-Way Analysis of Variance 2 Nathaniel E. Helwig



Copyright c© October 17, 2020 by NEH

3 Sums of Squares

The model is referred to as an “analysis of variance” model because the model makes it

possible to analyze how the variance in the data can be decomposed into the within and

between group variances. The sum of squares total is defined as

SST =
a∑
j=1

nj∑
i=1

(yij − ȳ)2

where ȳ = 1
n

∑a
j=1

∑nj

i=1 yij is the overall mean and n =
∑a

j=1 nj is the total sample size.

Note that if we multiplied the SST quantity by 1
n−1 , this would be the sample variance of

the data ignoring the group membership. The SST quantity has n − 1 degrees of freedom,

given that there are n independent values and one constraint:
∑a

j=1

∑nj

i=1(yij − ȳ) = 0.

The sum of square between groups is defined as

SSB =
a∑
j=1

nj∑
i=1

(ȳj − ȳ)2 =
a∑
j=1

nj(ȳj − ȳ)2

which quantifies how the group means ȳj vary around the overall mean ȳ. Note that if nj = nk

for all j, k, then the SSB quantity is proportional to the sample variance of the group means.

The SSB quantity has a − 1 degrees of freedom, given that there are a independent group

means and one constraint:
∑a

j=1 nj(ȳj − ȳ) = 0.

Finally, the sum of squares within groups is defined as

SSW =
a∑
j=1

nj∑
i=1

(yij − ȳj)2

and note that if we multiplied the SSW quantity by 1
n−1 this would be the pooled estimate of

the sample variance of the data conditioned on the group membership. The SSW quantity

has n − a degrees of freedom given that there are n independent values and a constraints:∑nj

i=1(yij − ȳj) = 0 for j = 1, . . . , a.

The degrees of freedom of the three sums of square are additive, i.e.,

dfT = dfB + dfW
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where dfT = n− 1 is the SST degrees of freedom, dfB = a− 1 is the SSB degrees of freedom,

and dfW = n− a is the SSW degrees of freedom. Although it may not be obvious from their

definitions, the sums of squares can be decomposed such as

SST = SSB + SSW

which implies that the total variation (SST) is the summation of the between group variation

(SSB) and the within group variation (SSW). To prove the relationship, we can write

SST =
a∑
j=1

nj∑
i=1

(yij − ȳj + ȳj − ȳ)2

=
a∑
j=1

nj∑
i=1

(ȳj − ȳ)2 +
a∑
j=1

nj∑
i=1

(yij − ȳj)2 + 2
a∑
j=1

nj∑
i=1

(yij − ȳj) (ȳj − ȳ)

where the first term is the SSB, the second term is the SSW, and the third term is zero:

a∑
j=1

nj∑
i=1

(yij − ȳj) (ȳj − ȳ) =
a∑
j=1

nj∑
i=1

(
yij ȳj − yij ȳ − ȳ2j + ȳj ȳ

)
=

a∑
j=1

nj ȳ
2
j − nȳ2 −

a∑
j=1

nj ȳ
2
j + nȳ2 = 0

The coefficient of multiple determination (also known as R-squared) is defined as

R2 =
SSB

SST
= 1− SSE

SST

which is the proportion of the total variation in the sample of data that can be accounted for

by the group membership. The adjusted coefficient of multiple determination (or adjusted

R-squared) value is defined as

R2
adj = 1− SSW/dfW

SST/dfT
= 1− σ̂2

s2y

where σ̂2 is the mean squared error (defined in the next section) and s2y is the sample variance

of Y ignoring the group membership.
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4 Omnibus F Test

Suppose that we want to test whether there are any difference between the groups’ means.

This corresponds to testing the null hypothesis H0 : µj = µ ∀j versus the alternative hy-

pothesis H1 : (∃j)(µj 6= µ). Writing this in terms of the treatment effects, the hypotheses

could be rewritten as H0 : τj = 0 ∀j versus H1 : (∃j)(τj 6= 0). To test the null hypothesis,

we can use the F test statistic

F =
SSB/dfB
SSW/dfW

where the numerator is known as the mean square between (or mean square treatment) and

the denominator is referred to as the mean square within (or mean square error).

The mean square within is an unbiased estimate of the error variance, i.e., the quantity

σ̂2 = SSW/dfW

has expectation E(σ̂2) = σ2, where σ2 is the variance of the ε terms in the ANOVA model.

The unbiasedness of σ̂2 can be proved using a similar approach that was used in the Parameter

Estimation notes to show that the sample variance (dividing by n−1) is unbiased. Note that

the sample variance s2 = 1
n−1

∑n
i=1(xi − x̄)2 has the same form as the mean square within,

in the sense that it is a sum of squares divided by its degrees of freedom.

Assuming that H0 is true, F ∼ F (dfB, dfW ) where the notation F (dfB, dfW ) denotes an F

distribution with degrees of freedom parameters (dfB, dfW ). Note that as the observed F test

statistic gets larger, this provides more evidence against the null hypothesis—because large

F values indicate that the variation between groups is large compared to the variation with

groups. Consequently, to test the null hypothesis with a significance level of α, we only need

to worry about the upper tail of the FdfB ,dfW distribution. Specifically, if the observed test

statistic is larger than F1−α(dfB, dfW ), then we would reject H0. Note that F1−α(dfB, dfW )

denotes the 1− α quantile of the F (dfB, dfW ) distribution.

This is referred to as an omnibus test because this approach simultaneously tests the

significance of all of the treatment effects. Note that if we reject the null hypothesis, this

does not inform us which of the group means significantly differ from one another. As a

result, it is necessary to use a different approach if your goal is to determine which means

are significantly different from one another.
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Example 1. Suppose a researcher wants to study how the visual/auditory synchrony of

information affects one’s ability to recall the information. The researcher took a random

sample of n = 30 college students, and asked each student to watch a video of a person recit-

ing a list of 50 words. The students were instructed to try to remember and recall as many

of the words as possible. The students were randomly assigned to one of three treatment

conditions with nj = 10 students in each condition. The three conditions are (i) fast: sound

precedes lip movements in video, (ii) normal: sound synced with lip movements in video,

and (iii) slow: lip movements in video precede sound. In this case, we want to test the null

hypothesis H0 : µ1 = µ2 = µ3 versus the alternative hypothesis H1 : not all µj are equal,

where µj is the mean number of recalled words for the j-th group.

> words <- c(23, 27, 23, 22, 28, 24, 18, 33, 21, 15,

+ 19, 25, 29, 25, 19, 30, 29, 24, 23, 36,

+ 22, 16, 30, 17, 19, 26, 20, 17, 21, 23)

> cond <- factor(rep(c("fast", "normal", "slow"), 10))

> words

[1] 23 27 23 22 28 24 18 33 21 15 19 25 29 25 19 30 29 24 23 36 22 16

[23] 30 17 19 26 20 17 21 23

> cond

[1] fast normal slow fast normal slow fast normal slow

[10] fast normal slow fast normal slow fast normal slow

[19] fast normal slow fast normal slow fast normal slow

[28] fast normal slow

Levels: fast normal slow

> data <- matrix(words, ncol = 3, byrow = TRUE)

> colnames(data) <- c("fast", "normal", "slow")

> data

fast normal slow

[1,] 23 27 23

[2,] 22 28 24

[3,] 18 33 21

[4,] 15 19 25
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[5,] 29 25 19

[6,] 30 29 24

[7,] 23 36 22

[8,] 16 30 17

[9,] 19 26 20

[10,] 17 21 23

> # fit anova model

> amod <- aov(words ~ cond)

> amod

Call:

aov(formula = words ~ cond)

Terms:

cond Residuals

Sum of Squares 233.8667 535.6000

Deg. of Freedom 2 27

Residual standard error: 4.453879

Estimated effects may be unbalanced

> # omnibus F test

> anova(amod)

Analysis of Variance Table

Response: words

Df Sum Sq Mean Sq F value Pr(>F)

cond 2 233.87 116.933 5.8947 0.007513 **

Residuals 27 535.60 19.837

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’
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The one-way ANOVA has an observed test statistic of F = 5.8947, which follows an

F (2, 27) distribution under H0. The p-value is p = P (F2,27 > 5.8947) = 0.007513, which

means that we can reject H0 using any standard significance level. However, rejecting the

null hypothesis H0 : µ1 = µ2 = µ3 doesn’t tell us which conditions significantly differ from

one another. In other words, the omnibus F test doesn’t help us understand how the different

synchrony conditions affect the number of words recalled.

5 Multiple Comparisons

5.1 Overview

To understand the nature of the mean differences, we need to perform followup tests (multiple

comparisons) to determine where the mean differences are occurring in the data. In most

cases, we are interested in follow-up tests about linear combinations of the factor level means.

Definition. A linear combination of the factor level means has the form

L =
a∑
j=1

cjµj

where c1, . . . , ca are the coefficients that define the linear combination. A contrast is a linear

combination of the factor level means that sum to zero, i.e., such that
∑a

j=1 cj = 0.

Of course, in practice, we don’t know the true population means, so the linear combination

can be estimated such as

L̂ =
a∑
j=1

cjµ̂j

where µ̂j = ȳj are the estimated factor level means. Note that the variance of the linear

combination has the form

Var(L̂) =
a∑
j=1

c2jVar(µ̂j) = σ2

a∑
j=1

c2j
nj

which is due to the fact that Var(µ̂j) = σ2/nj given that µ̂j = ȳj is a sample mean.
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Suppose we want to test a null hypothesis of the form H0 : L = L0 versus the alternative

hypothesis H1 : L 6= L0. We can use a t test statistic

T0 =
L̂− L0√
V̂ar(L̂)

where V̂ar(L̂) = σ̂2
∑a

j=1 c
2
j/nj uses the MSW to estimate σ2 in the variance calculation.

Assuming the null hypothesis H0 : L = L0 is true, the test statistic T0 follows a Student’s

t distribution with n − a degrees of freedom. So, if we only wanted to test a single linear

combination, we could use a Student’s t test. However, when there are a > 2 groups, we

often want to test more than a single hypothesis.

5.2 Family-Wise Error Rate

Definition. When conducting m ≥ 2 significance tests, the family-wise type I error rate

(FWER) is the probability of making at least one type I error among the m tests.

As a reminder, for a single significance test, the type I error rate is defined as

α = P (Reject H0 | H0 is true)

which is the probability of a false positive (i.e., rejecting a true null hypothesis). Suppose

that we have a collection of m significance tests H0k for k = 1, . . . ,m, and assume that we

use a significance level of α for each test. If the m tests are independent of one another, then

the FWER can be written as

FWER = 1− (1− α)m

where (1−α)m is the probability of not making any type I error, which is simply the product

of not making a type I error for each test. For example, with m = 3 independent tests, we

have FWER = 0.142625, and with m = 5 independent tests, we have FWER = 0.2262191.

However, in practice the m tests will not necessarily be independent of one another. When

the tests are dependent on one another, there is no simple formula for calculating the FWER.

This is because, when the tests are dependent, the FWER will depend on the dependence

structure of the m tests—which is often unknown.
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5.3 Bonferroni Correction

Suppose that we have m tests with an unknown dependence structure, and let αk denote the

type I error rate for the k-th test (for k = 1, . . . ,m). In most cases, αk = α0 ∀k, where α0 is

the common type I error rate for each test. According to Boole’s inequality, we know that

FWER ≤
m∑
k=1

P (Reject H0k | H0k is true) =
m∑
k=1

αk

and note that this can be further simplified to FWER = mα0 if αk = α0 ∀k. Bonferroni’s

solution to the multiple comparison problem is to simply set the αk significance levels such

that
∑m

k=1 αk = α, where α is the desired FWER. If αk = α0 ∀k, Bonferroni’s correction

simply sets α0 = α/m, i.e., the significance level for each test is the desired FWER divided

by the number of tests. The benefit of Bonferroni’s method is that it works regardless of

the dependence structure of the m tests. The downside is that Bonferroni’s method can be

overly-conservative when the m tests are independent. Note that for m independent tests,

we have that FWER = 1− (1− α/m)m ≤ α with the quality holding when m = 1.

5.4 Tukey’s Honest Significant Difference

Tukey considered the problem of testing all of the a(a− 1)/2 possible pairwise comparisons

of the form H0 : µj − µk = 0 ∀j, k versus the alternative H1 : (∃j, k)(µj 6= µk). Note that

the estimated pairwise comparison L̂jk = µ̂j − µ̂k is a contrast, given that cj = 1 and ck − 1

and cj + ck = 0. The variance of any pairwise comparison has the form

Var(L̂jk) = σ2

(
1

nj
+

1

nk

)
which simplifies to Var(L̂jk) = σ2(2/n0) if nj = nk = n0. To test all pairwise comparisons,

Tukey assumed that nj = nk = n0 ∀j, k, and proposed using the test statistic

q =

√
2L̂jk√

V̂ar(L̂jk)
=
ȳj − ȳk
σ̂/
√
n0
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Furthermore, Tukey showed that the test statistic q follows the Studentized range distribution

with degrees of freedom (a, n−a) if H0 is true. Note that the Studentized range distribution

is a family of distributions, similar to the F distribution, that is characterized by two degrees

of freedom parameters. For balanced designs (i.e., when nj = nk = n0 ∀j, k), using Tukey’s

procedure will exactly control the FWER across all a(a−1)/2 possible pairwise comparisons.

When the design is unbalanced (i.e., when nj 6= nk for some j, k), the procedure is known

as the Tukey-Kramer method, and the FWER will be below (but not exactly equal to) the

significance level α, i.e., the Tukey-Kramer method is conservative.

5.5 Scheffé’s Method

Scheffé considered the problem of testing the significance of all possible contrasts of the factor

level means. Specifically, Scheffé’s procedure tests the null hypothesis H0 :
∑a

j=1 cjµj = 0 for

all coefficients satisfying
∑a

j=1 cj = 0, versus the alternative hypothesis H1 :
∑a

j=1 cjµj 6= 0

for at least one set of coefficients satisfying
∑a

j=1 cj = 0. Note that all contrasts are equal

to zero if and only if µj = µ ∀j. To prove this claim note that

• µj = µ ∀j implies that
∑a

j=1 cjµj = µ
∑a

j=1 cj = 0 (this proves the “if” part)

•
∑a

j=1 cjµj = 0 for all contrasts means µj−µk = 0 ∀j, k (this proves the “only if” part)

This implies that if we want to test all possible contrasts, we can simply use the omnibus F

test that we previously discussed for testing the overall significance of the ANOVA model.

Note that pairwise comparisons are one possible kind of contrast, but they are not the only

kind of contrast—so Scheffé’s procedure is testing more possibilities than Tukey’s method.

5.6 Confidence Intervals

To form a 100(1− α)% confidence interval for a generic linear combination L =
∑a

j=1 cjµj,

we can use the general formula

L̂± Cα
√

V̂ar(L̂)

where L̂ =
∑a

j=1 cjµ̂j =
∑a

j=1 cj ȳj is the estimated linear combination, V̂ar(L̂) = σ̂2
∑a

j=1 c
2
j/nj

is the estimated variance of the linear combination, and Cα denotes some critical value that

depends on the confidence level α. When forming a confidence interval for a single linear
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combination, the critical value is defined as Cα = t
(1−α/2)
n−a , where t

(1−α/2)
n−a denotes the (1−α/2)

quantile of Student’s t distribution with n − a degrees of freedom. However, when forming

more than one confidence interval, the choice of the critical value Cα will depend on both

the nature of the linear combinations (e.g., pairwise comparisons, contrasts, or other) and

the number of linear combinations that are of interest:

For each possible method to control the FWER, the critical value would be defined as:

• None: Cα = t
(1−α/2)
n−a

• Bonferroni: Cα = t
(1−α/(2m))
n−a

• Tukey: Cα = q
(1−α)
a,n−a/

√
2

• Scheffé: Cα =
√

(a− 1)F
(1−α)
a−1,n−a

where tn−a denotes Student’s t distribution, m denotes the number of confidence intervals

(for Bonferroni), qa,n−a denotes the Studentized range distribution (for Tukey), and Fa−1,n−a

denotes the F distribution (for Scheffé). When the collection of linear combinations includes

some linear combinations that are non-contrasts, i.e., where
∑a

j=1 cj 6= 0, then Tukey’s

method and Scheffé’s methods are not possible (so Bonferroni’s method is the only option).

If the collection of linear combinations only includes the a(a − 1)/2 pairwise comparisons,

then Tukey’s method should be preferred because this method is exact. If the collection of

linear combinations consists of only contrasts (some of which are not pairwise comparisons),

then you could choose between Scheffé’s and Bonferroni’s method, and should prefer the

method with the smaller Cα value.

Example 2. Revisiting the previous example, suppose that we want to form confidence

intervals for each of the possible pairwise comparisons. In this case, we could choose between

all three FWER correction methods: Bonferroni, Tukey, and Scheffé. Of course, we know

that Tukey’s method should be preferred for this situation, but we will still compare the

three methods. Given that there are n0 = 10 subjects in each condition, the variance of any

pairwise comparison Ljk = µj − µk is given by Var(Ljk) = σ2(2/n0). Plugging in the mean

squared error for the unknown σ2, we have that

V̂ar(Ljk) = σ̂2(2/n0) = (535.6/27)(2/10) = 1071.2/270 = 3.967407
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For a 95% confidence interval, the different critical values that we could use are given by:

• None: Cα = t
(0.975)
27 = 2.051831

• Bonferroni: Cα = t
(1−0.05/6)
27 = 2.552459

• Tukey: Cα = q
(0.95)
3,27 /

√
2 = 2.479418

• Scheffé: Cα =
√

2F
(0.95)
2,27 = 2.590031

Note that, of the four methods, the Tukey should be preferred because it produces the

narrowest confidence interval that will control the FWER at the desired α = 0.05 level

across the three confidence intervals.

The three confidence intervals using Tukey’s method are:

• L̂12±(q
(0.95)
3,27 /

√
2)

√
V̂ar(Ljk) = (27.4−21.2)±(2.479418)

√
3.967407 = [1.2614; 11.1386]

• L̂13±(q
(0.95)
3,27 /

√
2)

√
V̂ar(Ljk) = (21.8−21.2)±(2.479418)

√
3.967407 = [−4.3386; 5.5386]

• L̂23±(q
(0.95)
3,27 /

√
2)

√
V̂ar(Ljk) = (21.8−27.4)±(2.479418)

√
3.967407 = [−10.5386;−0.6614]

where ȳ1 = 21.2 is the average number of words remembered in the fast condition, ȳ2 = 27.4

is the average number of words remembered in the normal condition, and ȳ3 = 21.8 is the

average number of words remembered in the slow condition. In R, we could use

> TukeyHSD(amod)

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = words ~ cond)

$cond

diff lwr upr p adj

normal-fast 6.2 1.261409 11.1385914 0.0117228

slow-fast 0.6 -4.338591 5.5385914 0.9513012

slow-normal -5.6 -10.538591 -0.6614086 0.0238550
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