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How Beer Changed the World

William Sealy Gosset (1876 - 1937)

William Sealy Gosset was a chemist and statistician who was employed
as the Head Experimental Brewer at Guinness in the early 1900s.

Through this work, Gosset noticed that the normal distribution was
not adequate for testing hypotheses about the mean in small samples
of data with an unknown variance.

Figure 1: Picture of
William Sealy Gosset and
Commemorative plaque
for Gosset at Guinness.
From https://en.wikipedia.org/

wiki/William_Sealy_Gosset

Nathaniel E. Helwig (Minnesota) One Sample t Test c© October 17, 2020 4 / 25

https://en.wikipedia.org/wiki/William_Sealy_Gosset
https://en.wikipedia.org/wiki/William_Sealy_Gosset


How Beer Changed the World

Student’s Important Discovery

As a reminder, if X ∼ N(µ, σ2), then x̄ ∼ N(µ, σ2/n) which implies

Z =
x̄− µ
σ/
√
n
∼ N(0, 1)

Gosset discovered that when the sample variance is used in place of the
true population variance, the test statistic

T =
x̄− µ
s/
√
n
∼ tn−1

where tν denotes Student’s t distribution (Student, 1908) with ν
degrees of freedom.

Gosset published this work under the pseudonym “Student” because
Guinness did not allow employees to include their name or affiliation
on any scientific publications.

Nathaniel E. Helwig (Minnesota) One Sample t Test c© October 17, 2020 5 / 25



Student’s t Distribution

Table of Contents

1. How Beer Changed the World

2. Student’s t Distribution

3. Student’s Test of Statistical Significance

4. Confidence Interval for the Mean

5. Nonparametric Alternatives

Nathaniel E. Helwig (Minnesota) One Sample t Test c© October 17, 2020 6 / 25



Student’s t Distribution

Overview of Student’s t Distribution

Student’s t distribution is a family of distributions that depend on a
single parameter: the degrees of freedom parameter ν.

Student’s t distribution arises when we standardize a normal variable
using the population mean and the sample estimate of the variance.

Student’s t distribution can be a reasonable approximation to a
standardized variable formed from a variety of different population
distributions (e.g., see Helwig, 2019).
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Student’s t Distribution

Properties of Student’s t Distribution

Student’s t distribution has the follow properties:

• PDF: f(t) =

(
1+ t2

2

)− ν+1
2

√
νB( 1

2
, ν
2

)
where B(u, v) =

∫ 1

0
tu−1(1− t)v−1dt is the beta

function

• CDF: F (t) = 1− 1
2
I ν
t2+ν

( ν
2
, 1

2
) where Ix(u, v) = B(x;u,v)

B(u,v)
is the regularized

incomplete beta function and B(x;u, v) =
∫ x

0
tu−1(1− t)v−1dt is the

incomplete beta function

• Mean: E(T ) = 0 if ν > 1; otherwise undefined

• Variance: Var(T ) = ν
ν−2

if ν > 2, Var(T ) =∞ if 1 < ν ≤ 2; otherwise
undefined

Relations to other distributions:
• tν → N(0, 1) as ν →∞
• T = Z

√
ν
V

where Z ∼ N(0, 1) and V ∼ χ2
ν (where Z and V are independent)

• T 2 ∼ F (1, ν)
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Student’s t Distribution

Visualizations of Student’s t Distribution
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Figure 2: Student’s t distribution PDFs and CDFs with various different
degrees of freedom.

For small ν, the Student’s t PDF has “fatter tails”, which implies that
extreme observations are more likely to occur when generating data
from a tν distribution (compared to a N(0, 1) distribution).
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Student’s t Distribution

Degrees of Freedom Detour

In statistics, the degrees of freedom associated with some quantity is
the number of values that are free to vary.

Assuming that xi
iid∼ N(µ, σ2), the vector of sample observations

(x1, . . . , xn)> has n degrees of freedom, and note thatx1...
xn

 =

x̄...
x̄

+

x1 − x̄...
xn − x̄


where the first vector (x̄, . . . , x̄)> has a single degree of freedom
(because it is the same number replicated n times), and the second
vector (x1 − x̄, . . . , xn − x̄)> has n− 1 degrees of freedom (because the
deviation scores have one constraint, i.e., that

∑n
i=1(xi − x̄) = 0).
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Student’s Test of Statistical Significance

Hypothesis Testing Problem

Suppose x1, . . . , xn are an iid sample with xi
iid∼ N(µ, σ2).

Possible hypotheses to test:

• H0 : µ = µ0 versus H1 : µ 6= µ0 (exact H0 with two-sided H1)

• H0 : µ ≥ µ0 versus H1 : µ < µ0 (inexact H0 with less than H1)

• H0 : µ ≤ µ0 versus H1 : µ > µ0 (inexact H0 with greater than H1)

where µ0 ∈ R is the null hypothesized value of the mean.

In practice, the one-sided alternative hypothesis is often preferred.
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Student’s Test of Statistical Significance

Test Statistic and Null Distribution

As a test statistic, we will use Student’s t statistic

T0 =
x̄− µ0
s/
√
n

where

• x̄ = 1
n

∑n
i=1 xi is the sample mean

• s2 = 1
n−1

∑n
i=1(xi − x̄)2 is the sample variance

Assuming that H0 is true, T0 follows Student’s t distribution with
n− 1 degrees of freedom, i.e., T0 ∼ tn−1 under H0.
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Student’s Test of Statistical Significance

P-Value Calculations

For the directional (one-sided) tests, the p-values are

• H1 : µ < µ0, the p-value is defined as p = P (T < T0)

• H1 : µ > µ0, the p-value is defined as p = P (T > T0)

where T is a random variable that follows Student’s t distribution with
n− 1 degrees of freedom, i.e., T ∼ tn−1.

For the two-sided test, the p-value is defined as

p = P (T < −|T0|) + P (T > |T0|) = 2P (T > |T0|)

where T ∼ tn−1. We can simply double the probability that T > |T0|
because the tn−1 distribution is symmetric around zero.
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Student’s Test of Statistical Significance

Cereal Example

A store sells “16-ounce” boxes of Captain Crisp cereal. A random
sample of 9 boxes was taken and weighed. The results were

15.5, 16.2, 16.1, 15.8, 15.6, 16.0, 15.8, 15.9, 16.2

Suppose that we want to test the null hypothesis H0 : µ ≥ µ0 versus
the alternative hypothesis H1 : µ < µ0. In this case, µ0 = 16.

The sample mean and variance are

x̄ =
1

9
(15.5 + 16.2 + 16.1 + 15.8 + 15.6 + 16.0 + 15.8 + 15.9 + 16.2) = 15.9

s2 =
1

8

(
9∑

i=1

x2i − 9x̄2

)
=

1

8

(
2275.79− 9(15.9)2

)
= 0.0625
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Student’s Test of Statistical Significance

Cereal Example (continued)

The observed T test statistic and p-value have the form

T0 =
15.9− 16√

0.0625/9
= −1.2 and P (T < −1.2) = 0.1322336

where T follows a t distribution with 8 degrees of freedom, i.e., T ∼ t8.

To confirm this result in R, we can use the t.test function:
> x <- c(15.5, 16.2, 16.1, 15.8, 15.6, 16.0, 15.8, 15.9, 16.2)

> t.test(x, mu = 16, alternative = "less")

One Sample t-test

data: x

t = -1.2, df = 8, p-value = 0.1322

alternative hypothesis: true mean is less than 16

95 percent confidence interval:

-Inf 16.05496

sample estimates:

mean of x

15.9
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Confidence Interval for the Mean

Forming Confidence Intervals

To form a 100(1− α)% confidence interval for the mean, note that

1− α = P

(
tα/2 <

x̄− µ
s/
√
n
< t1−α/2

)
where tα denotes the α-th quantile of the tn−1 distribution.

Rearranging the terms inside the probability statement reveals that

1− α = P
(
tα/2s/

√
n < x̄− µ < t1−α/2s/

√
n
)

= P
(
tα/2s/

√
n− x̄ < −µ < t1−α/2s/

√
n− x̄

)
= P

(
x̄− tα/2s/

√
n > µ > x̄− t1−α/2s/

√
n
)
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Confidence Interval for the Mean

Forming Confidence Intervals (continued)

Implies that the 100(1− α)% confidence interval is given by[
x̄− t1−α/2

s√
n
, x̄− tα/2

s√
n

]

Given that −tα/2 = t1−α/2 the confidence interval can be written as

x̄± t1−α/2
s√
n

which is the “normal” confidence interval formula using the Student’s t
distribution critical value t1−α/2 in place of z1−α/2.
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Confidence Interval for the Mean

Forming Confidence Bounds

For directional (one-sided) tests, it would make more sense to use a
confidence bound, which places all of the uncertainty in the direction
relevant to the alternative:

• H1 : µ < µ0, use upper confidence bound: [−∞, x̄+ t1−αs/
√
n]

• H1 : µ > µ0, use lower confidence bound: [x̄− t1−αs/
√
n, ∞]

For the previous example, the 95% one-sided upper confidence bound is

[−∞, 16.05496]

which was output from the t.test function in the previous example.
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Nonparametric Alternatives
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Nonparametric Alternatives

Nonparametric Hypothesis Tests

Suppose that we want to test a null hypothesis about µ, but we are not
certain that the assumption of normality is reasonable.

Instead of comparing the observed test statistic T0 to a Student’s tn−1
distribution, we could compare the observed T0 to a null distribution
that is obtained in a nonparametric fashion.

Such a test is referred to as a nonparametric randomization test, which
is also known as a permutation test (see Helwig, 2019).

• randomly permutes aspects of the observed data under the
assumption H0 is true

• generates a (conditional) null distribution for T0 without assuming
a particular data generating distribution for the data
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Nonparametric Alternatives

Example of Nonparametric Hypothesis Test

Revisiting the previous example, we could use the np.loc.test

function in the nptest R package (Helwig, 2020) to conduct a
nonparametric permutation test:

> library(nptest)

> np.loc.test(x, mu = 16, alternative = "less")

Nonparametric Location Test (One Sample t-test)

alternative hypothesis: true mean is less than 16

t = -1.2, p-value = 0.1602

sample estimate:

mean

15.9

This is an “exact” p-value, given that there are only 29 = 512 elements
of the null distribution.
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Nonparametric Alternatives

Nonparametric Confidence Intervals

The np.boot function computes a nonparametric confidence interval:

> set.seed(0)

> np.boot(x, mean)

Nonparametric Bootstrap of Univariate Statistic

using R = 9999 bootstrap replicates

t0: 15.9

SE: 0.0786

Bias: 4e-04

BCa Confidence Intervals:

lower upper

90% 15.7556 16.0111

95% 15.7333 16.0333

99% 15.6889 16.0778

95% upper bound is given by [−∞, 16.0111]
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