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1 How Beer Changed the World

William Sealy Gosset was a chemist and statistician who was employed as the Head Exper-

imental Brewer at Guinness in the early 1900s. As a part of his job, Gosset was responsible

for taking samples of beer and performing various analyses to ensure that the beer was of

the proper composition and quality. While at Guinness, Gosset taught himself experimental

design and statistical analysis (which were new and exciting fields at the time), and he even

spent some time in 1906–1907 studying in Karl Pearson’s laboratory. Gosset’s work often

involved collecting a small number of samples, and testing hypotheses about the mean of

the population from which the samples were drawn. For example, in the brewery, Gosset

may want to test whether the population mean amount of some ingredient (e.g., barley)

was equal to the intended value. And, on the farm, Gosset may want to test how different

farming techniques and growing conditions affect the barley yields. Through this work, Gos-

set noticed that the normal distribution was not adequate for testing hypotheses about the

mean in small samples of data with an unknown variance.

As a reminder, if X ∼ N(µ, σ2), then x̄ ∼ N(µ, σ2/n) where x̄ = 1
n

∑n
i=1 xi, which implies

Z =
x̄− µ
σ/
√
n
∼ N(0, 1)

i.e., the Z test statistic follows a standard normal distribution. However, in practice, the

population variance σ2 is often unknown, so the sample variance s2 = 1
n−1

∑n
i=1(xi − x̄)2

must be used in its place. With the help of Pearson, Gosset discovered that when the
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sample variance is used in place of the true population variance, the test statistic

T =
x̄− µ
s/
√
n
∼ tn−1

where tν denotes Student’s t distribution (Student, 1908) with ν degrees of freedom. Note

that Gosset published this work under the pseudonym “Student” because Guinness did not

allow employees to include their name or affiliation on any scientific publications.

2 Student’s t Distribution

Student’s t distribution is a family of distributions that depend on a single parameter: the

degrees of freedom parameter ν. As discussed in the previous section, Student’s t distribu-

tion arises when we standardize a normal variable using the population mean and the sample

estimate of the variance. However, Student’s t distribution can be a reasonable approxima-

tion to a standardized variable formed from a variety of different population distributions,

i.e., the distribution of the test statistic T = x̄−µ
s/
√
n
, can often be reasonably approximated by

a tn−1 distribution even if the random variable X follows some non-normal distribution.

Student’s t distribution has the follow properties:

• PDF: f(t) =

(
1+ t2

2

)− ν+1
2

√
νB( 1

2
, ν
2

)
where B(u, v) =

∫ 1

0
tu−1(1− t)v−1dt is the beta function

• CDF: F (t) = 1 − 1
2
I ν
t2+ν

(ν
2
, 1

2
) where Ix(u, v) = B(x;u,v)

B(u,v)
is the regularized incomplete

beta function and B(x;u, v) =
∫ x

0
tu−1(1− t)v−1dt is the incomplete beta function

• Mean: E(T ) = 0 if ν > 1; otherwise undefined

• Variance: Var(T ) = ν
ν−2

if ν > 2, Var(T ) =∞ if 1 < ν ≤ 2; otherwise undefined

Relations to other distributions:

• tν → N(0, 1) as ν →∞

• T = Z
√

ν
V

where Z ∼ N(0, 1) and V ∼ χ2
ν (assuming Z and V are independent)

• T 2 ∼ F (1, ν)
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Figure 1: Student’s t distribution PDFs and CDFs with various different degrees of freedom.

The probability density function (PDF) for Student’s t distribution looks much like a

normal distribution, in the sense that it is bell shaped and symmetric around the mean.

Furthermore, the PDF for Student’s t distribution approaches the PDF for the standard

normal distribution as the degrees of freedom parameter ν get large. For small ν, the

Student’s t PDF has “fatter tails”, which implies that extreme observations are more likely

to occur when generating data from a tν distribution (compared to a N(0, 1) distribution).

3 Degrees of Freedom Detour

Definition. In statistics, the degrees of freedom associated with some quantity is the num-

ber of values that are free to vary.

Suppose that we have an independent sample of data x1, . . . , xn where xi
iid∼ N(µ, σ2).

The vector of sample observations (x1, . . . , xn)> has n degrees of freedom, and note that
x1

...

xn

 =


x̄
...

x̄

+


x1 − x̄

...

xn − x̄


where the first vector (x̄, . . . , x̄)> has a single degree of freedom (because it is the same

number replicated n times), and the second vector (x1 − x̄, . . . , xn − x̄)> has n − 1 degrees

of freedom (because the deviation scores have one constraint, i.e., that
∑n

i=1(xi − x̄) = 0).
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4 Student’s Test of Statistical Significance

Suppose that we have collected an independent and identically distributed (iid) sample of

observations x1, . . . , xn, where each observation is assumed to follow a normal distribution

with mean µ and variance σ2, i.e., xi
iid∼ N(µ, σ2). Furthermore, suppose that we want to test

a null hypothesis about the mean. As a reminder, we could test the following hypotheses:

• H0 : µ = µ0 versus H1 : µ 6= µ0 (exact H0 with two-sided H1)

• H0 : µ ≥ µ0 versus H1 : µ < µ0 (inexact H0 with less than H1)

• H0 : µ ≤ µ0 versus H1 : µ > µ0 (inexact H0 with greater than H1)

where µ0 ∈ R is the null hypothesized value of the mean.

As a test statistic, we will use Student’s t statistic

T0 =
x̄− µ0

s/
√
n

where x̄ = 1
n

∑n
i=1 xi is the sample mean and s2 = 1

n−1

∑n
i=1(xi− x̄)2 is the sample variance.

Assuming that the null hypothesis is true, we just need to compare T0 to the quantiles of a

tn−1 distribution to calculate the p-value. For the directional (one-sided) tests, the p-values

are

• H0 : µ ≥ µ0 versus H1 : µ < µ0, the p-value is defined as p = P (T < T0)

• H0 : µ ≤ µ0 versus H1 : µ > µ0, the p-value is defined as p = P (T > T0)

where T is a random variable that follows Student’s t distribution with n − 1 degrees of

freedom, i.e., T ∼ tn−1. For the two-sided test, the p-value is defined as

p = P (T < −|T0|) + P (T > |T0|) = 2P (T > |T0|)

where T ∼ tn−1. Note that we can simply double the probability that T is greater than the

absolute value of T0 because the tn−1 distribution is symmetric around zero. Although the

two-sided alternative hypothesis is the default in many statistical softwares, the one-sided

alternative is often more appropriate for applications—because the researcher often has an

idea of the direction of the effect being tested.
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Example 1. A store sells “16-ounce” boxes of Captain Crisp cereal. A random sample of 9

boxes was taken and weighed. The results were

15.5, 16.2, 16.1, 15.8, 15.6, 16.0, 15.8, 15.9, 16.2

Suppose that we want to test the null hypothesis H0 : µ ≥ µ0 versus the alternative hypoth-

esis H1 : µ < µ0. The sample mean and variance are

x̄ =
1

9
(15.5 + 16.2 + 16.1 + 15.8 + 15.6 + 16.0 + 15.8 + 15.9 + 16.2) = 15.9

s2 =
1

8

(
9∑
i=1

x2
i − 9x̄2

)
=

1

8

(
2275.79− 9(15.9)2

)
= 0.0625

which implies that the observed T test statistic and p-value have the form

T0 =
15.9− 16√

0.0625/9
= −1.2 and P (T < −1.2) = 0.1322336

where T ∼ t8. To confirm this result in R, we can use the t.test function:

> x <- c(15.5, 16.2, 16.1, 15.8, 15.6, 16.0, 15.8, 15.9, 16.2)

> t.test(x, mu = 16, alternative = "less")

One Sample t-test

data: x

t = -1.2, df = 8, p-value = 0.1322

alternative hypothesis: true mean is less than 16

95 percent confidence interval:

-Inf 16.05496

sample estimates:

mean of x

15.9
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5 Confidence Interval for the Mean

To form a 100(1− α)% confidence interval for the mean, note that

1− α = P

(
tα/2 <

x̄− µ
s/
√
n
< t1−α/2

)
where tα denotes the α-th quantile of the tn−1 distribution. Rearranging the terms inside

the probability statement reveals that

1− α = P
(
tα/2s/

√
n < x̄− µ < t1−α/2s/

√
n
)

= P
(
tα/2s/

√
n− x̄ < −µ < t1−α/2s/

√
n− x̄

)
= P

(
x̄− tα/2s/

√
n > µ > x̄− t1−α/2s/

√
n
)

which implies that the 100(1− α)% confidence interval is given by[
x̄− t1−α/2

s√
n
, x̄− tα/2

s√
n

]
and given that −tα/2 = t1−α/2 the confidence interval can be written as

x̄± t1−α/2
s√
n

Note that the above confidence interval makes sense to use if the alternative hypothesis is

two-sided. For directional (one-sided) tests, it would make more sense to use a confidence

bound, which places all of the uncertainty in the direction relevant to the alternative:

• For H1 : µ < µ0, use an upper confidence bound: [−∞, x̄+ t1−αs/
√
n]

• For H1 : µ > µ0, use a lower confidence bound: [x̄− t1−αs/
√
n, ∞]

Example 2. For the previous example, the 95% one-sided upper confidence bound is

[−∞, 16.05496]

which was output from the t.test function in the previous example.
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6 Nonparametric Alternatives

Suppose that we want to test a null hypothesis about µ (or form a confidence interval for µ),

but we are not certain that the assumption of normality is reasonable. Instead of comparing

the observed test statistic T0 to a Student’s tn−1 distribution, we could compare the observed

T0 to a null distribution that is obtained in a nonparametric fashion. Such a test is referred

to as a nonparametric randomization test, which is also known as a permutation test (see

Helwig, 2019). Nonparametric tests involve randomly permuting aspects of the observed

data under the assumption that the null hypothesis is true, which makes it possible to

obtain a (conditional) null distribution of the test statistic without assuming a particular

data generating distribution for the data.

Example 3. Revisiting the previous example, we could use the np.loc.test function in

the nptest R package (Helwig, 2020) to conduct a nonparametric permutation test:

> library(nptest)

> np.loc.test(x, mu = 16, alternative = "less")

Nonparametric Location Test (One Sample t-test)

alternative hypothesis: true mean is less than 16

t = -1.2, p-value = 0.1602

sample estimate:

mean

15.9

Note that the observed test statistic of T0 = −1.2 is the same observed test statistic that

we used for Student’s t test. In this case, the p-value is an “exact” p-value, given that there

are only 29 = 512 elements of the null distribution (see the help files of the np.loc.test or

Helwig (2019) for details). The p-value for the nonparametric test is similar to, but a bit

larger than, the p-value that was obtained from Student’s t test. In both cases, we would fail

to reject the null hypothesis using any standard significance level. So, using both Student’s

t test and a nonparametric t test, we come to the same conclusion: we have no evidence to

suggest that the Caption Crisp cereal boxes weigh less than what they claim.
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If we wanted to form a confidence interval for the mean, we could use the np.boot

function to compute a nonparametric confidence interval:

> set.seed(0)

> np.boot(x, mean)

Nonparametric Bootstrap of Univariate Statistic

using R = 9999 bootstrap replicates

t0: 15.9

SE: 0.0786

Bias: 4e-04

BCa Confidence Intervals:

lower upper

90% 15.7556 16.0111

95% 15.7333 16.0333

99% 15.6889 16.0778

Note that the np.boot function produces two-sided confidence intervals, so we would

want to use the upper bound from the two-sided 90% confidence interval to form a 95%

upper bound, which is given by [−∞, 16.0111].
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