
Introduction to R

Nathaniel E. Helwig

Associate Professor of Psychology and Statistics
University of Minnesota

August 27, 2020

Copyright c© 2020 by Nathaniel E. Helwig

Nathaniel E. Helwig (Minnesota) Introduction to R c© August 27, 2020 1 / 41

Table of Contents

1. R and RStudio

2. Basic R Usage

3. Object Classes in R

4. Programming in R

5. Writing R Functions

6. Reproducible Research via R

Nathaniel E. Helwig (Minnesota) Introduction to R c© August 27, 2020 2 / 41

R and RStudio

Table of Contents

1. R and RStudio

2. Basic R Usage

3. Object Classes in R

4. Programming in R

5. Writing R Functions

6. Reproducible Research via R

Nathaniel E. Helwig (Minnesota) Introduction to R c© August 27, 2020 3 / 41

R and RStudio

What is R?

R is a free and open source software environment and programming
language for statistics.1

R was created by Ross Ihaka and Robert Gentleman at the University
of Auckland (in New Zealand), and is based on the S language that
was created by John Chambers at Bell Laboratories.

When you download and install R, you get a collection of basic
packages (or “libraries”) that can be used to implement several
common data manipulations, graphical displays, and statistical models.

The real power of R comes in the form of the Comprehensive R
Archive Network (CRAN)2, which is a repository where individuals can
upload their own R packages for others to use.

1https://www.r-project.org/
2https://cran.r-project.org/

Nathaniel E. Helwig (Minnesota) Introduction to R c© August 27, 2020 4 / 41

https://www.r-project.org/
https://cran.r-project.org/

R and RStudio

What is RStudio?

RStudio is an “integrative development environment” (IDE) for R that
is freely available for desktops and servers running R.3

The RStudio IDE has the benefit of allowing you to. . .

• develop R code (in the Editor)

• run R code (in the Console)

• see the objects in your R environment (in the Workspace)

• review past R code that you’ve run (in the History)

• view various other information (e.g., related to File paths, created
Plots, installed Packages, and Help files)

3https://rstudio.com/
Nathaniel E. Helwig (Minnesota) Introduction to R c© August 27, 2020 5 / 41

https://rstudio.com/

R and RStudio

RStudio GUI — Looks Like MATLAB, Huh?

Figure 1: The RStudio GUI for a Mac. https://rstudio.com/products/rstudio/features/

Nathaniel E. Helwig (Minnesota) Introduction to R c© August 27, 2020 6 / 41

https://rstudio.com/products/rstudio/features/

Basic R Usage

Table of Contents

1. R and RStudio

2. Basic R Usage

3. Object Classes in R

4. Programming in R

5. Writing R Functions

6. Reproducible Research via R

Nathaniel E. Helwig (Minnesota) Introduction to R c© August 27, 2020 7 / 41

Basic R Usage

The R Console

Within the R Console, the symbol > comes before R code that is
executed, and the symbol # denotes that what follows are comments.

You can use R for basic arithmetic calculations:

> 3 + 2 # addition

[1] 5

> 3 - 2 # subtraction

[1] 1

> 3 / 2 # multiplication

[1] 1.5

> 3 * 2 # division

[1] 6

> 3^2 # exponents

[1] 9

Nathaniel E. Helwig (Minnesota) Introduction to R c© August 27, 2020 8 / 41

Basic R Usage

Understanding the R Console Output

Note that the [1] that proceeds each piece of output gives the index of
the first output for each line of output. Since there is only one number,
we only see a single index (i.e., [1]).

> letters

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o"

[16] "p" "q" "r" "s" "t" "u" "v" "w" "x" "y" "z"

Note that [1] corresponds to “a” (the first output on the first line)
and [16] corresponds to “p” (the first output on the second
line—which is the 16th output letter).

Nathaniel E. Helwig (Minnesota) Introduction to R c© August 27, 2020 9 / 41

Basic R Usage

Logical Operators in R

The R language has all of the standard logical operators

> 2 < 2 # less than

[1] FALSE

> 2 <= 2 # less than or equal to

[1] TRUE

> 2 > 2 # greater than

[1] FALSE

> 2 >= 2 # greater than or equal to

[1] TRUE

> 2 == 2 # exactly equal to

[1] TRUE

> 2 != 3 # not equal to

[1] TRUE

Nathaniel E. Helwig (Minnesota) Introduction to R c© August 27, 2020 10 / 41

Basic R Usage

Combining Logical Operators: AND and OR

You can combine multiple logical operators using

• & denotes AND

• | denotes OR

> # x AND y

> (2 < 3) & (2 > 3)

[1] FALSE

> # x OR y

> (2 < 3) | (2 > 3)

[1] TRUE

Nathaniel E. Helwig (Minnesota) Introduction to R c© August 27, 2020 11 / 41

Basic R Usage

Special Constants and Values in R

> pi # constant pi

[1] 3.141593

> exp(1) # base of natural logarithm

[1] 2.718282

> .Machine$double.eps # machine epsilon

[1] 2.220446e-16

> Inf # infinity

[1] Inf

> NULL # empty data

NULL

> NA # missing data

[1] NA

Nathaniel E. Helwig (Minnesota) Introduction to R c© August 27, 2020 12 / 41

Basic R Usage

Assigning Values in R

In R, you can assign values to objects using the syntax

object <- value

where object is the object’s name and value is the value that you
assign to the object. Note: <- is two symbols in a row: < followed by -

> x <- 3 # assign x value of 3

> y <- 2 # assign y value of 2

> x + y # x plus y

[1] 5

> x * y # x times y

[1] 6

> x^y # x raised to the power of y

[1] 9

Nathaniel E. Helwig (Minnesota) Introduction to R c© August 27, 2020 13 / 41

Basic R Usage

Using Functions in R

R is a function based language where a “function” takes in some input
and produces some output.

• Vegas rules: what happens in a function, stays in a function

• Manipulations inside functions don’t change values in Workspace

Syntax for using a function in R and assigning the output object:

output <- function(input, ...)

where output is the object being output by the function, function is
the name of the function that you are calling, input is the object being
input to the function, and ... denotes additional inputs (also known
as arguments) for the function.

Nathaniel E. Helwig (Minnesota) Introduction to R c© August 27, 2020 14 / 41

Basic R Usage

Examples of Built-In R Functions

Thankfully, many built-in R functions have intuitive names:

> c(1, 3, -2) # combine values

[1] 1 3 -2

> sort(c(1, 3, -2)) # sort values

[1] -2 1 3

> min(c(1, 3, -2)) # minimum value

[1] -2

> max(c(1, 3, -2)) # maximum value

[1] 3

> sum(c(1, 3, -2)) # summation of values

[1] 2

> mean(c(1, 3, -2)) # mean of values

[1] 0.6666667

Nathaniel E. Helwig (Minnesota) Introduction to R c© August 27, 2020 15 / 41

Basic R Usage

Viewing a Function’s Help File

All built-in R functions have documentation (i.e., a help file) that. . .

• describes what the function does “under the hood”

• provides the syntax and argument options for usage

• explains what type of output values are produced

• illustrates how to use the function via examples

To see a help file, type a question mark before the function’s name.

Example of how to see the help file for R’s sort function:

> ?sort

Nathaniel E. Helwig (Minnesota) Introduction to R c© August 27, 2020 16 / 41

Object Classes in R

Table of Contents

1. R and RStudio

2. Basic R Usage

3. Object Classes in R

4. Programming in R

5. Writing R Functions

6. Reproducible Research via R

Nathaniel E. Helwig (Minnesota) Introduction to R c© August 27, 2020 17 / 41

Object Classes in R

What is an Object in R?

R is an object oriented programming language where an “object” is a
generic term to describe something in R.

For example, numbers, vectors, datasets, functions, etcetera are all
considered objects in R.

Each object X in the R language has an associated “class”, which
indicates the type of object that X represents.

The class of X informs R how to interact with the object when it is
input into functions.

Nathaniel E. Helwig (Minnesota) Introduction to R c© August 27, 2020 18 / 41

Object Classes in R

Classes for Numbers in R

R has two general classes for numbers:

• numeric: default class for real valued (double precision) numbers

• integer: special class for integers

> # numeric class

> x <- c(1, 3, -2)

> class(x)

[1] "numeric"

> # integer class

> x <- c(1L, 3L, -2L)

> class(x)

[1] "integer"

Nathaniel E. Helwig (Minnesota) Introduction to R c© August 27, 2020 19 / 41

Object Classes in R

Classes for Letters/Words in R

R has two general classes for letters/words:

• character: default class for letters and/or words

• factor: special class for categorical variables

A factor variable can have unordered levels (default) or ordered levels

> # character class

> x <- c("a", "a", "b")

> x

[1] "a" "a" "b"

> class(x)

[1] "character"

> levels(x)

NULL

> # factor class

> x <- factor(c("a", "a", "b"))

> x

[1] a a b

Levels: a b

> class(x)

[1] "factor"

> levels(x)

[1] "a" "b"
Nathaniel E. Helwig (Minnesota) Introduction to R c© August 27, 2020 20 / 41

Object Classes in R

Classes for Data in R

R has three general classes for data:

• matrix: vectors of the same length and same class

• data.frame: vectors of the same length and different classes

• list: collection of objects of different lengths or classes

Note that. . .

• The matrix class is more specific than the data.frame class

• The data.frame class is a special case of the list class

• The list class is the most general class in the R language

Nathaniel E. Helwig (Minnesota) Introduction to R c© August 27, 2020 21 / 41

Object Classes in R

Matrix and Data Frame Classes in R

> # matrix class

> x <- c(1, 3, -2)

> y <- c(2, 0, 7)

> z <- cbind(x, y)

> z

x y

[1,] 1 2

[2,] 3 0

[3,] -2 7

> class(z)

[1] "matrix" "array"

> class(z[,1])

[1] "numeric"

> class(z[,2])

[1] "numeric"

> # data.frame class

> x <- c(1, 3, -2)

> y <- c("a", "a", "b")

> z <- data.frame(x, y)

> z

x y

1 1 a

2 3 a

3 -2 b

> class(z)

[1] "data.frame"

> class(z$x)

[1] "numeric"

> class(z$y)

[1] "character"

Nathaniel E. Helwig (Minnesota) Introduction to R c© August 27, 2020 22 / 41

Object Classes in R

List Class in R

> # list class

> x <- c(1, 3, -2)

> y <- c("a", "a", "b", "b")

> z <- list(x = x, y = y)

> z

$x

[1] 1 3 -2

$y

[1] "a" "a" "b" "b"

> class(z)

[1] "list"

> class(z$x)

[1] "numeric"

> class(z$y)

[1] "character"

Nathaniel E. Helwig (Minnesota) Introduction to R c© August 27, 2020 23 / 41

Object Classes in R

Object Oriented Programming in R

When inputting data into R, it is very important to ensure that it is
being stored as the correct class because how R interacts with the data
will depend on the class of the object.

• Some functions are only applicable to objects of a particular class

• Some functions perform different operations depending on the
class of the input object

As a user of R, it is your responsibility to ensure that you’ve correctly
informed R how your data should be interpreted.

When you input your data into the R workspace, make sure. . .

• it is being stored as a data frame (or a list if needed)

• each column of the data frame has the class that you have intended

Nathaniel E. Helwig (Minnesota) Introduction to R c© August 27, 2020 24 / 41

Object Classes in R

Example of Class Customized Functions in R

Functions would produce nonsensical results (e.g., calculating the mean
or median) if you don’t inform R that the integers 1, 2, and 3 should
be interpreted as female, male, and other.

> # print and summary (class customized)

> x <- rep(c(1, 2, 3), each = 3)

> y <- factor(x, levels = 1:3, labels = c("female", "male", "other"))

> print(x)

[1] 1 1 1 2 2 2 3 3 3

> print(y)

[1] female female female male male male other other other

Levels: female male other

> summary(x)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1 1 2 2 3 3

> summary(y)

female male other

3 3 3

Nathaniel E. Helwig (Minnesota) Introduction to R c© August 27, 2020 25 / 41

Programming in R

Table of Contents

1. R and RStudio

2. Basic R Usage

3. Object Classes in R

4. Programming in R

5. Writing R Functions

6. Reproducible Research via R

Nathaniel E. Helwig (Minnesota) Introduction to R c© August 27, 2020 26 / 41

Programming in R

If/Else Statements in R

IF/ELSE statements implement one collection of code if a particular
condition is met, and implement a different collection of code otherwise.

Basic structure of IF/ELSE statements:

if(condition) {

some R code

} else {

more R code

}

if(condition1) {

some R code

} else if(condition2) {

more R code

} else {

even more R code

}

Nathaniel E. Helwig (Minnesota) Introduction to R c© August 27, 2020 27 / 41

Programming in R

Example of If/Else Statement in R

Here is a simple example:

> x <- "cat"

> if(x == "dog"){

+ y <- "bone"

+ } else {

+ y <- "yarn"

+ }

> y

[1] "yarn"

Note that the + signs are NOT a part of the R code. These indicate
that you are entering a multiline statement in the R Console.

Nathaniel E. Helwig (Minnesota) Introduction to R c© August 27, 2020 28 / 41

Programming in R

For Loops in R

For loops repeatedly implement the same R code with the loop index
sequentially changing each time. For loops should only be used if you
cannot vectorize code (i.e., apply the code to an entire vector of data).

Basic structure of a for loop:

for(i in 1:n){

some R code depending on i

}

i is the loop index and 1:n is the index set (the values that i will take)

Nathaniel E. Helwig (Minnesota) Introduction to R c© August 27, 2020 29 / 41

Programming in R

Example of For Loop in R

For loop version:

> x <- 11:15

> x

[1] 11 12 13 14 15

> for(i in 1:5){

+ x[i] <- x[i] + 1

+ }

> x

[1] 12 13 14 15 16

Vectorized version:

> x <- 11:15

> x

[1] 11 12 13 14 15

> x <- x + 1

> x

[1] 12 13 14 15 16

The vectorized version is preferred given that it is more efficient.

Nathaniel E. Helwig (Minnesota) Introduction to R c© August 27, 2020 30 / 41

Programming in R

While Loops (or Statements) in R

While loops allow you to execute the same R code repeatedly until
some condition is met. Similar to a for loop but there is a difference:

• For loops implement the same code a fixed number of times

• While loops implement the same code a variable number of times

Basic structure of a while loop:

while(condition){

some R code

}

The while loop repeats the code until the condition is no longer true.

Nathaniel E. Helwig (Minnesota) Introduction to R c© August 27, 2020 31 / 41

Programming in R

Example of While Loop in R

> x <- 80

> iter <- 0

> while(x < 100){

+ x <- x + sqrt(x) / 10

+ iter <- iter + 1

+ }

> x

[1] 100.8293

> iter

[1] 22

The above while loop will keep adding
√
x/10 to the initial value of

x = 80 until the condition x < 100 is no longer true. The while loop
also keeps track of the number of iterations, which is 22 in this case.
At the 22nd iteration x = 100.8293 > 100, so the while loop stops.

Nathaniel E. Helwig (Minnesota) Introduction to R c© August 27, 2020 32 / 41

Writing R Functions

Table of Contents

1. R and RStudio

2. Basic R Usage

3. Object Classes in R

4. Programming in R

5. Writing R Functions

6. Reproducible Research via R

Nathaniel E. Helwig (Minnesota) Introduction to R c© August 27, 2020 33 / 41

Writing R Functions

Why You Should Write R Functions

In R, you can write your own function to accomplish whatever task(s)
you desire—which makes it possible to streamline routine tasks.

You should write a function (instead of a script) whenever you need to
implement the same multiline code more than once, e.g., for

• routine data preprocessing

• data analysis pipelines

• tabling or plotting results

Writing a function has the benefit of standardizing and streamlining
your research, and it can make your code useable for other researchers.

Nathaniel E. Helwig (Minnesota) Introduction to R c© August 27, 2020 34 / 41

Writing R Functions

Syntax for Creating Functions in R

To write a function in R, you use the function() function to specify
the function’s name, arguments, and code that it should execute.

The basic syntax for defining an R function is

name <- function(...) {

some R code

}

where name is the name that you give your new function, function()
is the R function that you are calling to create your own function, and
... denote the arguments (or inputs) for your function.

Nathaniel E. Helwig (Minnesota) Introduction to R c© August 27, 2020 35 / 41

Writing R Functions

Create an R Function for Recoding Factors

recode <- function(x, levels, ordered = FALSE, key = FALSE){

x <- as.factor(x)

xlev <- levels(x)

if(length(levels) != nlevels(x)){

stop("Input ’x’ needs to satisfy nlevels(x) == length(levels)")

}

x <- factor(x, levels = xlev, labels = levels, ordered = ordered)

if(key){

return(list(x = x, key = data.frame(old = xlev, new = levels)))

}

return(x)

}

The function has two required inputs: x is the factor variable that will
be recoded, and levels are the desired levels for the recoded version of
the input factor variable. The third and fourth arguments control:

• should the new levels be treated as ordered (in the given order)?

• should the function return the key showing the old and new levels?
Nathaniel E. Helwig (Minnesota) Introduction to R c© August 27, 2020 36 / 41

Writing R Functions

Example of Using the recode() Function

> x <- rep(c(1, 2, 3), each = 3)

> x

[1] 1 1 1 2 2 2 3 3 3

> xr <- recode(x, c("female", "male", "other"))

> xr

[1] female female female male male male other other other

Levels: female male other

> xr <- recode(x, c("female", "male", "other"), key = TRUE)

> xr$x

[1] female female female male male male other other other

Levels: female male other

> xr$key

old new

1 1 female

2 2 male

3 3 other

Nathaniel E. Helwig (Minnesota) Introduction to R c© August 27, 2020 37 / 41

Reproducible Research via R

Table of Contents

1. R and RStudio

2. Basic R Usage

3. Object Classes in R

4. Programming in R

5. Writing R Functions

6. Reproducible Research via R

Nathaniel E. Helwig (Minnesota) Introduction to R c© August 27, 2020 38 / 41

Reproducible Research via R

Conducting Reproducible Research in R

There are two different ways to create reproducible R code:

• an R script file (.R file)

• an R Markdown document (.Rmd file)

Both an R script file and an R Markdown document contain a
collection of R code that can be executed to reproduce analysis results.

The primary difference between the two is that R script files only
contain executable R code (and comments created using #), whereas R
Markdown can be used to produce documents that include both R
code and R output in a high quality report.

Nathaniel E. Helwig (Minnesota) Introduction to R c© August 27, 2020 39 / 41

Reproducible Research via R

Script or Markdown?

R script files are the “old school” way of doing things, and they are the
tried-and-true way to reproduce your analysis results in R.

Dynamic reports created using R Markdown4 are a more recent
development that have some benefits over using an R script file:

• you can add detailed descriptions of your data or R code

• you can include all of the output that is produced by the code

However, R Markdown documents can be a bit finicky to compile,
especially if you are running R in the Windows operating system.

4See https://rmarkdown.rstudio.com/ for details on R Markdown.
Nathaniel E. Helwig (Minnesota) Introduction to R c© August 27, 2020 40 / 41

https://rmarkdown.rstudio.com/

Reproducible Research via R

Examples of R Markdown Documents

For a simple example of using R Markdown you can see:

• Document:
http://stat.umn.edu/~helwig/notes/Rmarkdown-ex.pdf

• Source code:
http://stat.umn.edu/~helwig/notes/Rmarkdown-ex.Rmd

For a more advanced example of using R Markdown you can see:

• Document:
http://stat.umn.edu/~helwig/talks/ReproducibleCode.html

• Source code:
http://stat.umn.edu/~helwig/talks/ReproducibleCode.Rmd

The advanced example shows you how to create a fully reproducible
analysis of data, including downloading/importing data, preprocessing
data, basic visualizations, simple statistical tests, fitting advanced
statistical models, and outputting results via tables and figures.

Nathaniel E. Helwig (Minnesota) Introduction to R c© August 27, 2020 41 / 41

http://stat.umn.edu/~helwig/notes/Rmarkdown-ex.pdf
http://stat.umn.edu/~helwig/notes/Rmarkdown-ex.Rmd
http://stat.umn.edu/~helwig/talks/ReproducibleCode.html
http://stat.umn.edu/~helwig/talks/ReproducibleCode.Rmd

	R and RStudio
	Basic R Usage
	Object Classes in R
	Programming in R
	Writing R Functions
	Reproducible Research via R

