
Copyright c© August 26, 2020 by NEH

Introduction to R

Nathaniel E. Helwig

University of Minnesota

1 What is R?

R is a free and open source software environment and programming language for statistics.1

R was created by Ross Ihaka and Robert Gentleman at the University of Auckland (in

New Zealand), and is based on the S language that was created by John Chambers at Bell

Laboratories. Unlike S (which is for profit), the R software is a part of the GNU General

Public License, which means that it is available to anyone free of charge. The R statistical

environment works for most standard operating systems (i.e., Mac, Windows, Linux), but

certain features (particularly related to graphics and parallel computing) are only available

on certain operating systems. R is currently maintained by the “R Core Team”, which is

composed of some of the world’s best computational and applied statisticians.

When you download and install R, you get a collection of basic packages (or “libraries”)

that can be used to implement several common data manipulations, graphical displays, and

statistical models. However, the real power of R comes in the form of the Comprehensive

R Archive Network (CRAN)2, which is a repository where individuals can upload their own

R packages for others to use. Most modern developments in statistics are first implemented

and released in R, and it often takes other (for profit) softwares years—or maybe decades—to

implement new statistical methods that you can download (for free) from CRAN. To see a

full list of all of the R packages currently available on CRAN, click here. However, the name

of an R package may not be particularly descriptive of the packages’ capabilities. To figure

out how to do something in R, you can just Google “How to I [fill in the blank] in R?”

1https://www.r-project.org/
2https://cran.r-project.org/

Introduction to R 1 Nathaniel E. Helwig

https://cran.r-project.org/web/packages/available_packages_by_name.html
https://www.r-project.org/
https://cran.r-project.org/

Copyright c© August 26, 2020 by NEH

2 What is RStudio?

RStudio is an “integrative development environment” (IDE) for R that is freely available.3 In

its most basic sense, you can use RStudio as a graphical user interface (GUI) for developing

and running R code. Note that R comes with a GUI for Mac and Windows, but the default

R GUI is quite minimalistic—particularly on Windows machines. The RStudio IDE has

the benefit of allowing you to develop R code (in the Editor), run R code (in the Console),

see the objects in your R environment (in the Workspace), review past R code that you’ve

run (in the History), and view various other information (e.g., related to File paths, created

Plots, installed Packages, and Help files) all within the same user-friendly application.

Figure 1: The RStudio GUI for a Mac. https://rstudio.com/products/rstudio/features/

3https://rstudio.com/

Introduction to R 2 Nathaniel E. Helwig

https://rstudio.com/products/rstudio/features/
https://rstudio.com/

Copyright c© August 26, 2020 by NEH

3 Using the R Console

Within the R Console, the symbol > comes before R code that is executed, and the symbol

denotes that the following words are comments. When R produces output in the Console,

the output prints a number inside a box (e.g., [1]) that is used to index the output.

> # addition and subtraction

> 3 + 2

[1] 5

> 3 - 2

[1] 1

> # multiplication and division

> 3 / 2

[1] 1.5

> 3 * 2

[1] 6

> # exponents

> 3^2

[1] 9

> 2^3

[1] 8

Note that the [1] that proceeds each piece of output gives the index of the first output

for each line of output. Since there is only one number, we only see a single index (i.e., [1]).

> letters

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o"

[16] "p" "q" "r" "s" "t" "u" "v" "w" "x" "y" "z"

Note that [1] corresponds to “a” (the first output on the first line) and [16] corresponds

to “p” (the first output on the second line—which is the 16th output letter).

Introduction to R 3 Nathaniel E. Helwig

Copyright c© August 26, 2020 by NEH

4 Logical Operators in R

The R language has all of the standard logical operators that you would find in any typical

programming language.

> # less than / less than or equal to

> 2 < 2

[1] FALSE

> 2 <= 2

[1] TRUE

> # greater than / greater than or equal to

> 2 > 2

[1] FALSE

> 2 >= 2

[1] TRUE

> # exactly equal to

> 2 == 2

[1] TRUE

> # not equal to

> 2 != 3

[1] TRUE

> # x OR y

> (2 < 3) | (2 > 3)

[1] TRUE

> # x AND y

> (2 < 3) & (2 > 3)

[1] FALSE

Introduction to R 4 Nathaniel E. Helwig

Copyright c© August 26, 2020 by NEH

5 Special Values in R

In R, there are a handful of symbols that relate to special values

> # mathematical constants

> pi

[1] 3.141593

> exp(1)

[1] 2.718282

> # infinity

> Inf

[1] Inf

> Inf + 1

[1] Inf

> # empty data

> NULL

NULL

> NULL + 1

numeric(0)

> # missing data

> NA

[1] NA

> NA + 1

[1] NA

> # machine epsilon

> .Machine$double.eps

[1] 2.220446e-16

Introduction to R 5 Nathaniel E. Helwig

Copyright c© August 26, 2020 by NEH

6 Assigning Values in R

In R, you can assign values to objects using the syntax

object <- value

where object is the object’s name and value is the value that you assign to the object.

Note that the assignment symbol <- is really two symbols in a row (< followed by -).

> # assigning values to objects

> x <- 3

> y <- 2

> # calculations using the objects

> x + y

[1] 5

> x * y

[1] 6

> x^y

[1] 9

7 Using Functions in R

R is a function based language where a “function” takes in some input and produces some

output. Functions in R follow Vegas rules: what happens in a function, stays in a function.

In other words, the manipulations that you make to data inside of a function will not affect

the data outside of the function (i.e., in your R Workspace).

Assuming that you want to assign the output to an R object (e.g., instead of simply

printing the output in the R Console), you would use the syntax

output <- function(input, ...)

where output is the object being output by the function, function is the name of the

function that you are calling, input is the object being input to the function, and ...

denotes additional inputs (or arguments) for the function.

Introduction to R 6 Nathaniel E. Helwig

Copyright c© August 26, 2020 by NEH

R has many built-in functions for accomplishing all sorts of tasks. The real beauty of R

is that you can create your own (user defined) functions, which allows you to automate any

sort of data preprocessing, analysis, or visualization methods that you use for your research.

We will cover how to write your own R function in a later section, but first we will review a

few of the built-in functions to give you a sense of how functions in R work.

> # combine values

> c(1, 3, -2)

[1] 1 3 -2

> c("a", "a", "b", "b", "a")

[1] "a" "a" "b" "b" "a"

> # sort values

> sort(c(1, 3, -2))

[1] -2 1 3

> sort(c(1, 3, -2), decreasing = TRUE)

[1] 3 1 -2

> # minimum and maximum

> min(c(1, 3, -2))

[1] -2

> max(c(1, 3, -2))

[1] 3

> # sum and mean

> sum(c(1, 3, -2))

[1] 2

> mean(c(1, 3, -2))

[1] 0.6666667

Note that the second use of the sort function uses the argument decreasing = TRUE

to return the values from largest to smallest (instead of from smallest to largest, which is

the default). You can see the help file of any function by typing a question mark before the

function’s name (e.g., ?sort), which will show you the available arguments.

Introduction to R 7 Nathaniel E. Helwig

Copyright c© August 26, 2020 by NEH

On the previous page, I just printed the function’s output to the R Console (instead of

saving it as an object), which is not how you will use most functions in R. Typically, you

are using a function because you want to produce some output that you will use again later

(by inputting the output into another function). For example:

> # define x and y

> x <- c(0, 2, 4, 6, 8)

> y <- c(1, 3, 5, 7, 9)

> # combine as columns

> cbind(x, y)

x y

[1,] 0 1

[2,] 2 3

[3,] 4 5

[4,] 6 7

[5,] 8 9

> # combine as rows

> rbind(x, y)

[,1] [,2] [,3] [,4] [,5]

x 0 2 4 6 8

y 1 3 5 7 9

> # plot x versus y

> plot(x, y)

The above example uses the combine function c() to create the vectors x and y, which are

then used as input to other functions, i.e., the cbind, rbind, and plot functions. Note that

R can produce beautiful publication quality graphics, which are customizable in an infinite

number of ways. I will not cover the data visualization capabilities of R in this document,4

but we will take a data visualization detour one day.

4See http://stat.umn.edu/~helwig/publications.html for some examples.

Introduction to R 8 Nathaniel E. Helwig

http://stat.umn.edu/~helwig/publications.html

Copyright c© August 26, 2020 by NEH

8 Object Classes in R

R is an object oriented programming language where an “object” is a generic term to de-

scribe something in R. For example, numbers, vectors, datasets, functions, etcetera are all

considered objects in R. Each object X in the R language has an associated “class”, which

indicates the type of object that X represents.

Classes for numbers in R:

> # numeric class

> x <- c(1, 3, -2)

> class(x)

[1] "numeric"

> # integer class

> x <- c(1L, 3L, -2L)

> class(x)

[1] "integer"

The “numeric” class is the default class for (double precision) numeric values in R. The

“integer” class is a special class for numbers that are integers, which are denoted by placing

a capital letter L after the number. Assuming that it is permissible, you can easily convert

between the numeric and integer classes such as:

> # convert from numeric to integer (and back)

> x <- c(1, 3, -2)

> class(x)

[1] "numeric"

> x <- as.integer(x)

> class(x)

[1] "integer"

> x <- as.numeric(x)

> class(x)

[1] "numeric"

Introduction to R 9 Nathaniel E. Helwig

Copyright c© August 26, 2020 by NEH

Classes for non-numerics in R:

> # character class

> x <- c("a", "a", "b")

> x

[1] "a" "a" "b"

> class(x)

[1] "character"

> levels(x)

NULL

> # factor class

> x <- factor(c("a", "a", "b"))

> x

[1] a a b

Levels: a b

> class(x)

[1] "factor"

> levels(x)

[1] "a" "b"

> # ordered factor class

> x <- factor(c("a", "a", "b"), ordered = TRUE)

> x

[1] a a b

Levels: a < b

> class(x)

[1] "ordered" "factor"

> levels(x)

[1] "a" "b"

The “character” class is the default class for non-numerics in R. The “factor” class informs

R that the characters should be interpreted as a categorical variable (e.g., in a linear model)

where the unique values are the “levels”, which can be unordered (default) or ordered.

Introduction to R 10 Nathaniel E. Helwig

Copyright c© August 26, 2020 by NEH

Classes for data in R:

> # matrix class

> x <- c(1, 3, -2)

> y <- c(2, 0, 7)

> z <- cbind(x, y)

> z

x y

[1,] 1 2

[2,] 3 0

[3,] -2 7

> class(z)

[1] "matrix" "array"

> class(z[,1])

[1] "numeric"

> class(z[,2])

[1] "numeric"

> # data.frame class

> x <- c(1, 3, -2)

> y <- c("a", "a", "b")

> z <- data.frame(x, y)

> z

x y

1 1 a

2 3 a

3 -2 b

> class(z)

[1] "data.frame"

> class(z$x)

[1] "numeric"

> class(z$y)

[1] "character"

Introduction to R 11 Nathaniel E. Helwig

Copyright c© August 26, 2020 by NEH

> # list class

> x <- c(1, 3, -2)

> y <- c("a", "a", "b", "b")

> z <- list(x = x, y = y)

> z

$x

[1] 1 3 -2

$y

[1] "a" "a" "b" "b"

> class(z)

[1] "list"

> class(z$x)

[1] "numeric"

> class(z$y)

[1] "character"

The “matrix” class is the default class for storing collections of vectors that are (i) of the

same length and (ii) of the same class (e.g., all numeric or all character). The “data.frame”

class is the default class for storing collections of vectors that are (i) of the same length and

(ii) possibly of different classes (e.g., some numeric and some character). Finally, the “list”

class is the generic class for storing collections of objects of different classes—the elements

of a list could be anything (e.g., vectors, matrices, data frames, functions, or other lists).

• The matrix class is more specific than the data.frame class.

• The data.frame class is a special case of the list class.

• The list class is the most general class in the R language.

When you input your data into R, you will likely want to ensure that (i) it is being stored

as a data frame, and (ii) each column of the data frame has the class that you have intended

(e.g., numeric, integer, character, or factor). Otherwise bad things may happen. . .

Introduction to R 12 Nathaniel E. Helwig

Copyright c© August 26, 2020 by NEH

9 Object Oriented Programming

When inputting data into R, it is very important to ensure that it is being stored as the

correct class because how R interacts with the data will depend on the class of the object.

More specifically, some R functions are only applicable to objects of a particular class, and

some R functions perform different operations depending on the class of the input object.

This is what I mean when I say that R is an “object oriented” programming language.

Consequently, as a user of R, it is your responsibility to ensure that you’ve correctly informed

R how your data should be interpreted.

For example, suppose that you (made the unfortunate5 choice to) code your data such

that 1 = female, 2 = male, and 3 = other. If you input such data into R, you need to make

sure that you inform R that the integer values are actually meant to represent the levels of

a factor variable. Otherwise some strange things can/will happen. . .

> # print and summary (class customized)

> x <- rep(c(1, 2, 3), each = 3)

> y <- factor(x, levels = 1:3, labels = c("female", "male", "other"))

> print(x)

[1] 1 1 1 2 2 2 3 3 3

> print(y)

[1] female female female male male male other other other

Levels: female male other

> summary(x)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1 1 2 2 3 3

> summary(y)

female male other

3 3 3

Note that the print and summary functions are class customized, and would produce

nonsensical results (e.g., calculating the mean or median) if you don’t inform R that the

integers 1, 2, and 3 should be interpreted as female, male, and other (respectively).

5This is an unfortunate thing to do because now you have to keep a data key to remember how your
data are coded—which is an antiquated way of doing things. It would be better to use characters, which can
convey meaning without needing a data key (e.g., use “female”, “male”, and “other” instead of 1, 2, and 3).

Introduction to R 13 Nathaniel E. Helwig

Copyright c© August 26, 2020 by NEH

10 If/Else Statements in R

The “if/else” statement is one of the standard functionalities of any programming language.

This statement allows the user to implement one collection of code IF a particular condition

is met, and implement a different collection if the condition is not met. The basic structure

of an IF/ELSE statement in R has the form

if(condition) {

some R code

} else {

more R code

}

You can combine multiple IF/ELSE statements into a longer version:

if(condition1) {

some R code

} else if(condition2) {

more R code

} else {

even more R code

}

Here is a simple example:

> x <- "cat"

> if(x == "dog"){

+ y <- "bone"

+ } else {

+ y <- "yarn"

+ }

> y

[1] "yarn"

Note that the + signs are NOT a part of the R code. These indicate that you are entering

a multiline statement in the R Console.

Introduction to R 14 Nathaniel E. Helwig

Copyright c© August 26, 2020 by NEH

11 For Loops in R

For loops (called “do loops” in some languages) are another one of the standard function-

alities of any programming language. The for loop allows you to repeatedly implement the

same R code with the loop index sequentially changing each time. Note that for loops should

only be used if you cannot vectorize (i.e., apply the R code to an entire vector of data). The

basic structure of a for loop in R has the form

for(i in 1:n){

some R code depending on i

}

Here is a simple example:

> x <- 11:15

> x

[1] 11 12 13 14 15

> for(i in 1:5){

+ x[i] <- x[i] + 1

+ }

> x

[1] 12 13 14 15 16

And here is the better (vectorized) way to do the same thing:

> x <- 11:15

> x

[1] 11 12 13 14 15

> x <- x + 1

> x

[1] 12 13 14 15 16

Vectorization is preferred, but it is not always possible to vectorize things. As a rule of

thumb, always start with the obvious (for loop) way of doing things, and then think about

how to make your R code more efficient by vectorizing.

Introduction to R 15 Nathaniel E. Helwig

Copyright c© August 26, 2020 by NEH

12 While Loops in R

While loops (or while statements) are the last of the standard functionalities of any pro-

gramming language. The while loop allows you to execute the same R code repeatedly until

some condition is met. Note that this is similar to a for loop but there is a key difference:

a for loop implements the same R code a specified number of times (which is controlled by

the index set), whereas a while loop implements the same R code an unspecified number of

times (which is controlled by the specified condition).

The basic structure of a while loop in R has the form

while(condition){

some R code

}

Here is a simple example:

> x <- 80

> iter <- 0

> while(x < 100){

+ x <- x + sqrt(x) / 10

+ iter <- iter + 1

+ }

> x

[1] 100.8293

> iter

[1] 22

Note that the above while loop will keep adding
√
x/10 to the initial value of x = 80

until the condition x < 100 is no longer true. The while loop also keeps track of the number

of iterations (i.e., times that the R code within the loop was run), which is 22 in this case.

Note that at the 22nd iteration, we have that x = 100.8293 > 100, so the while loop stopped

running. When writing while loops, you need to be careful to ensure that your logical con-

dition will work properly; otherwise you could have an invalid while loop or an infinite while

loop (see the next page).

Introduction to R 16 Nathaniel E. Helwig

Copyright c© August 26, 2020 by NEH

Here is an example of an invalid while loop:

> x <- 80

> iter <- 0

> while(x < 100){

+ x <- x - sqrt(x) / 10

+ iter <- iter + 1

+ }

Error in while (x < 100) { : missing value where TRUE/FALSE needed

In addition: Warning message:

In sqrt(x) : NaNs produced

Note that the above while loop produces an error message because x becomes negative

(and then the square root is no longer a real number).

Here is an example of an infinite while loop:

> x <- 80

> iter <- 0

> while(x < 100){

+ x <- x - x / 10

+ iter = iter + 1

+ }

Note that the above while loop will run forever (or until we manually stop it) because

the logical statement x < 100 is always true.

While loops are frequently used when you are programming iterative routines where you

are doing something until the parameter estimates converge. However, in terms of standard

applications of analyzing data, you will likely not need to use while loops too often. In most

typical data analysis applications, you would likely be using if/else statements and for loops

to accomplish your data pre-processing and analysis goals. So if you find yourself writing

a while loop for a typical data analysis task, you should probably think about why you’re

doing it and if the while loop can potentially be replaced by a for loop.

Introduction to R 17 Nathaniel E. Helwig

Copyright c© August 26, 2020 by NEH

13 Writing R Functions

In R, you can write your own function to accomplish whatever task(s) you desire. Note

that you should consider writing a function (instead of an R script) whenever you need to

implement the same multiline code more than once. For example, if you have a standard

way that you preprocess your data in all of your publications, you should consider writing a

function to preprocess the your data—instead of copy-pasting the same preprocessing code

into multiple different R script files. Writing a function has the benefit of standardizing and

streamlining your research, and it can also make your code easily useable by other researchers

(assuming that you share/publish your R code, which you should ALWAYS do!).

To write a function in R, you use the function() function to specify the function’s name,

arguments, and code that it should execute. The basic syntax for defining an R function is

name <- function(...) {

some R code

}

where name is the name that you give your new function, function() is the R function that

you are calling to create your own function, and ... denote the arguments (or inputs) that

you want your new function to have.

Here is an example of a function for recoding a factor variable:

recode <- function(x, levels, ordered = FALSE, key = FALSE){

x <- as.factor(x)

xlev <- levels(x)

if(length(levels) != nlevels(x)){

stop("Input ’x’ needs to be a factor with nlevels(x) == length(levels)")

}

x <- factor(x, levels = xlev, labels = levels, ordered = ordered)

if(key){

return(list(x = x, key = data.frame(old = xlev, new = levels)))

}

return(x)

}

Introduction to R 18 Nathaniel E. Helwig

Copyright c© August 26, 2020 by NEH

The function has two required inputs: x is the factor variable that will be recoded, and

levels are the desired levels for the recoded version of the input factor variable. The third

argument determines whether or not the (new) levels of the factor should be ordered (default

is unordered). The fourth argument controls what type of output the function will produce.

If key = FALSE (default), the function only returns the recoded factor. If key = TRUE, the

function returns a list with two elements: x is the recoded factor, and key is a data frame

that shows how the old factor levels map onto the new factor levels. Note that setting key

= TRUE can be useful for confirming that you’ve correctly recoded the levels of the factor.

Here is an example of how to use the function:

> x <- rep(c(1, 2, 3), each = 3)

> x

[1] 1 1 1 2 2 2 3 3 3

> xr <- recode(x, c("female", "male", "other"))

> xr

[1] female female female male male male other other other

Levels: female male other

And here is an example of how to use the key argument:

> xr <- recode(x, c("female", "male", "other"), key = TRUE)

> names(xr)

[1] "x" "key"

> xr$x

[1] female female female male male male other other other

Levels: female male other

> xr$key

old new

1 1 female

2 2 male

3 3 other

Introduction to R 19 Nathaniel E. Helwig

Copyright c© August 26, 2020 by NEH

14 R Script Files and R Markdown Documents

There are two different ways to create reproducible R code for data analysis: using an R script

file (.R) or an R Markdown document (.Rmd). Both an R script file and an R Markdown

document contain a collection of R code that can be executed to generate/reproduce data

analysis results. The primary difference between the two is that R script files only contain

executable R code (and comments created using #), whereas R Markdown can be used to

produce documents that include both R code and R output in a high quality report.

The R script file is the “old school” way of doing things, and it is the tried-and-true

way to reproduce your analysis results in R. The dynamic reports that are created using R

Markdown are a more recent development that have some clear benefits over using just an

R script file. For example, using R Markdown, you can add detailed descriptions of your

data or R code, and you can also include all of the output that is produced by the code,

e.g., printed results, tables, plots, etc. Thus, R Markdown lets you create a stand alone

document that contains all of the R code to reproduce your results, as well as the results of

the analyses. See https://rmarkdown.rstudio.com/ for details on R Markdown.

For a simple example of using R Markdown you can see:

• Document: http://stat.umn.edu/~helwig/notes/Rmarkdown-ex.pdf

• Source code: http://stat.umn.edu/~helwig/notes/Rmarkdown-ex.Rmd

For a more advanced example of using R Markdown you can see:

• Document: http://stat.umn.edu/~helwig/talks/ReproducibleCode.html

• Source code: http://stat.umn.edu/~helwig/talks/ReproducibleCode.Rmd

The advanced example shows you how to create a fully reproducible analysis of data.

Specifically, it shows you how to implement all steps of a typical data analysis process,

i.e., downloading/importing data, preprocessing data, basic visualizations, simple statistical

tests, fitting advanced statistical models, and outputting resulting tables and figures. This

example also shows you how to create an R script file from an R Markdown file, e.g., in case

you decide that you would like a file that only includes the executable analysis code.

Introduction to R 20 Nathaniel E. Helwig

https://rmarkdown.rstudio.com/
http://stat.umn.edu/~helwig/notes/Rmarkdown-ex.pdf
http://stat.umn.edu/~helwig/notes/Rmarkdown-ex.Rmd
http://stat.umn.edu/~helwig/talks/ReproducibleCode.html
http://stat.umn.edu/~helwig/talks/ReproducibleCode.Rmd

	What is R?
	What is RStudio?
	Using the R Console
	Logical Operators in R
	Special Values in R
	Assigning Values in R
	Using Functions in R
	Object Classes in R
	Object Oriented Programming
	If/Else Statements in R
	For Loops in R
	While Loops in R
	Writing R Functions
	R Script Files and R Markdown Documents

