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What is a Confidence Interval?

Definition of a Confidence Interval

Given a confidence level α ∈ (0, 1), the probabilistic statement

P
(
a(θ̂) < θ < b(θ̂)

)
= 1− α

defines a 100(1−α)% confidence interval for the unknown parameter θ.

The confidence interval endpoints a(·) and b(·) are functions of the
estimate θ̂, which is a random variable.

The CI provides a range of values depending on θ̂ such that the
probability of θ being within the interval is 1− α.
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What is a Confidence Interval?

Example 1: Confidence Interval for Mean

Suppose that xi
iid∼ N(µ, σ2) for i = 1, . . . , n and we want to form a

confidence interval for µ. We will use x̄ = 1
n

∑n
i=1 xi to estimate µ.

• x̄ ∼ N(µ, σ2/n) −→
√
n(x̄− µ)/σ ∼ N(0, 1)

• P
(
zα/2 <

x̄−µ
σ/
√
n
< z1−α/2

)
= 1− α

Rearranging the terms inside the probability statement gives:

1− α = P
(
zα/2σ/

√
n < x̄− µ < z1−α/2σ/

√
n
)

= P
(
zα/2σ/

√
n− x̄ < −µ < z1−α/2σ/

√
n− x̄

)
= P

(
x̄− zα/2σ/

√
n > µ > x̄− z1−α/2σ/

√
n
)

which implies that a(x̄) = x̄− z1−α/2σ/
√
n and b(x̄) = x̄− zα/2σ/

√
n.
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What is a Confidence Interval?

Example 1: Confidence Interval for Mean (continued)

Given that −zα/2 = z1−α/2 we can write the two endpoints of the
confidence interval as

x̄± z1−α/2SE(x̄)

where SE(x̄) = σ/
√
n is the standard error of the sample mean.

In practice, it is typical to form a. . .

• 90% confidence interval (i.e., α = 0.1), where z0.95 ≈ 1.65

• 95% confidence interval (i.e., α = 0.05), where z0.975 ≈ 1.96

• 99% confidence interval (i.e., α = 0.01), where z0.995 = 2.58
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What is a Confidence Interval?

Example 2: Confidence Interval for Variance

Suppose that xi
iid∼ N(µ, σ2) for i = 1, . . . , n and we want to form a

confidence interval for σ2. Use s2 = 1
n−1

∑n
i=1(xi − x̄)2 as an estimate.

• (n− 1)s2/σ2 ∼ χ2
n−1 Let qn−1;α denote α quantile of χ2

n−1

• P
(
qn−1;α/2 < (n− 1) s

2

σ2 < qn−1;1−α/2

)
= 1− α

Rearranging the terms inside the above probability statement gives

1− α = P

(
qn−1;α/2

n− 1
<
s2

σ2
<
qn−1;1−α/2

n− 1

)
= P

(
qn−1;α/2

s2(n− 1)
<

1

σ2
<
qn−1;1−α/2

s2(n− 1)

)
= P

(
s2(n− 1)

qn−1;α/2
> σ2 >

s2(n− 1)

qn−1;1−α/2

)
which implies that a(s2) = s2(n−1)

qn−1;1−α/2
and b(s2) = s2(n−1)

qn−1;α/2
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Interpreting Confidence Intervals

Misinterpretation of Confidence Intervals

Confidence intervals are often misinterpreted in scientific literature.

The most common misinterpretation is that there is a 100(1− α)%
chance that a(θ̂) < θ < b(θ̂) for a given estimate θ̂.

This interpretation is incorrect because for any given estimate θ̂ and
corresponding confidence interval [a(θ̂), b(θ̂)], the inequality statement
a(θ̂) < θ < b(θ̂) is either true or false.
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Interpreting Confidence Intervals

Correct Interpretation of Confidence Intervals

Suppose that we repeat our experiment a large number of independent
times, i.e., we collect R independent samples of data each of size n.

• Let θ̂r denote the estimate of θ for the r-th sample of data

• Let [a(θ̂r), b(θ̂r)] denote confidence interval formed from θ̂r

As the number of replications R→∞, we have that

1

R

R∑
r=1

I
(
a(θ̂r) < θ < b(θ̂r)

)
= 1− α

where I(·) is an indicator function, i.e., I (·) = 1 if the inequality
statement is true, and I (·) = 0 otherwise.

For the r-th replication, the true parameter θ is either in the interval
or not, i.e., I(·) is either equal to 1 or 0.
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Interpreting Confidence Intervals

Example 3: Interpreting a Confidence Interval

Assume xi
iid∼ N(µ, σ2) and we want to form a 95% CI for µ (as in

Example 1). The below R code uses R = 10000 replications with
n = 25 observations. Note that µ = 0 and σ2 = 1 in the below example.

> R <- 10000

> n <- 25

> set.seed(1)

> xbar <- replicate(R, mean(rnorm(n)))

> ci.lo <- xbar - qnorm(.975) / sqrt(n) # 95% CI lower bound

> ci.up <- xbar - qnorm(.025) / sqrt(n) # 95% CI upper bound

> ci.in <- (ci.lo <= 0) & (0 <= ci.up)

> summary(ci.in)

Mode FALSE TRUE

logical 499 9501

> mean(ci.in)

[1] 0.9501
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Lower and Upper Confidence Bounds

Confidence Intervals or Bounds?

A confidence interval involves finding both the lower bound a(θ̂) and
the upper bound b(θ̂) that provides a range (or interval) of values such
that the probability of θ being within the interval is 1− α.

However, in some cases, it may be preferable to define a lower or upper
bound, i.e., just one of the endpoints, instead of an interval.

Note that lower and upper confidence bounds are appropriate if there is
a specific direction of interest that is important for making a decision.
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Lower and Upper Confidence Bounds

Definition of a Confidence Bound

Given a confidence level α ∈ (0, 1), the probabilistic statement

P
(
a(θ̂) < θ

)
= 1− α

defines a 100(1− α)% lower confidence bound for θ.

Given a confidence level α ∈ (0, 1), the probabilistic statement

P
(
θ < b(θ̂)

)
= 1− α

defines a 100(1− α)% upper confidence bound for θ.
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Lower and Upper Confidence Bounds

When to Use Confidence Bounds

Confidence bounds are frequently used in studies that are attempting
to establish the effectiveness of a treatment, e.g., clinical trials.

• Establishing that a treatment is effective (in a hypothesized
direction of interest) only requires using a(θ̂) or b(θ̂) — not both.

Example: Suppose that a drug company has created a new medication
that is designed to treat depression.

• X is pre-treatment depression severity and Y is post-treatment

• Z = Y −X denotes the difference and assume Z ∼ N(θ, σ2)

• Observing b(θ̂) < 0 would suggest an effective treatment
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Properties of Confidence Intervals

Coverage Rates

Given a procedure for forming confidence interval, the coverage rate
refers to the proportion of times that the parameter θ is included
within the interval using some specified number of replications R� 1.

• Coverage rate in the example was 0.9501 using R = 10000.

The confidence interval procedure is said to be. . .

• Conservative if coverage rate is greater than 1− α
• Liberal is the coverage rate is less than 1− α
• Accurate if the coverage rate is approximately equal to 1− α
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Properties of Confidence Intervals

Width and Shape

The width of the confidence interval refers to the distance between the
upper and lower bounds, i.e., width = b(θ̂)− a(θ̂).

• Prefer the narrowest CI with an accurate coverage rate

The shape of the confidence interval refers to the ratio of the distance
between the bounds and the estimate, i.e.,
shape = [b(θ̂)− θ̂]/[θ̂ − a(θ̂)].

• shape > 1 indicates that the CI is wider on the right side

• shape < 1 indicates that the CI is wider on the left side

• shape = 1 indicates that the CI is symmetric around θ̂

Width and shape are only important if the coverage rate is accurate.
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Forming Confidence Intervals
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Forming Confidence Intervals

Frameworks for Forming Confidence Intervals

There are three general frameworks that can be used to form
confidence intervals:

• Parametric: If the distribution of the estimate θ̂ can be exactly
derived, then an exact confidence interval can be formed.

• Asymptotic: If the distribution of the estimate θ̂ can be
asymptotically derived, then an (asymptotically) approximate
confidence interval can be formed.

• Nonparametric: If the distribution of the estimate θ̂ is unknown,
then resampling methods can be used to estimate Fθ̂, which can
be used to form approximate confidence intervals.
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Forming Confidence Intervals

Parametric Confidence Intervals

The first procedure (i.e., parametric) was used in the previous
examples. We knew the exact probability distributions of x̄ and s2

under the specified data generation assumptions.

Using these known distributions, we were able to construct and
manipulate probability statements that enabled us to derive the lower
and upper bounds of the confidence interval.

This procedure always depends on assumptions about the parametric
nature of the data—and sometimes it isn’t possible to derive the
distribution of θ̂ even if the probabilistic nature of X is known.
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Forming Confidence Intervals

Asymptotic Confidence Intervals

The second procedure (i.e., asymptotic) can be used to construct
confidence intervals for large samples of data when we know the
asymptotic (i.e., limiting) distribution of θ̂.

If we are interested in forming a confidence interval for the population
mean µ = E(X), then the central limit theorem (CLT) can be used to
form an asymptotic confidence interval.

• x̄ ∼̇ N(µ, σ
2

n ) for large n

Of course, this procedure depends on having a large n, but it is not
typically clear how large n needs to be. And for some statistics the
limiting distribution of θ̂ will not be known.
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Forming Confidence Intervals

Nonparametric Confidence Intervals

The third procedure (i.e., nonparametric) is more computationally
intensive than the other two procedures, but is much more general.

The first two procedures (i.e., parametric and asymptotic) can only be
used in the small number of circumstances where we know the exact or
asymptotic distribution of θ̂, e.g., for the sample mean.

To form confidence intervals for generic parameters, the nonparametric
bootstrap can be used (Efron, 1979; Efron and Tibshirani, 1993).
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Nonparametric Bootstrap
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Nonparametric Bootstrap

Basic Idea

Suppose that xi
iid∼ F , and assume that the distribution F depends on

some parameter θ = t(F ).

Given x = (x1, . . . , xn)>, suppose that we can compute an estimate
θ̂ = s(x), and assume that the distribution of θ̂ is unknown.

To approximate the distribution of θ̂, the nonparametric bootstrap uses
the empirical cumulative distribution function F̂n as a surrogate for F .

• As n→∞, we have that F̂n → F and F̂θ̂ → Fθ̂
• For small n, the nonparametric bootstrap may not work well
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Nonparametric Bootstrap

Bootstrap Distribution

The bootstrap distribution consists of R� 1 replications of the
estimate (or statistic) θ̂. For r = 1, . . . R, the bootstrap:

1. Defines xr = (x1r, . . . , xnr)
> where xir is sampled with replacement

from the original sample {x1, . . . , xn}
2. Calculates θ̂r = s(xr)

Note that θ̂r is referred to as the r-th replicate of the statistic, and the
collection {θ̂r}Rr=1 is referred to as the bootstrap distribution.

Typically R ≥ 10000, but it may be necessary to set R even larger
when F is relatively skewed or leptokurtic (Hesterberg, 2015).
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Nonparametric Bootstrap

Bootstrap Standard Error and Bias

The bootstrap distribution {θ̂r}Rr=1 can be used to estimate properties
of the estimate θ̂ (Helwig, 2017a).

The bootstrap uses V̂ar(θ̂) = 1
R−1

∑R
r=1(θ̂r − θ̄)2 to estimate Var(θ̂).

• θ̄ = 1
R

∑R
r=1 θ̂r is the mean of the bootstrap distribution

• ŜE(θ̂) =
(

V̂ar(θ̂)
)1/2

is the corresponding standard error estimate

The bootstrap uses B̂ias(θ̂) = θ̄ − θ̂ to estimate Bias(θ̂).

• Reminder: the true bias of θ̂ is defined as Bias = E(θ)− θ
• Nonparametric bootstrap is using F̂n to approximate unknown F
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Nonparametric Bootstrap

Bootstrap Confidence Intervals

The nonparametric bootstrap can be used to form a variety of different
types of confidence intervals (Helwig, 2017b).

Some types are simple to compute but less accurate:

• Normal approximation: θ̂ ± z1−α/2ŜE(θ̂)

• Percentile method: [θ̂(Rα/2), θ̂(R(1−α/2))]

• Basic (reverse percentile): [2θ̂ − θ̂(Rα/2), 2θ̂ − θ̂(R(1−α/2))]]

Other types are harder to compute but more accurate:

• Studentized (t table): [T(Rα/2), T(R(1−α/2))] with Tr = θ̂r−θ̂
ŜE(θ̂r)

• Bias-corrected and accelerated (BCa): [θ̂(Rα1/2), θ̂(R(1−α2/2))]
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Nonparametric Bootstrap

Simulation Study Design

Generate n ∈ {10, 20, 50, 100, 200} observations from a χ2
1 distribution,

and form a confidence interval for the mean µ.

The nonparametric bootstrap was implemented using the np.boot

function in the nptest R package (Helwig, 2020)

Repeat data generating process 10,000 times, and define the coverage
rate as the proportion of the times where the given confidence interval
method contained the true parameter µ = 1.

Nathaniel E. Helwig (Minnesota) Confidence Intervals c© October 17, 2020 29 / 31



Nonparametric Bootstrap

Simulation Study Results
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Figure 1: Coverage rates for different bootstrap confidence interval methods.
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