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1 Background and Motivation

Suppose that we have an independent and identically distributed (iid) sample of data

x1, . . . , xn where xi
iid∼ F from some distribution F . Furthermore, suppose that the dis-

tribution F depends on some parameter θ = t(F ), and we have formed an estimate of the

parameter, denoted by θ̂ = s(x), where x = (x1, . . . , xn)> is the sample of data. As a re-

minder, the notation θ = t(F ) denotes that the parameter is a function of the distribution,

and the notation θ̂ = s(x) denotes that the estimate is a function of the sample. Given that

θ̂ is a function of a random sample of data, the estimate θ̂ is a random variable that has some

distribution, which we will denote by Fθ̂. Note that the distribution of the estimate, i.e., Fθ̂,

will depend on (i) the form of the estimator, i.e., the function s(·) that is used to compute

the estimate, (ii) the form of the data generating distribution F , and (iii) the sample size n.

Given that the estimate θ̂ is a random variable, there is an inherent amount of uncertainty

in the estimate. In the previous chapter, we discussed some ways to explore the quality of an

estimator: bias, variance, and mean squared error. As a reminder, the bias is concerned with

the location of the estimator (i.e., the difference between the estimator’s expected value and

the true unknown parameter) and the variance is concerned with the spread of the estimator

(i.e., the expected squared difference between the estimate and its expected value). If the

sampling distribution of the estimator is normally distributed, i.e., if θ̂ ∼ N(µθ̂, σ
2
θ̂
) where

µθ̂ = E(θ̂) is the expected value and σ2
θ̂

= Var(θ̂) is the variance, then we only need the

parameters µθ̂ and σ2
θ̂

to understand how confident we can be in our estimate θ̂. However, if

the sampling distribution Fθ̂ is some generic distribution, we need to know the distributional

form and parameters to assess the confidence we can have in our estimate.
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2 What is a Confidence Interval?

Definition. Given a confidence level α ∈ (0, 1), the probabilistic statement

P
(
a(θ̂) < θ < b(θ̂)

)
= 1− α

defines a 100(1 − α)% confidence interval for the unknown parameter θ. The confidence

interval endpoints a(·) and b(·) are functions of the estimate θ̂, which is a random variable.

Thus, the 100(1 − α)% confidence interval provides a range of values depending on θ̂ such

that the probability of θ being within the interval is 1− α.

Example 1. Suppose that xi
iid∼ N(µ, σ2) for i = 1, . . . , n and we want to form a confidence

interval for µ. As an estimate of µ, we will use the sample mean x̄ = 1
n

∑n
i=1 xi. Assuming

that xi
iid∼ N(µ, σ2), we know that x̄ ∼ N(µ, σ2/n), which implies that

√
n(x̄−µ)/σ ∼ N(0, 1).

As a result, we have that

P

(
zα/2 <

x̄− µ
σ/
√
n
< z1−α/2

)
= 1− α

where zα = Φ−1(α) with Φ−1(·) denoting the quantile function for the standard normal

distribution. Rearranging the terms inside the above probability statement gives

1− α = P
(
zα/2σ/

√
n < x̄− µ < z1−α/2σ/

√
n
)

= P
(
zα/2σ/

√
n− x̄ < −µ < z1−α/2σ/

√
n− x̄

)
= P

(
x̄− zα/2σ/

√
n > µ > x̄− z1−α/2σ/

√
n
)

which implies that a 100(1 − α)% confidence interval for µ defines a(x̄) = x̄ − z1−α/2σ/
√
n

and b(x̄) = x̄ − zα/2σ/
√
n. Note that since −zα/2 = z1−α/2 we can write the two endpoints

of the confidence interval as

x̄± z1−α/2SE(x̄)

where SE(x̄) = σ/
√
n is the standard error of the sample mean. In practice, it is typical

to form a 90% confidence interval (i.e., α = 0.1), which corresponds to z0.95 ≈ 1.65, a 95%

confidence interval (i.e., α = 0.05), which corresponds to z0.975 ≈ 1.96, or a 99% confidence

interval (i.e., α = 0.01), which corresponds to z0.995 = 2.58.
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Figure 1: Area under the normal distribution from https://en.wikipedia.org/wiki/Normal_distribution

Example 2. Suppose that xi
iid∼ N(µ, σ2) for i = 1, . . . , n and we want to form a confidence

interval for σ2. As an estimate of σ2, we will use the sample variance s2 = 1
n−1

∑n
i=1(xi− x̄)2.

Assuming that xi
iid∼ N(µ, σ2), we know that (n− 1)s2/σ2 ∼ χ2

n−1. As a result, we have that

P

(
qn−1;α/2 < (n− 1)

s2

σ2
< qn−1;1−α/2

)
= 1− α

where qn−1;α = Qn−1(α) withQn−1(·) denoting the quantile function for the χ2
n−1 distribution.

Rearranging the terms inside the above probability statement gives

1− α = P

(
qn−1;α/2
n− 1

<
s2

σ2
<
qn−1;1−α/2
n− 1

)
= P

(
qn−1;α/2
s2(n− 1)

<
1

σ2
<
qn−1;1−α/2
s2(n− 1)

)
= P

(
s2(n− 1)

qn−1;α/2
> σ2 >

s2(n− 1)

qn−1;1−α/2

)
which implies that a 100(1−α)% confidence interval for σ2 defines a(s2) = (n−1)s2/qn−1;1−α/2

and b(s2) = (n−1)s2/qn−1;α/2. In this case, the quantile values qn−1;1−α/2 and qn−1;α/2 depend

on the sample size n, so there are not standard quantiles values (such as 1.65, 1.96, and 2.58).

But it is still typical to use a 90%, 95%, or 99% confidence interval.
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3 Interpreting Confidence Intervals

Confidence intervals are often misinterpreted. The most common misinterpretation of a

confidence interval is that there is a 100(1 − α)% chance that a(θ̂) < θ < b(θ̂) for a given

estimate θ̂. Note that this interpretation is incorrect because for any given estimate θ̂ and

corresponding confidence interval [a(θ̂), b(θ̂)], the inequality statement a(θ̂) < θ < b(θ̂) is

either true or false. The correct interpretation of a confidence interval is as follows. Suppose

that we repeat our experiment a large number of independent times, i.e., we collect R

independent samples of data each of size n. Let θ̂r denote the estimate of θ for the r-th sample

of data, and let [a(θ̂r), b(θ̂r)] denote confidence interval formed from θ̂r (for r = 1, . . . , R).

As the number of replications R→∞, we have that

1

R

R∑
r=1

I
(
a(θ̂r) < θ < b(θ̂r)

)
= 1− α

where I(·) is an indicator function, i.e., I (·) = 1 if the inequality statement is true, and

I (·) = 0 otherwise. Note that for the r-th replication, the true parameter θ is either in the

interval or not, i.e., I(·) is either equal to 1 or 0.

Example 3. For the example of forming a confidence interval for µ with xi
iid∼ N(µ, σ2), here

is a simple demonstration of forming a 95% confidence interval using R = 10000 replications

with n = 25 observations. Note that µ = 0 and σ2 = 1 in the below example.

> R <- 10000

> n <- 25

> set.seed(1)

> xbar <- replicate(R, mean(rnorm(n)))

> ci.lo <- xbar - qnorm(.975) / sqrt(n) # 95% CI lower bound

> ci.up <- xbar - qnorm(.025) / sqrt(n) # 95% CI upper bound

> ci.in <- (ci.lo <= 0) & (0 <= ci.up)

> summary(ci.in)

Mode FALSE TRUE

logical 499 9501

> mean(ci.in)

[1] 0.9501
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4 Lower and Upper Confidence Bounds

A confidence interval involves finding both the lower bound a(θ̂) and the upper bound b(θ̂)

that provides a range (or interval) of values such that the probability of θ being within the

interval is 1 − α. However, in some cases, it may be preferable to define a lower or upper

bound, i.e., just one of the endpoints, instead of an interval. Note that lower and upper

confidence bounds are appropriate if there is a specific direction of interest that is important

for making a decision.

Definition. Given a confidence level α ∈ (0, 1), the probabilistic statement

P
(
a(θ̂) < θ

)
= 1− α

defines a 100(1− α)% lower confidence bound for the unknown parameter θ, and the prob-

abilistic statement

P
(
θ < b(θ̂)

)
= 1− α

defines a 100(1− α)% upper confidence bound for the unknown parameter θ.

Confidence bounds are frequently used in studies that are attempting to establish the

effectiveness of a treatment, e.g., clinical trials. This is because establishing that a treat-

ment is effective (in a hypothesized direction of interest) only requires using one of the two

endpoints of a confidence interval. As a result, it makes more sense to use a lower or upper

confidence bound (instead of an interval), because the bound places all of the uncertainty

on the side of the interval that is of interest to the substantive problem/question.

Example 4. Suppose that a drug company has created a new medication that is designed

to treat depression. To study the efficacy of the treatment, it would be preferable to use a

confidence bound (instead of interval), given that establishing the treatment’s effectiveness

only requires showing that the level of depressive symptoms has been reduced (on average) by

the treatment. For example, if Z = Y −X denotes the difference in the depression severity

(Y is post-treatment and X is pre-treatment), and if Z ∼ N(µ, σ2), then it would make

sense to use an upper confidence bound. This is because observing b(θ̂) < 0 would suggest

an effective treatment, i.e., that depression severity has been reduced, so it is preferable to

only focus on the upper confidence bound in this case.
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5 Properties of Confidence Intervals

Definition. Given a procedure for forming confidence interval, the coverage rate refers to

the proportion of times that the parameter θ is included within the interval using some

specified number of replications R� 1.

For example, the observed coverage rate in the sample mean example was 0.9501 using

R = 10000 replications. If the coverage rate is above the nominal level of 1 − α, then the

confidence interval procedure is said to be conservative. In contrast, if the coverage rate is

below the nominal level, then the confidence interval procedure is said to be liberal. Finally,

the coverage rate is said to be “accurate” if it is approximately equal to the nominal rate.

Definition. The width of the confidence interval refers to the distance between the upper

and lower bounds, i.e., width = b(θ̂)− a(θ̂).

Note that if two different confidence interval procedures have accurate coverage rates,

then the narrower confidence interval (i.e., the one with the smaller width) should be pre-

ferred. This is because the width of the confidence interval relates to its efficiency, such that

wider intervals are less efficient.

Definition. The shape of the confidence interval refers to the ratio of the distance between

the upper bound and the estimate relative to the distance between the estimate and the

lower bound, i.e., shape = [b(θ̂)− θ̂]/[θ̂ − a(θ̂)].

If shape > 1, this indicates that the confidence interval is wider on the right side, and

if shape < 1, this indicates that the confidence interval is wider on the left side. Note that

if shape = 1, then the confidence interval is symmetric around the estimate θ̂, which is

typically the case for confidence intervals of mean parameters.

IMPORTANT: The purpose of any method for forming a confidence interval is to produce

endpoints a(θ̂) and b(θ̂) that provide accurate coverage rates. Thus, the coverage rate is the

most important aspect of any procedure for forming a confidence interval. If the coverage

rate is not accurate, then the width and shape do not really matter. So it is only typical

to discuss the width and shape of the confidence interval after ensuring that the confidence

interval procedure results in accurate coverage rates.

Confidence Intervals 6 Nathaniel E. Helwig



Copyright c© October 17, 2020 by NEH

6 Forming Confidence Intervals

There are three general frameworks that can be used to form confidence intervals:

• Parametric: If the distribution of the estimate θ̂ can be exactly derived, then an exact

confidence interval can be formed.

• Asymptotic: If the distribution of the estimate θ̂ can be asymptotically derived, then

an (asymptotically) approximate confidence interval can be formed.

• Nonparametric: If the distribution of the estimate θ̂ is unknown, then resampling

methods can be used to estimate Fθ̂, and the estimated distribution F̂θ̂ can be used to

form approximate confidence intervals.

The first procedure (i.e., parametric) was used in the previous examples. More specif-

ically, in the previous examples, we knew the exact probability distributions of x̄ and s2

under the specified data generation assumptions. Using these known distributions, we were

able to construct and manipulate probability statements that enabled us to derive the lower

and upper bounds of the confidence interval.

The second procedure (i.e., asymptotic) can be used to construct confidence intervals for

large samples of data when we know the asymptotic (i.e., limiting) distribution of θ̂. If we

are interested in forming a confidence interval for the population mean µ = E(X), then the

central limit theorem (CLT) can be used to form an asymptotic confidence interval. As a

reminder, the CLT tells us that the sample mean is asymptotically normally distributed, i.e.,

x̄ ∼̇ N(µ, σ
2

n
) for large n, if the data generating distribution F is non-normal.

The third procedure (i.e., nonparametric) is more computationally intensive than the

other two procedures, but is much more general. Note that the first two procedures can only

be used in the small number of circumstances where we know the exact or asymptotic distri-

bution of θ̂, which is typically only the case for mean parameters. For example, if we want

to form a confidence interval for the median, we don’t have any nice theoretical argument

that can be used. To form confidence intervals for generic parameters, the nonparametric

bootstrap can be used (Efron, 1979; Efron and Tibshirani, 1993).
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7 Nonparametric Bootstrap

7.1 Basic Procedure

Suppose that we have an iid sample of n observations from some unknown distribution F ,

i.e., xi
iid∼ F , and assume that the distribution F depends on some parameter θ = t(F ).

Furthermore, given a sample of data x = (x1, . . . , xn)>, suppose that we can compute an

estimate θ̂ = s(x), and assume that the distribution of θ̂ is unknown. In such cases, the

nonparametric bootstrap uses the empirical cumulative distribution function F̂n in place of

the unknown data generating distribution F to approximate the distribution of θ̂.

The nonparametric bootstrap begins by forming the bootstrap distribution, which con-

sists of R� 1 replications of the estimate (or statistic) θ̂. For r = 1, . . . R, the bootstrap:

1. Defines xr = (x1r, . . . , xnr)
> where xir is sampled with replacement from {x1, . . . , xn}

2. Calculates θ̂r = s(xr)

Note that θ̂r is referred to as the r-th replicate of the statistic (or estimate), and the collection

of R replicates {θ̂r}Rr=1 is referred to as the bootstrap distribution. In practice, it is typical

to use R ≥ 10000 resamples, but it may be necessary to set R even larger when the data

generating distribution F is relatively skewed (Hesterberg, 2015). The bootstrap distribution

{θ̂r}Rr=1 can be used to assess the uncertainty the estimate or to form different types of

confidence intervals (Helwig, 2017a,b).

7.2 Standard Error and Bias

As an estimate of the variance of θ̂, the bootstrap uses V̂ar(θ̂) = 1
R−1

∑R
r=1(θ̂r − θ̄)2, where

θ̄ = 1
R

∑R
r=1 θ̂r is the mean of the bootstrap distribution. The corresponding estimate of

the standard error has the form ŜE(θ̂) =
(

V̂ar(θ̂)
)1/2

, which is simply the sample standard

deviation of the bootstrap distribution. To estimate the bias of the estimator θ̂ = s(x), the

bootstrap uses B̂ias(θ̂) = θ̄ − t(F̂n), where θ̄ is an estimate of E(θ̂) and t(F̂n) is an estimate

of the parameter θ. As a reminder, Bias(θ̂) = E(θ̂)− θ where the expectation is calculated

with respect to F and θ = t(F ). With real data, we never know F or the true parameter θ,

so the bootstrap estimate of bias uses the ECDF F̂n in place of the unknown true CDF F .
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7.3 Confidence Intervals

7.3.1 Naive Methods

The bootstrap distribution can be used to form a variety of different types of confidence

intervals (see Helwig, 2017b, for a discussion). The simplest approach is to define a confidence

interval as one normally would, but using the bootstrap estimate of the standard error

ŜE(θ̂) in place of the true standard error, i.e., θ̂ ± z1−α/2ŜE(θ̂). Note that this simple

approach is only appropriate if (i) the sampling distribution of θ̂ is approximately normal,

and (ii) the theoretical form of the standard error is unknown. A better approach is to use the

corresponding quantiles of the bootstrap distribution, which is referred to as the “percentile

method”. More specifically, the percentile method would define the 100(1− α)% confidence

interval of θ by defining the endpoints as a(θ̂) = Q̂R(α/2) and b(θ̂) = Q̂R(1 − α/2), where

Q̂R(·) is the sample quantile function, which is computed from the bootstrap distribution.

Although this approach is better than the first method, it is still less accurate than some of

the more sophisticated methods for calculating bootstrap confidence intervals.

7.3.2 t Table Method

One of the better methods for calculating bootstrap confidence intervals is referred to as the

“t table” method. This approach calculates a t-like statistic for each bootstrap replicate

tr =
θ̂r − θ̂
ŜE(θ̂r)

where ŜE(θ̂r) is an estimate of the standard error of θ̂r. In most cases, the standard error

of θ̂r is unknown, so this confidence interval method typically involves using a bootstrap

within the bootstrap to estimate ŜE(θ̂r). In other words, for each bootstrap sample xr =

(x1r, . . . , xnr)
>, we would typically need to use bootstrap resampling to estimate ŜE(θ̂r).

In this inner bootstrap, the r-th bootstrap sample xr is treated as the observed data x,

and the r-th replicate θ̂r is treated as the observed estimate θ̂. The bootstrap t statistic

distribution {tr}Rr=1 is then used to form the 100(1 − α)% confidence interval, such that

a(θ̂) = θ̂ − q̂R(1 − α/2)ŜE(θ̂) and b(θ̂) = θ̂ − q̂R(α/2)ŜE(θ̂), where q̂R(·) are the sample

quantiles of the bootstrap t statistic distribution {tr}Rr=1.
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7.3.3 BCa Method

Another good method for forming bootstrap confidence intervals is the “bias corrected and

accelerated” (BCa) method. This method is similar to (but better than) the percentile

method, given that it uses a corrected version of the bootstrap quantiles Q̂R(·). More

specifically, the BCa method defines the endpoints of the 100(1 − α)% confidence interval

as a(θ̂) = Q̂R(α1) and b(θ̂) = Q̂R(α2), where α1 and α2 are the corrected probabilities that

are input into the sample quantile function (in place of α/2 and 1 − α/2). The corrected

probabilities have the form

α1 = Φ

(
z0 +

z0 + zα/2
1− γ(z0 + zα/2)

)
α2 = Φ

(
z0 +

z0 + z1−α/2
1− γ(z0 + z1−α/2)

)
where Φ(·) is the CDF for the standard normal distribution, zα = Φ−1(α) is the α-th quantile

of the standard normal distribution, z0 is the bias correction factor, and γ is the acceleration

parameter. If z0 = γ = 0, then α1 = α/2 and α2 = 1 − α/2, which reveals that the BCa

method is equivalent to the percentile method when no corrections are needed.

In practice, the bias correction and acceleration factors can be estimated as

ẑ0 = Φ−1

(
1

R

R∑
r=1

I(θ̂r < θ̂)

)
and γ̂ =

∑n
i=1

(
θ̂(·) − θ̂(i)

)3
6

[∑n
i=1

(
θ̂(·) − θ̂(i)

)2]3/2
where θ̂(i) is the estimate of θ that would be obtained if xi was excluded from the sample

(which is referred to as the “jackknife estimate”) and θ̂(·) = 1
n

∑n
i=1 θ̂(i) is the average of

the jackknife estimates. The bias correction estimate ẑ0 quantifies the median bias of the

bootstrap distribution, which relates to the difference between median(θ̂r) and θ̂. The accel-

eration estimate γ̂ quantifies the rate of change of the standard error of θ̂ with respect to the

true parameter θ. Note that the bias correction estimate ẑ0 is simple to compute, whereas

the acceleration estimate γ̂ is more computationally costly. However, assuming that n� R,

estimating γ̂ is less costly than estimating ŜE(θ̂r), which often makes the BCa method less

computationally costly than the t table method.

Confidence Intervals 10 Nathaniel E. Helwig



7.4 Example Copyright c© October 17, 2020 by NEH

n

C
ov

er
ag

e 
R

at
e

10 25 50 100 200

0.
80

0.
90

1.
00

normal
percent
basic
student
bca

Figure 2: Coverage rates for different bootstrap confidence interval methods.

7.4 Example

A simple simulation study was conducted to explore the quality of the different confidence

interval methods. The simulation involved generating n ∈ {10, 20, 50, 100, 200} observations

from a χ2
1 distribution, and then using the nonparametric bootstrap to form a confidence

interval for the mean µ. As a reminder, the mean of a chi square distribution is the degrees

of freedom parameter k, which in this case is k = 1. For each sample size, I generated

10,000 independent samples of data of size n, and then I used the nonparametric bootstrap

methods to form 95% confidence intervals. The nonparametric bootstrap was implemented

using the np.boot function in the nptest R package (Helwig, 2020). The coverage rate

was defined as the proportion of the 10,000 replications where the given confidence interval

method contained the true parameter µ = 1. Comparing the results, the studentized (i.e., t

table) method performed best, but this is not surprising. The parameter of interest is the

mean, so we have a nice formula for calculating ŜE(θ̂r), which means that we didn’t need to

rely on an inner bootstrap to estimate the standard error of θ̂r. For other parameters, where

we don’t have a nice formula for calculating ŜE(θ̂r), we wouldn’t expect the studentized

method to perform as well. Also, note that the BCa method performed better than the

three basic methods, which is not surprising.
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