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Population information is used to select a design and to adjust

weights after the sample is observed.

Objectivity, i.e. good frequentist properties, under the selected

design is important.

For a Bayesian the information is summarized in their prior dis-

tribution. It is both easy and impossible to implement.

A stepwise Bayes approach can be easier to use and be objective.
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U is finite population with N units.

yi is value of single characteristic for unit i.

y = (y1, . . . , yN) ∈ Θ ⊆ RN

Let ∆ denote the sampling design which is used to select a
sample s ⊂ {1,2, . . . , N} of size n

The basic problem in sample survey is how to relate the infor-
mation in the sample

y(s) = {yi : i ∈ s}, the “seen”

to

y(s′) = {yj : j 6∈ s}, the “unseen”
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We will be interested in estimating a population total or mean

or median. Let

t(y) =
∑N
i=1 yi = Nµ(y)

When ∆ is simple random sampling without replacement

(SRSWOR) the usual estimator of t(y) is Nys = N
∑
i∈s yi/n

An unbiased estimator of its variance is

N2
(
1−

n

N

)vs
n

where

vs =
∑
i∈s

(yi − ys)2/(n− 1)

is the sample variance.
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Design based weights

Weights usually come from the sampling design.

If πi is the probability that unit i is included in the sample then

wi = 1/πi is the weight assigned to that unit.

A sampled unit’s weight represents how many units of the pop-

ulation it represents.

Under SRSWOR πi = n/N and so wi = N/n
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The Horvitz-Thompson Estimator

For a general design ∆ an unbiased estimator of t(y) is

δHT (y(s)) =
∑
i∈s

wiyi

Weights are often adjusted; examples are raking and calibration

There is a Taylor series argument for estimating the variance of

estimators of complicated functions.

Standard theory is sometimes obscure when it comes to variance

estimation.
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Auxiliary Variable

xi is the value of an auxiliary variable for unit i.

Sometimes all the xi’s are known and in other cases only x(s) is

known along with µ(x), the population mean of x.

In the second case either the ratio estimator or the regression

estimator can be used.

These estimators work best when the relationship between the

yi’s and xi’s follow certain linear models.
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The Bayesian Way

Ericson (JRSSB (1969)) and Basu (See Ghosh (1988))

Need a joint prior distribution for the population

P
(
y1, y2, . . . , yN

)

After observing the sample one must find

P
(
yj : j 6∈ s

∣∣∣ yi : i ∈ s
)

the conditional distribution of the unseen given the seen.

The posterior does not depend on the design.
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Bayesian inference is “easy”

Simulate from the posterior to get completed copies of the entire

population.

For the parameter of interest compute its value for each simu-

lated complete copy of the population. (No need to treat esti-

mating a mean or a median as different problems.)

Use these computed values to find approximately point and in-

terval estimates of the parameter of interest.

Can we find posteriors that have good design based properties?
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The Polya posterior
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Under the Polya Posterior

It is easy to generate a simulated complete copy of the population

(SCCP) using the Polya posterior

A SCCP will only contain values that appear in the sample.

If pi = (# of times yi appears in a SCCP)/N then E(pi) = 1/n.

Inferences can be made by generating many SCCP’s.

The total weight assigned to the sample values in the initial urn

is n.
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Under the Polya Posterior

The Polya posterior makes sense when little prior information is

available about the population, i.e. for a Bayesian their beliefs

about the yi’s are exchangeable. In such a case a frequentist

would use SRSWOR.

Under this posterior distribution one finds

E
(
µ
∣∣∣ yi i ∈ s) = ys

and

V ar
(
µ
∣∣∣ yi i ∈ s) =

(
1−

n

N

) vs
n

n− 1

n+ 1
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Not just a TTD

It yields a non-informative stepwise Bayes justification for some

standard design based procedures by proving their admissibility.

Joshi (1966)

Ghosh and Meeden (1997)

Lo (1988) Annals and Rubin (1981) Annals

Nelson and Meeden (2006) JSPI – Median

Lazar, Meeden and Nelson (2008) Survey Methodology

Strief and Meeden (2013) Survey Methodology

Geyer and Meeden (2013) Bayesian Analysis

Remember that on the average for each i ∈ s the value yi appears

N/n times in a SCCP.
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Relation to bootstrap

Assume SRSWOR and N = kn for some integer k. Given a

sample s a good guess for the population is just k copies of y(s).

The bootstrap assumes the guess is the “truth” and takes many

repeated samples of size n from the guess. For each resample it

calculates the estimate and uses these values to get an estimate

of variance. Gross (1980) and Booth, Butler and Hall (1994)

The Polya posterior uses the sample to construct many possible

different guesses for the population. For each simulated full copy

it calculates the parameter of interest. It uses these values to

get a point estimate and an estimate of its variance.
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The Approximate Polya Posterior

Suppose our beliefs about the unseen given the seen are ex-

changeable and n << N .

For a j ∈ s let pj be the proportion of units in a completed

simulated copy which take on the value yj. Then the distribution

of p = (p1, . . . , pn) under the Polya posterior is approximately the

uniform distribution on the n−1 dimensional simplex
∑
j∈s pj = 1.

So there are two ways to simulate from the Polya posterior; the

exact and the approximate.
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Auxiliary Variable

xi is value of an auxiliary variable for unit i.

Assume µ(x), the population mean of x, is known and we observe

yi and xi for all the units in the sample.

How should the approximate Polya posterior incorporate knowing

µ(x)?

Use the uniform distribution over the subset of the simplex de-

fined by ∑
j∈s

xjpj = µ(x)

Harder to simulate values from this restricted space.
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The Constrained Polya Posterior (CPP)

For situations where the regression estimator would be used the
point and interval estimators of the CPP behave almost the
same.

Chen and Qin (1993) Biometrika considered a point estimator of
the median of y assuming µ(x) is known. Meeden (1995) showed
that in a variety of populations the CPP did on the average 10%
better.

The CPP can incorporate constraints involving the median of x.
More generally it can incorporate linear equality and inequality
constraints, for several auxiliary variables.

We will now argue that the CPP yields weights for the units in the
sample in a natural way and that these weights yield inferences
with good design properties.
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Stepwise Bayes Weights

For j = 1, . . . , n let

wj = NECPP (pj)

where the expectation is taken with respect to the CPP. Note∑n
j=1wj = N .

These weights depend only on the observed values of the auxiliary
variables and the known population constraints and have the
usual interpretation.

Note such weights cannot arise in a full Bayesian analysis. It
happens here because the CPP assumes that only the values
that appear in the sample can occur in the population.

They do not depend explicitly on the sampling design. In many
problems however they can be used in frequentist formulas just
like design based weights.
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A “best guess” constructed population

Given a sample y(s) along with its weights consider the con-

structed population where the number of units in the population

of type (yi, xi) is wi for i = 1, . . . , n.

This then is our best guess for the unknown population and

ȳbw =
n∑
i=1

wi
N
yi and σ2

bw =
n∑
i=1

wi
N

(yi − ȳbw)2

are the mean and variance of this constructed population.

Next we will give an alternative way to think about this “best

guess” population.
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The Weighted Dirichlet posterior (WDP)

Given our weights, the wj’s, consider the the Dirichlet distribu-

tion over the simplex defined by the vector (nw1/N, . . . , nwn/N)

as an alternative posterior distribution for p = (p1, . . . , pn). It can

be used to generate complete simulated copies of the population.

We call this posterior the weighted Dirichlet posterior (WDP).

Note the WDP is a looser version of the CPP. Under the CPP

every complete copy of the population will satisfy the constraints.

Under the WDP, only the average of all the simulated populations

will satisfy the constraints.

Easier to simulate from the WDP than the CPP.
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Posterior mean and variance of µ(y) under the WDP

It is easy to see that under the WDP

E

( n∑
i=1

piyi

)
=

n∑
i=1

E(pi)yi =
n∑
i=1

wi
N
yi = ȳbw

V

( n∑
i=1

piyi

)
=

1

n+ 1
σ2
bw

where ȳbw and σ2
bw are the mean and variance of our “best guess”

constructed population.

The CPP and WDP will have the same point estimate of the pop-

ulation mean but the posterior variance of WDP will be larger.
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Design based weights

Let the wi’s be the inverse of the inclusion probabilities.

Let W =
∑n
i=1wi. Recall W need not equal N .

The mean and variance of this “best guess” population is

ȳdw =
n∑
i=1

wi
W
yi and σ2

dw =
n∑
i=1

wi
W

(yi − ȳdw)2
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Design based estimate of variance of ȳdw

This is a hard problem. The usual recommended approach is

to assume that the sampling was done with replacement, even

when it was the not. This yields the estimate

V̂d(ȳdw) =
1

n(n− 1)

n∑
i=1

(
n
wi
W
yi − ȳdw

)2

=
σ2
dw + γdw

n− 1

where

γdw =
n∑
i=1

wi
W
y2
i

(
n
wi
W
− 1

)
Note that when the design is simple random sampling and N = nk

then γdw = 0 and this estimate almost agrees with the WDP

estimate. It is off by the factor (n− 1)/(n+ 1).
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A simulation example

For a population of size 2,000 the x variable was a random sample
from a gamma(5) distribution + 20.

In population A the distribution of yi|xi was normal with mean
5xi and standard deviation 20 which yielded ρy,x = 0.49.

In population B 400 was added to each yi .

The sampling design was pps based on x.

The Horvitz-Thompson (HT) estimator should work well for pop-
ulation A.

It will be compared to the WDP estimator which assumes µ(x)
is known.
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Simulation results

For A t(y) = 249,044. Results based on 500 samples of size 50.

The HTRW estimator is the HT estimator renormalized so that

the weights sum to N = 2,000. The nominal coverage for each

method is 0.95

Population Method Ave. Ave. Freq of
abs err len coverage

A HT 4,628 21,898 0.940
B HT 8,965 43,914 0.960

A& B WDP 4,706 24,381 0.960
A HTRW 5,051 21,897 0.896
B HTRW 5,051 43,919 0.998
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Why is the WDP estimators more robust?

Let yi denote a unit’s value in population A and y′i its corre-

sponding value in population B. Then∑
i∈s

wiy
′
i =

∑
i∈s

wiyi + 400
∑
i∈s

wi

For the HT estimator the second term in the above equation is

adding additional variablity. For population B calculations show

that the term γdw is positive and can be quite large. (It tends

to be small and negative in population A.)

γdw is accounting for the extra variablity in the HT estimator in

population B which results from that fact that here yi ∝ 2xi+400

and not 2xi
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Another example

N = 2000

The Xi’s are iid gamma(5)

Yi|xi = 100 + (xi − 8)2 + Zi

Where the Zi’s are iid normal(0,202)

The total of the yi’s is 227,923.0

The median of the yi’s is 114.12
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The plot
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More on the Example

n = 60 and we assume all the xi’s in the population are known.

We form 3 post-strata using x[20] and x[40] the twentieth and

fortieth largest members of the sample. The 1st stratum is all

the units in the population ≤ x[20]. The 2nd all the population

units between x[20] and ≤ x[40].

We consider the post-stratified estimator and the regression es-

timator.

WDP use the constraints from the post-stratification and the

population mean of x.

We took 500 samples under 4 different sampling plans.
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SRS without replacement

ave min and max of CPP wts 0.658 1.58

Results for estimating the total = 227923.0

method ptest abserr lowbd length freqcov

freqstr 227856.1 4165.0 217190.1 21332.1 0.950

freqreg 227602.1 4302.7 216951.9 21300.3 0.944

wtdirch 227546.9 4190.6 216032.0 23029.7 0.958

Results for estimating the median = 114.12

wtdirch 113.33 2.675 106.205 14.554 0.956
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PPS proportional to x

ave min and max of CPP wts 0.374 3.024

Results for estimating the total = 227923.0

method ptest abserr lowbd length freqcov

freqstr 225295.8 5228.9 213791.6 23008.4 0.916

freqreg 224207.2 5611.2 213317.1 21780.3 0.878

wtdirch 227471.1 4919.2 216117.8 22706.6 0.936

Results for estimating the median = 114.12

wtdirch 113.587 2.734 106.486 14.273 0.950
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PPS proportional to iid gamma(5) + 5

ave min and max of CPP wts 0.651 1.583

Results for estimating the total = 227923.0

method ptest abserr lowbd length freqcov

freqstr 227976.5 4371.2 217349.4 21254.1 0.938

freqreg 227715.5 4462.2 217062.5 21305.9 0.934

wtdirch 227721.2 4420.6 216270.5 22901.4 0.950

Results for estimating the median = 114.12

wtdirch 113.558 2.694 106.464 14.265 0.952

WDP is slightly less efficient then SRS
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y Dependent (Range(y) → [1,2])

Results for estimating the total = 227923.0

method ptest abser length freqcov

freqstr 231,590.0 5,229.0 21,170.8 0.892

freqreg 231,424.4 5,143.4 21,127.9 0.902

wtdirch 231,139.1 4,967.6 22,867.0 0.938

WDP seems to give some slight protection against bias in sam-

pling design but can only do so much. If Range(y) → [1,4]

the WD intervals only cover 86% of the time while the freqstr

intervals cover just 80% of the time.
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Stratification and estimating the median

When only a few observations are taken from each strata, say

2, finding a good confidence interval for the population median

can be hard.

Suppose we have L strata where Nj is the size of stratum j.

Applying the Polya posterior independently within each stratum

means that each of the two sampled units in stratum j should get

weight LNj/N , since then 2
∑L
j=1LNj/N = 2L, the total sample

size.

Will compare the WDP with these weights to the standard esti-

mate.
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The population

L = 20 and N ′js ∼ iid Poisson(100).

The strata means ∼ iid Normal(150,σ2) with either σ = 10 or

σ = 20.

The strata standard deviations ∼ iid from a gamma distribution

with scale parameter one and shape parameter γσ with either

γ = 0.10 or γ = 0.25.

We took 500 samples and compared the two methods.
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Simulation Results

Method Ave. Ave. Ave. Freq of

value err len coverage

sigma=10 and gamma=0.10

Stand 148.40 2.37 8.30 0.808

WDP 148.39 2.22 12.20 0.950

sigma=10 and gamma=0.25

Stand 144.28 5.70 20.59 0.834

WDP 144.18 5.41 28.3 0.950

sigma=20 and gamma=0.10

Stand 152.75 3.02 10.52 0.828

WDP 152.61 2.78 22.88 0.996

sigma=20 and gamma=0.25

Stand 155.94 6.72 23.17 0.826

WDP 155.89 6.35 34.96 0.962
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Comments

The point estimator based on the WDP seems to do just a bit

better. but the confidence intervals produced by WDP are clearly

superior.

Results when L = 40 are similar.

Too long intervals for WDP happen when the strata means vary

widely and the strata variances tend to be relatively small.

When the sample size was increased to four units per stratum

the difference between the two methods is not so dramatic but

the story remains much the same.
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More on Weights

The frequentist theory of weights is a mess? Gelman (2007)

A good set of weights is one which yields a good “best guess”

for the population. The weights need not depend on the se-

lection probabilities. Ignoring this fact creates (I believe) many

difficulties for the standard theory. (Rao and Wu (2010))

Stepwise Bayes weights incorporate the same kinds of informa-

tion that are used in the design based approach.

If the range of the Stepwise Bayes weights is not too large then

one can use them in the the usual frequentist Taylor series ap-

proach to variance estimation. (Strief (2007))
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Concluding Remarks

Estimators based on the CPP are consistent. Geyer and Meeden
(2013).

The CPP and WDP have the advantages of the Bayesian ap-
proach but are objective.

Will work when prior information involves linear equality and in-
equality constraints on population quantities of auxiliary vari-
ables and yields estimates of population quantities other than
the mean.

More work needs to be done for more complicated designs.
Meeden (1999) considered cluster sampling.

Computations were done using the R package polyapost avail-
able on CRAN. Simulating complete copies of the population
becomes harder for more complicated designs.
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