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Abstract 

In finite population sampling prior information is often available in the form of partial knowledge about an auxiliary 

variable, for example its mean may be known. In such cases, the ratio estimator and the regression estimator are often used 

for estimating the population mean of the characteristic of interest. The Polya posterior has been developed as a 

noninformative Bayesian approach to survey sampling. It is appropriate when little or no prior information about the 

population is available. Here we show that it can be extended to incorporate types of partial prior information about 

auxiliary variables. We will see that it typically yields procedures with good frequentist properties even in some problems 

where standard frequentist methods are difficult to apply.  
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1. Introduction 
 
Finite population sampling is one area of statistics where 

prior information is used routinely when making inferences. 

In most cases this prior information is not incorporated into 

the problem in a Bayesian manner. One reason for this is 

that the prior information usually does not lead, in a obvious 

way, to a sensible prior distribution. In the predictive 

approach (see Valliant, Dorfman and Royall 2000) a model 

is assumed and its unknown parameters are estimated after 

the sample has been observed. In the usual frequentist 

theory the prior information is encapsulated in the prob-

ability sampling plan or sample design. Basu showed that 

after the sample has been observed, the sampling design 

plays no role in the posterior distribution for a Bayesian. 

(For this fact and more of Basu’s thoughts on finite popu-

lation sampling see Ghosh (1988).) Although this radical 

conclusion has not been accepted by all Bayesians it is true 

that the usual frequentist theory and the Bayesian approach 

to survey sampling do not have a lot in common.  

Traditional theory in survey sampling has emphasized 

estimation of the population mean. When the population 

mean of an auxiliary variable is known a priori the ratio 

estimator or the regression estimator is often employed. If 

one wishes to estimate something other than the mean, say a 

population quantile or the population distribution function, 

or if one has prior information about the auxiliary variable 

other than its mean then new methods need to be developed. 

Recent work along this line can be found in Chen and Qin 

(1993), Chen and Sitter (1999), Mak and Kuk (1993), Kuk 

and Mak (1989), Rao, Kovar and Mantel (1990) and 

Chambers and Dunstan (1986).  

One advantage of a Bayesian approach is that a sensible 

posterior distribution for the population will incorporate the 

prior information into the estimation of several population 

parameters. Even if the posterior does not have a closed 

expression for a particular estimator for any given sample 

we can find its value approximately. This is done by 

sampling from the posterior distribution to simulate com-

plete copies of the population and employing Monte Carlo 

estimation methods. If the posterior does not have a 

convenient form for sampling one should be able to use 

Markov Chain Monte Carlo methods to implement the 

simulation process. For each such simulated copy one 

computes the value of the parameter of interest. By 

simulating many such full copies of the population one can 

find, approximately, the corresponding Bayes point and 

interval estimates of the given population parameter. The 

problem then is to find a sensible Bayesian population 

model which utilizes the type of prior information available 

for the auxiliary variable.  

Often, sensible Bayesian models can be based on the 

Polya posterior. The Polya posterior is a noninformative 

Bayesian approach to finite population sampling which uses 

little or no prior information about the population. A good 

source for more discussion on this approach is Ghosh and 

Meeden (1997). It is appropriate when a classical survey 

sampler would be willing to use simple random sampling as 

their sampling design. Here we show how it can be 

extended to cases where prior information about an 

auxiliary variable is present. For example the mean or 

median of an auxiliary variable might be known exactly or 

known to belong to some interval of possible values.  
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The basic idea is to constrain or restrict the Polya 

posterior to put positive probability only on simulated 

populations which satisfy the constraints specified by the 

prior information for the auxiliary variables. This appro-

priately constrained Polya posterior can then be used to 

make inferences about the population parameters of interest. 

In Nelson and Meeden (1998) the authors considered 

several scenarios where a constrained Polya posterior 

yielded sensible frequentist results. There it was assumed 

that information about the population quantiles of the 

auxiliary variable was known a priori. Here we assume that 

we have more general forms of prior information about 

either the population mean or population quantiles for a set 

of auxiliary variables. These quantities may either be known 

exactly or known only to belong to some interval.  

In section 2 we review the Polya posterior. In section 3 

we introduce the constrained Polya posterior and discuss 

how to use Markov Chain Monte Carlo methods to find, 

approximately, the value of an estimate based on this 

distribution. In section 4 we apply the Polya posterior in a 

variety of situations and compare it to standard methods. In 

section 5 we discuss more formally how it relates to some 

standard frequentist methods. In section 6 we see that the 

constrained Polya posterior can used with designs other than 

simple random sampling. In section 7 we give a few 

concluding remarks. In the appendix we prove an 

admissibility result for the constrained Polya posterior 

which gives a theoretical justification for the methods 

presented here.  

 
2. The Polya posterior 

 
Consider a finite population consisting of N  units. For 

unit i  let ,iy  a real number, be the unknown value of some 

characteristic of interest. We assume the unknown state of 

nature, 1( ),Ny y … y= , ,  belongs so some known subset of 

N -dimensional Euclidian space. Suppose we wish to 

estimate some function ( ),yγ  of the unknown state of 

nature. The next step for a proper Bayesian analysis would 

be to specify a prior distribution over the parameter space. 

Then, given a sample generated by the sampling design, one 

would determine the posterior distribution of the un-

observed members of the population conditioned on the 

values of the observed units in the sample. In most cases the 

posterior will not depend on the sampling design.  

The Polya posterior can be used like a proper posterior 

distribution although it does not arise from a proper 

Bayesian model. It would be appropriate when there is little 

known about the population and the sample is assumed to 

be representative of the population. An example when it 

would be appropriate is when the sampling design is simple 

random sampling. Next, we briefly describe this distribution 

and outline its theoretical justification.  

Given the data, the Polya posterior is a predictive joint 

distribution for the unobserved units in the population 

conditioned on the values in the sample. Given a sample we 

now show how to generate a set of possible values for the 

unobserved units from this distribution. Consider two urns 

where the first urn contains the n  units in the sample along 

with their observed y  values. The second urn contains the 

N n−  unsampled units. We begin by choosing one unit at 

random from each of the two urns. We then assign the 

observed y  value of the unit selected from the first urn to 

the unit selected from the second urn and then place them 

both in the first urn. The urns now contain 1n +  and 

1N n− −  balls respectively. This process is repeated until 

all the units have been moved from the second urn to the 

first and have been assigned a value. At each step in the 

process all the units in the first urn have the same 

probability of being selected. That is, the units which have 

been assigned a value are treated just like the ones that 

actually appeared in the sample. Once this is done, we have 

generated one complete realization of the population under 

the Polya posterior distribution. This simulated, completed 

copy contains the n  observed values along with the N n−  

simulated values for the unobserved members of the 

population. Hence, simple Polya sampling yields a predict-

tive distribution for the unobserved given the observed. A 

good reference for Polya sampling is Feller (1968). The 

Polya posterior is related to the Bayesian bootstrap of Rubin 

(1981). See also Lo (1988) and Binder (1982).  

This predictive distribution often generates estimators 

similar to standard frequentist estimators under simple ran-

dom sampling. Consider, for example, estimation of the 

population mean. Before continuing we need a bit more 

notation.  

Let s  denote a possible sample of size ( ).n s  It is a 

subset of {1 2 },… N, , ,  the set of labels for the finite 

population. If 1 ( ){ }n ss i … i= , ,  then 
1 ( )

{ }
n ss i iy y … y= , ,  is 

the set of observed values for ,y  the characteristic of 

interest. We let ( )sz s y= ,  denote a typical observed 

sample. Then given ( )sz s y= ,  we have  

( )

1

( )
j

n s

s i
j

y n sz
=

= /∑  

and 
( )

2

1

Var( ) ( ) ( ( ) 1)
j

n s

si
j

z y n sz
=

= − / −∑  

are the sample mean and sample variance. Let ( )mn yγ =  

1
N
i iy N=∑ /  be the population mean. Under the Polya 

posterior distribution,  

( ( ) ) smnE y z zγ | =  
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and 

Var( ) ( ) 1
Var( ( ) ) (1 )

( ) ( ) 1mn

z n s
y z f

n s n s

−γ | = −
+

 

where ( ) .f n s N= /  Note that, except for the last factor in 

the posterior variance, these two terms are just the sample 

mean and its variance under simple random sampling. The 

design probabilities play no explicit role in these calcu-

lations. Nonetheless, for the Polya posterior to be appro-

priate, in the judgment of the survey sampler, the values for 

the characteristic of interest for the observed and un-

observed units need to be roughly exchangeable. It is in 

such situations that simple random sampling without re-

placement is used.  

Under the Polya posterior the Bayesian credible interval 

for the population mean or point and interval estimates of 

other population quantities cannot always be found explic-

itly. In such cases it is easy to find these estimates ap-

proximately by repeatedly simulating completed copies of 

the population. For each simulated copy we calculate the 

population parameter of interest. Experience has shown that 

500 to 1,000 simulated values will usually give good results. 

The mean of these computed values will be our point 

estimate and the 0.025 and 0.975 quantiles of these 

computed values will be our interval estimate.  

Since under the Polya posterior the only y  values that 

appear in a simulated completed copy of the population are 

those that appeared in the sample the Polya posterior is just 

a way to assign random weights, i.e., probabilities, to the 

units in the sample. Under the Polya posterior the average 

weight assigned to each unit in the sample is 1 ( )n s/  so, as 

we have seen, its estimate of the population mean is just the 

sample mean. It is this relationship and the Bayes like 

character of the Polya posterior which allows one to prove 

the admissibility of the sample mean for estimating the 

population mean under squared error loss. This suggests that 

inferential procedures based on the Polya posterior will tend 

to agree with frequentist procedures and will have good 

frequentist properties.  

As further documentation of this point we note that 

recently two of the authors (Nelson and Meeden 2006) dem-

onstrated that Bayesian credible intervals based on the Polya 

posterior for the population median agree asymptotically 

with the standard Woodruff interval (Woodruff 1952). For 

another example consider estimating either the mean or the 

total of a subpopulation or domain when a simple random 

sample from the entire population is used. Here the number 

of units in the sample which belong to the domain is a 

random variable. Hence the mean of the units in the sample 

which fall into the domain is the ratio of two random 

variables. This estimate is more complicated than the mean 

of all the units in the sample. To get an estimate of variance 

for this estimator the usual frequentist method conditions on 

the number of units in the sample that are in the domain. 

However when estimating the domain total this conditional 

argument does not work and an unconditional method is 

used to get an estimate of variance. See for example 

Cochran (1976). Recently one of the authors (Meeden 2005) 

showed that inferences based on the Polya posterior agree 

with the usual frequentist answers. Hence the Polya 

posterior handles both situations with one simple theory. It 

is important to remember that conditioning in the frequentist 

approach can be done under simple random sampling but 

for more complex designs, conditioning is not generally 

feasible since the conditional randomization distribution is 

unknown. As a final example note that the usual frequentist 

two stage cluster sampling procedures can be been justified 

from an extension of the Polya posterior (Meeden 1999).  

The Polya posterior is similar in spirit to bootstrap 

methods for finite population sampling. Both methods use a 

type of exchangeability argument to generate pseudo-

versions of the population. The basic idea for the bootstrap 

is found in Gross (1980). Suppose we have a simple random 

sample of size ( )n s  from the population and suppose 

( )N n s m/ =  is an integer. Given the sample we create a 

good guess for the population by combining m  replicates of 

the sample. We then take repeated random samples of size 

( )n s  from this created population to study the behavior of 

the estimator of interest. The asymptotic properties of 

estimators can also be studied (see Booth, Bulter and Hall 

1994 for details). This is in contrast to the Polya posterior 

which for a fixed sample generates complete versions of the 

population and examines the distribution of the parameter of 

interest in the population rather than properties of the 

estimator for the parameter. For the given population 

quantity of interest the properties of its estimator derive 

directly from this predictive distribution for the population 

values.  

The Polya posterior is the Bayesian bootstrap of Rubin 

(1981) applied to finite population sampling. The original 

Bayesian bootstrap applies to a random sample from an 

infinite population. Rubin showed that the bootstrap and 

Bayesian bootstrap are operationally very similar. The same 

type of analogy holds for the finite population setup. To 

study the variability of an estimator each repeatedly assigns 

random weights to the units in the sample. The logic for 

assigning the weights are different in the two cases as well 

as their theoretical justifications. The bootstrap has an 

asymptotic justification under repeated random sampling. 

The Polya posterior has a decision theoretic justification 

based on its stepwise Bayes nature (Ghosh and Meeden 

1997).  

Rather than generating a complete copy of the population 

it is often more efficient to use a well known approximation 



54 Lazar, Meeden and Nelson: A noninformative Bayesian approach to finite population sampling 

 

 

Statistics Canada, Catalogue No. 12-001-X 

to the Polya posterior. Assume that the sampling fraction f  

is small. For 1 ( )j … n s= , ,  let jp  be the proportion of 

units in a complete simulated copy of the entire population 

which take on the value .jy  Then, under the Polya 

posterior, 1 ( )( )n sp p … p= , ,  has approximately a Dirichlet 

distribution with a parameter vector of all ones, i.e., it is 

uniform on the ( ) 1n s −  dimensional simplex, where 
( )
1 1.n s

j jp=∑ =  This approach will be very useful when we 

consider the constrained Polya posterior.  
 

3. The constrained Polya posterior 
 
3.1 The basic idea  
In many situations, in addition to the variable of interest, 

,y  the sampler has in hand auxiliary variables, ,x  for which 

prior information is available. For example, the population 

mean, ,xµ  of x  could be known. Given a unit in a random 

sample we observe its pair of values ( ).y x,  Following our 

earlier notation we denote the sample by  

1 1 ( ) ( )
( ( ) ) ( {( ) ( )}).

n s n ss i i i iz s y x s y x … y x= , , = , , , , ,  

In this situation the regression estimator is often used 

when estimating the population mean. How should the 

Polya posterior be adjusted to take into account the fact that 

the population mean of x  is known? The simple answer is 

to constrain the predictive distribution to put mass only on 

populations consistent with the prior information. In 

practice, we would only generate completed copies of the 

population consistent with the known prior information. To 

see how this can be done we consider the approximate form 

of the Polya posterior described at the end of the previous 

section.  

For 1, , ( )j … n s=  let jp  be the proportion of units in a 

completed copy of the population that have the value 

( ).
j ji iy x,  Rather than using the uniform distribution for 

1 ( )( )n sp p … p= , ,  over the simplex to generate simulated 

copies of the population we should use the uniform 

distribution restricted to the subset of the simplex satisfying  

( )

1

.
j

n s

j i x
j

p x
=

= µ∑  (1) 

Before describing how we can generate vectors of p  

from this constrained Polya posterior we consider how the 

resulting estimator is related to the regression estimator.  

Numerous simulation results (not presented here) show 

that the constrained Polya posterior behaves very much like 

the regression estimator under simple random sampling. 

The following simple argument shows why these two point 

estimates should often agree even though the Polya 

posterior makes no assumptions about the relationship 

between y  and .x  

Suppose in the population i i iy a bx= + + ε  where iε  
is a random error with expectation zero. Let X  be the 

known population mean of .x  Then given a sample and 

ip ’s satisfying i s i ip x X∈∑ =  we have  

( )

ˆ ˆ

ˆ( )

i i i i i i i

i s i s i s i s

ss

ss

E p y aE p bE p x E p e

a bX

b bXy x

b Xy x

∈ ∈ ∈ ∈

     = + +     
     

+

− +

= + −

∑ ∑ ∑ ∑

≐

≐

 

where b̂  is the least squares estimate of .b  Here the sample 

values are fixed and the ip ’s and ie ’s are random and the 

expectation of the ip ’s is with respect to the constrained 

Polya posterior. The first approximation follows since under 

simple random sampling we expect to see balanced samples 

on the average and the ip ’s and ie ’s to be roughly 

independent.  
 
3.2 Linear constraints and the Polya posterior 
 
Prior information involving auxiliary variables can arise 

in many ways. We have already discussed the case where 

the population mean of an auxiliary variable is known. 

Another case is knowing a population median. More gen-

erally one might only know that a population mean or 

median belongs to some interval of real numbers. Although 

such cases are little discussed in the usual design based 

literature they seem quite realistic. Another case is where a 

pair of auxiliary variables describe a two way table where 

each unit must belong to one of the cells and the population 

row and column totals for the numbers falling into each cell 

are known. Before describing the constrained Polya 

posterior approach to such problems we need to mention a 

minor technical point.  

Suppose the population mean of the auxiliary variable x  

is known to equal ( ).xµ  There will be samples where the 

value of x  is less than ( )xµ  for each unit in the sample. In 

such cases it would be impossible to use the constrained 

Polya posterior. But as a practical matter this will hardly 

ever happen. We will always assume that the sample we are 

considering is “consistent” with the prior information. This 

is explained in more detail just below. In our simulation 

studies we always reject a sample which is not consistent 

and select another. Again, in most cases, the probability of 

having to reject a sample is very small.  

Each of our examples of prior information can be 

represented by one or more linear equality or inequality 

constraints. We have seen that knowing the population 

mean yields one linear equality constraint. If one knows that 

the population mean falls in some interval this yields two 
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linear inequality constraints. We next develop some notation 

that will allow us to consider a variety of situations where 

prior information can be described using linear equality and 

inequality constraints.  

We assume that in addition to the characteristic of 

interest y  the population has a set of auxiliary variables 
1 2 .mx x … x, , ,  For unit i  let  

1 2( ) ( )m

i i i i i iy x y x x … x, = , , , ,  

be the vector of values for y  and the auxiliary variables. 

We assume that for any unit in the sample this vector of 

values is observed. We assume the prior information about 

the population can be expressed through a set of weighted 

linear equality and inequality constraints on the distinct 

auxiliary values in the population with weights corre-

sponding to the proportions of the population taking these 

individual distinct values. We illustrate this issue more 

precisely by explaining how we translate this prior infor-

mation about the population to the observed sample values 

so that we can construct pseudo-versions of the population 

consistent with the prior information.  

Let s  be a sample and, for 1 2 ( ),j … n s= , , ,  let 

( )
j ji iy x,  be the observed values which for simplicity we 

assume are distinct. Let 1 ( )( )n sp p … p= , ,  be the 

proportion of units which are assigned the value ( )
j ji iy x,  in 

a simulated complete copy of the population. Any linear 

constraint on the population values of an auxiliary variable 

will translate in an obvious way to a linear constraint on 

these simulated values. For example, if the population mean 

of 1x  is known to be less than or equal to some value, say 

1,b  then for the simulated population this becomes the 

constraint  

( )
1

1
1

.
j

n s

j i
j

p x b
=

≤∑  

If the population median of 2x  is known to be equal to 

2b  then the constraint for the simulated population becomes  

( )

1

0 5
n s

j j
j

p w
=

= .∑  

where 1jw =  if 2

2ji
x b≤  and it is zero otherwise. If the 

population mean of 2x  is less than or equal to the 

population mean of 3x  then the simulated population 

constraint becomes  

( )
2 3

1

( ) 0.
j j

n s

j i i
j

p x x
=

− ≤∑  

Hence, given a family of population constraints based on 

prior information and a sample we will be able to represent 

the corresponding constraints on the simulated p  by two 

systems of equations  

1 1sA p b, =  (2) 

2 2sA p b, ≤  (3) 

where 1 sA ,  and 2 sA ,  are 1 ( )m n s×  and 2 ( )m n s×  matrices 

and 1b  and 2b  are vectors of the appropriate dimensions. 

This generalizes the argument leading to equation 1.  

We assume the sample is such that the subset of the 

simplex it defines by equations 2 and 3 is non-empty. For 

such a sample the asymptotic approximation to the con-

strained Polya posterior puts a uniform distribution over this 

subset of the simplex. Before addressing the issue of 

simulation from this distribution we note that it has a 

theoretical justification. It can be given a stepwise Bayes 

justification which guarantees that it will yield admissible 

procedures. Details are given in the appendix.  
 
3.3 Computation  
Let P  denote the subset of the simplex which is defined 

by equations 2 and 3. P  is a non-full dimension polytope. 

We would like to generate independent observations from 

the uniform distribution over .P  Unfortunately we do not 

know how to do this. Instead, we use Markov chain Monte 

Carlo (MCMC) methods to generate dependent samples.  

In particular we will use the Metropolis-Hastings 

algorithm which depends on using a Markov chain to 

generate a dependent sequence of random values for 

.p P∈  The process works as follows. We begin by finding 

a starting point in 0p  in the relative interior of .P  This is 

Step 1 below. Next we choose a random direction d  in .P  

This is a bit tricky because the dimension of P  is strictly 

less than ( ) 1.n s −  This is accomplished in Steps 2 and 3 

below. Next we find the line segment which is the 

intersection of the line passing through 0p  in direction d  

with .P  This is Step 4 below. Next we choose a point at 

random from the uniform distribution over this line 

segment. This is the first observation in our Markov chain. 

We then repeat the process with this point playing the role 

of 0p  to get a second random point. Letting this second 

random point play the role of 0p  we get a third and so on. 

More formally our algorithm is:   
Step 1. Choose an initial positive probability vector 0p  

such that 1 0 1sA p b, =  and 2 0 2sA p b, <  and set 

0.i =    
Step 2. Generate a random direction id  uniformly 

distributed over the unit sphere in .nR   
Step 3. Let id ∗  be the normalized projection of id  onto the 

null space of 1 .sA ,   
Step 4. Find the line segment { }i i iL R p d P∗= α∈ | +α ∈  

and generate iα  uniformly over the line segment.   
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Step 5. Set 1i i i ip p d ∗
+ = +α  and 1i i= +  and go back to 

step 2.  

 

At first glance it might not be clear what role the 

constraints are playing in this process. They are there 

however through the definition of .P  The Markov chain 

generated in this way converges in distribution to the 

uniform distribution over the polytope. The convergence 

result of such mixing algorithms was proven by Smith 

(1984). If we wish to approximate the expected value of 

some function defined on P  then the average of the 

function computed at the simulated values converges to its 

actual value. This allows one to compute point estimates of 

population parameters. Finding the 0.95 Bayesian credible 

interval approximately is more difficult.  

One possibility is to run the chain for a long time; for 

example, we may generate 4.1 million values, throw away 

the first 100,000 values, and find the 0.025 and 0.975 

quantiles of the remaining values. These two numbers will 

form our approximate 0.95 credible interval. In this 

manuscript we will only consider sample sizes of less than 

100. For such sample sizes we have found that chains of a 

few million suffice.  

How fast a chain mixes can depend on the constraints 

and the parameter being estimated. It seems to take longer to 

get good mixing when estimating the median than when 

estimating the mean. This is not surprising when one recalls 

that in standard bootstrap methods many more bootstrap 

samples are required when estimating quantiles rather than 

means. See for example Efron and Tibshirani (1993).  

Another approach which can work well is to run the 

chain for a long time and then just use every thm  point 

where m  is a large integer. Although this is inefficient it 

can give good answers when finding a 0.95 credible interval 

for the median.  

 
4. Applications 

 
In this section we show how various types of partial 

information about auxiliary variables can be incorporated in 

the estimation of the parameters when the constrained Polya 

posterior is employed. In many instances, the prior 

information used in the constrained Polya posterior 

estimation cannot be utilized by the standard frequentist 

methods.  
 
4.1 Stratification  
Stratification is a type of prior information which is 

commonly used in finite population sampling. We note that 

the usual stratified estimator can be thought of as arising 

from independent Polya posteriors within each stratum. 

Details can be found in Vardeman and Meeden (1984). 

When, in addition to stratification, an auxiliary variable is 

present a good estimate of the population mean can be 

found by combining the estimates obtained from the 

regression estimator within each stratum. For details, see 

Cochran (1976). If only the population mean of the auxiliary 

variable is known then under standard approaches it is 

difficult to combine this information with stratification 

unless a common model is assumed across strata. The 

constrained Polya can incorporate both types of information 

which can lead to improved estimates yet it does not require 

the common model assumption.  

To demonstrate, we constructed a stratified population of 

size 900 consisting of three strata. The strata sizes were 300, 

200 and 400. There were two auxiliary variables, say 1x  and 

2.x  In stratum one the 1 ix , ’s were a random sample from a 

gamma (10 1),  distribution and the 2 ix , ’s were a random 

sample from a gamma (2 1),  distribution. In the second 

stratum the 1 ix , ’s and the 2 ix , ’s were generated by the 

gamma (15 1),  and the gamma (7 1),  distributions respect-

tively. In the third stratum the 1 ix , ’s and the 2 ix , ’s were 

generate by the gamma (5 1),  and the gamma (3 1),  distri-

butions respectively. The characteristic of interest for the 

population was generated as follows:   
stratum 1: 1 21i i i iy x x= + + ε  

stratum 2: 1 1 23i i i i iy x x x= + + + ε  

stratum 3: 2 1 22i i i i iy x x x= + + + ε  
 
where in stratum one the iε ’s were normal(0 1),,  while in 

stratum two they were 2normal (0 1 5 ),, .  and in stratum three 

they were 2normal (0 3 5 )., .  All the iε ’s were independent.  
In addition to the strata sizes we assumed that the 

population median of 1x  and the population mean of 2x  

were known. We generated 500 random samples according 

to our sampling plan drawing 75 units such that 25 units 

were in the first stratum, 20 units were in the second stratum 

and 35 units were in the third stratum. For each sample we 

computed the sample mean, the usual stratified estimate 

which is the sum of the sample means within each stratum 

adjusted for the size of all strata, the constrained Polya 

estimate, and the corresponding 95% confidence intervals 

and 0.95 credible intervals for these estimates.  

The results of the simulations are given in Table 1. From 

the table, we see that the constrained Polya estimator on 

average agrees with the usual stratified estimator and is 

essentially unbiased. But its average absolute error is much 

smaller than the average errors of the other two. This is to be 

expected since the more information an estimator uses the 

better it should perform and the constrained Polya estimates 

are using information from the auxiliary variables that is 

ignored by the estimates which just use stratification. Note 

that the constrained Polya made no assumptions about how 

y  and 1x  and 2x  were related. Furthermore it is not clear 
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how standard methods could make use of knowing the 

population median of 1x  and the population mean of 2.x  If 

just information about means is available then the empirical 

likelihood based methods of Chen and Sitter (1999) and 

Zhong and Rao (2000) could be used. The results clearly 

show that the constrained Polya posterior is utilizing this 

additional information in a sensible manner.  
 
Table 1 

Simulation results for the stratified example where the median 
of the first auxiliary variable and the mean of the second are 
known 
 

Method point estimate 95% confidence or credible intervals 

 Ave. of 

estimate 

Ave. of 

absolute 

error 

Ave. of 

lower bound 

Ave. 

length 

Freq. of 

coverage 

Meanest 47.978 4.821 36.44 23.09 1.000 

Strataest 43.395 2.072 38.22 10.35 0.942 

Polyaest 43.355 1.516 40.19 6.75 0.936 

 

In this example the constrained Polya estimates were 

obtained using Markov chains of length 4,000,000 after the 

initial 100,000 points were discarded.  
 
4.2 Categorical auxiliary variables  
Assume that the elements of a population of known size 

N  are associated with the elements of k  categorical 

auxiliary variables. For simplicity, we consider 2k =  but 

the theory applies to more than two categorical variables. If 

one auxiliary variable takes on r  distinct values and the 

other takes on c  distinct values they allow the elements of 

the population to be classified into a two-way table with 

r c×  cells. Let ijN  be the number of elements in the 

population that belong to the ij -cell, for i  in {1 }r, ...,  and 

j  in {1 },c, ...,  then 1 1 .r c
i j ijN N= =∑ ∑ =  If the ijN ’s are 

known and s  is a random sample with ijn  elements from 

the ij -cell then a good estimate of the population mean is 

given by 

1 1
,

r c sij

iji j

N
y

N= =∑ ∑  

where 
s

ijy  is the mean of the ijn  elements from the ij -cell 

in the sample. This is the usual stratified estimator where the 

cells in the table are consider the strata.  

A harder problem is the estimation of the population 

mean when the counts, ijN ’s, are not known but the 

marginal counts are known. Let 1
c
ji ijN N=∑. =  denote the 

marginal row counts, for i  in {1 }r, ...,  and 1
r
ij ijN N=∑. =  

denote the marginal column counts, for j  in {1 }.c, ...,  In 

such cases, one way of estimating the population mean is 

the frequentist procedure called calibration or raking. In this 

procedure, given a sample ,s  the estimator is given by 

,ˆ kk s kyw∈∑  where the ˆ kw ’s are not the design weights but 

are new weights assigned to the units in the sample. A good 

set of weights needs to satisfy two conditions. The first is 

that the weights must preserve the known marginal counts, 

for example, ( ) ˆ kk s j jNw∈ ⋅,∑ = .  where ( )s j⋅,  is the portion 

of the sample falling in the thj  column of the two-way 

table. The second is that the weights should in some sense 

be close to the sampling design weights 1 ,k/π  where 

( ).k P k sπ = ∈  Depending on the function used to measure 

the distance different calibration estimators can be obtained. 

Although this is a sensible idea, selecting the right distance 

measure and then getting a sensible estimate of variance for 

the resulting estimator has no standard frequentist answer. 

For details, see Deville and Särndal (1992).  

The Polya posterior gives an alternative approach to this 

problem since the information provided by the known 

marginal totals determines a set of linear constraints on the 

random weights it assigns to the units in the sample. If there 

are continuous auxiliary variables for which we have prior 

information then additional constraints can be added. To see 

how this could work in practice we considered a simple 

example with two dichotomous variables so each unit can 

be classified into a cell of a 2 2×  table, together with a 

third continuous auxiliary characteristic. We assumed four 

different levels of prior information.   
1. The marginal counts for the 2-way table are known.  

2. The marginal counts and the mean of the continuous 

auxiliary variable are known.  

3. The marginal counts and the median of the 

continuous auxiliary variable are known.  

4. The marginal counts are known and the mean of the 

continuous auxiliary variable is known to lie between 

two bounds. We chose the 45
th
 and 65

th
 quantiles of 

its population of values to specify these bounds.   
For each case we formed a population using the 

following model where all the random variables are 

independent.  
 
Cell 1,1 gamma (8 1),ix ,∼

2normal(0 7 )iε ,∼  and iy =  
25 3 i ix+ + ε  for i  in {1 150}., ...,   

Cell 1,2 gamma (10 1),ix ,∼
2normal(0 7 )iε ,∼  and iy =  

25 3 i ix+ + ε  for i  in {1 350}., ...,   
Cell 2,1 gamma (6 1),ix ,∼

2normal(0 4 )iε ,∼  and iy =  
25 2 i ix+ + ε  for i  in {1 250}., ...,   

Cell 2,2 gamma (4 1),ix ,∼
2normal(0 4 )iε ,∼  and iy =  

25 2 i ix+ + ε  for i  in {1 250}., ...,  
 
For each of the cases we generated a population and took 

500 random samples of size 80 with 20 units from each cell. 

For each sample we computed the sample mean and the 

stratification estimate, assuming that the true population cell 

counts were known, and their corresponding 95% confi-

dence intervals. We also computed the constrained Polya 
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estimates along with their 0.95 credible intervals. The 

constrained Polya estimates were obtained from the last 

4,000,000 points of a Markov chain of size 4,100,000. The 

results of the simulations are given in Tables 2 through 5. 

The results in the tables show that the constrained Polya 

estimates based on known marginal counts and a known 

mean, median or known interval about the mean are better 

than the strata estimates based on known cell counts. The 

stratified estimates are better than the constrained Polya 

posterior only when the constrained Polya posterior only 

makes use of the known marginal counts.  
 
Table 2 
Simulation results for the categorical example when just the 

marginal cell counts are assumed known 
 

Method point estimate 95% confidence or credible intervals 

 Ave. of 

estimate 

Ave. of 

absolute 

error 

Ave. of 

lower bound 

Ave. 

length 

Freq. of 

coverage 

Meanest 43.805  0.919  41.107  5.396  0.976  

Strataest 44.355  0.846  42.259  4.191  0.940  

Polyaest 43.909  0.896  41.863  4.197  0.922  

 
Table 3 
Simulation results for the categorical example when the 

marginal cell counts and the mean of the auxiliary variable are 
assumed known 
 

Method point estimate 95% confidence or credible intervals 

 Ave. of 

estimate 

Ave. of 

absolute 

error 

Ave. of 

lower bound 

Ave. 

length 

Freq. of 

coverage 

Meanest 43.804  0.922  41.063  5.482  0.964  

Strataest 44.399  0.862  42.272  4.256  0.942  

Polyaest 44.506  0.510  43.257  2.497  0.960  

 
Table 4 

Simulation results for the categorical example when the 
marginal cell counts and the mean of the auxiliary variable are 
assumed known 
 

Method point estimate 95% confidence or credible intervals 

 Ave. of 

estimate 

Ave. of 

absolute 

error 

Ave. of 

lower bound 

Ave. 

length 

Freq. of 

coverage 

Meanest 43.439  0.877  40.783  5.312  0.986  

Strataest 43.927  0.884  41.804  4.244  0.940  

Polyaest 43.784  0.785  42.032  3.640  0.920  

 
Table 5 
Simulation results for the categorical example when the 
marginal cell counts are assumed known and the mean of the 

auxiliary variable is known to lie between its known 45th and 
65th quantiles 
 

Method point estimate 95% confidence or credible intervals 

 Ave. of 

estimate 

Ave. of 

absolute 

error 

Ave. of 

lower bound 

Ave. 

length 

Freq. of 

coverage 

Meanest 43.463  0.840  40.789  5.348  0.978  

Strataest 43.948  0.865  41.825  4.245  0.948  

Polyaest 43.519  0.829  41.555  4.029  0.938  

 
 
 

4.3 An example  
In this section we consider data from the Veterans Health 

Administration. In 1998 the VA Upper Midwest Health 

Care Network administered a functional status survey of the 

veteran users of the VA facilities within the network (Singh, 

Borowsky, Nugent, Murdoch, Zhao, Nelson, Petzel and 

Nichol 2005). Veterans eligible for this survey were those 

with any outpatient encounter or inpatient stay between 

October 1997 and March 1998 at any one of the five VA 

facilities in the network. In addition to basic demographic 

measures, such as age and sex, the primary component of 

the survey was the SF36-V (Kazis, Miller, Clark, Skinner, 

Lee, Rogers, Spiro, Payne, Fincke, Selim and Linzer 1998). 

This health-related quality of life survey instrument consists 

of eight sub-scales of physical functioning, role limitations 

due to physical problems, bodily pain, general health, 

energy/vitality, social functioning, role limitations due to 

emotional problems, and mental health. These scales are 

combined to form physical (PCS) and mental (MCS) 

component summary scores. Larger scores represent better 

health status. VHA administrative data measuring major 

comorbid conditions present in the year before the survey 

were also collected.  

From the population of one of the five facilities we 

selected a subpopulation comprising all of the women and a 

random subset of the men to form a population of 2,500 

individuals. For purposes of this example the number of 

comorbidities was categorized into three categories to 

represent measures of good, average and poor health. We 

then selected 200 stratified random samples of size 100 

from the population. The strata sizes along with the sample 

sizes are given in table 6. Our sampling plan over sampled 

the women. Such unbalanced sampling plans can often 

occur in practice.  
 

Table 6  

The strata sizes along with the 
sample sizes for the Veterans 
Administration data 

 

 Good  Average  Poor  

F  353(20)  155(10)  117(10)  

M  890(30)  493(20)  492(10)  

 
We compared three different estimators of the mean PCS 

score for this population of 2,500; the sample mean which 

ignores the stratification, the usual stratified estimator which 

assume the strata sizes are known, and a constrained Polya 

posterior estimator which assumes that the marginal row 

and column totals of table 6 are known along with the 

average age of the individuals in the population. The 

population correlation between PCS  and age is -0.22. The 

correlations of PCS  with gender and with categorized 

comorbidity-based state of health are -0.13 and -0.28. From 
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the results in table 7 we see that the constrained Polya 

estimator performs about the same as the stratified estimator 

and both are a bit better than the sample mean. To compute 

the constrained Polya estimator we generated Markov 

Chains of length 7,000,000.  
 
Table 7 
Results for estimating PCS in the Veterans Administration 
data. The constrained Polya estimator assumes the row and 

column totals are know along with the average age of the 
individuals in the population 
 

Method point estimate 95% confidence or credible intervals 

 Ave. of 

estimate 

Ave. of 

absolute 

error 

Ave. of 

lower bound 

Ave. 

length 

Freq. of 

coverage 

Meanest 37.235  1.040  34.907  4.650  0.938  

Strataest 36.648  0.925  34.322  4.651  0.948  

Polyaest 36.644  0.925  34.344  4.605  0.958  

 
5. Relation to empirical likelihood methods 

 
In this section we review some frequentist methods for 

problems where constraints are involved and discuss their 

relationship to the constrained Polya posterior.  

Chen and Qin (1993) considered an empirical likelihood 

approach to estimation in survey sampling when prior 

information about an auxiliary characteristic is available. To 

construct estimators after the sample has been observed the 

units in the sample are weighted to reflect the prior 

information. For example, suppose that the sample mean is 

less than the known population mean of the x  values. Then 

positive weights, which sum to one, are selected for the 

sampled units such that the mean of the sx  values under the 

probability distribution given by the weights satisfies the 

known constraint. Although these weights can not be found 

explicitly they are easy to compute. When estimating the 

population mean of y  the resulting estimator was first 

noted in Hartley and Rao (1968) and shown to be 

asymptotically equivalent to the regression estimator. If the 

population median of x  is known then the units in the 

sample less than the known population median are given 

equal weights which sum to 0.5 and similarly for the 

sampled units with x  values larger than the known 

population median. When estimating the population median 

the resulting estimator is one proposed by Kuk and Mak 

(1989).  

An advantage of the constrained Polya posterior, and 

more generally of a Bayesian approach, is that it is 

straightforward to estimate many population quantities 

besides the mean without developing any new theory or 

methods. Given a simulated copy of the entire population 

which satisfies the constraints one just calculates the 

population parameter of interest. Then one uses such 

simulated values just as when one is estimating the mean.  

To compare the Chen and Qin estimator of the pop-

ulation median of y  with the constrained Polya posterior 

estimator when the population mean of x  is known eight 

different populations were constructed. In half of the 

populations one would expect the regression estimator to do 

well in estimating the population mean while the remaining 

half did not satisfy the usual super-population model 

assumptions associated with the regression estimator. For 

each population 500 random samples of sizes 30 and 50 

were taken, subject to satisfying the constraint that the 

sample contained values for x  greater and less than the 

known mean. In all cases the two estimators using the prior 

information performed better than the sample median. 

These results were consistent with the simulation results of 

Chen and Qin. We calculated the average absolute error for 

the two estimators using the mean constraint. In each of the 

16 different sets of simulations we then calculated the ratio 

of the constrained Polya posterior absolute error to that of 

the estimator of Chen and Qin. The range of these 16 values 

was 0.85 to 1.00 with a mean of 0.91. So in terms of 

absolute error, the constrained Polya posterior performed 

about 10% better, on average, than the estimator of Chen 

and Qin.  

Suppose now that the population median of x  is known. 

To simplify matters suppose that none of the actual values 

are equal to the population median of .x  Let ln  be the 

number of units in the sample whose x  values are less than 

the known population median of .x  Then ( )u ln n s n= −  is 

the number of units in the sample which are on the other 

side of the known median. Let 1( )
ll np p … p= , ,  and 

1( )
uu np p … p= , ,  be two probability vectors. Intuitively, a 

sensible posterior distribution given the sample and the 

know population median would be for lp  and up  to be 

independent Dirichlet distributions with all parameters equal 

to one with each of them assigned a weight of one half so 

that their total sum is one. It follows from the Theorem 

proved in the appendix that under our sampling plan these 

posteriors are stepwise Bayes. Note that under these 

posteriors the expected values of the proportions assigned to 

each unit in the sample are the weights assigned to the 

sample by Chen and Qin. This proves the admissibility of 

their estimator of the population median and consequently 

of Kuk and Mak’s. Simulation results show that this 

constrained Polya posterior’s 0.95 credible intervals cover 

approximately 95% of the time except in one special case. If 

the sample size is small and y  and x  are highly correlated 

then the medians for the simulated populations under the 

constrained Polya posterior do not vary enough and the 

resulting intervals are too short and their coverage frequency 

may be considerable less than 95%.  

This close relation between the empirical likelihood 

approach and the Polya posterior is not surprising when one 
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notes that in the unconstrained case the sequence of priors 

leading to the Polya posterior can be used to prove the 

admissibility of the maximum likelihood estimator for the 

probability vector of a multinomial distribution.  

 
6. Other sampling designs  

All the simulation results presented thus far have used 

(stratified) simple random sampling without replacement 

(SRS) as the sampling design. In an earlier version of the 

manuscript a referee wanted to know how much the 

behavior of estimators based on the constrained Polya 

posterior depended on using this design. The answer is there 

is some dependence but not as much as you might initially 

believe.  

We have seen under SRS that the constrained Polya 

posterior (CPP) estimator behaves much like the regression 

estimator (REG). Formally, the regression estimator 

depends only on knowing the population mean of the 

auxiliary variable. Its properties are usually studied under 

simple random sampling and the estimator of its variance is 

only valid for large samples.  

For a general design the Horvitz-Thompson estimator 

(HT) is often used. It is unbiased but computing the exact 

inclusion probabilities can be difficult. This is true, for 

example, if the sampling is done with selection probability 

proportional to the size for an auxiliary variable ,x  say 

PPS( x ). In practice one simply assumes that the inclusion 

probability of a unit is proportional to its value of x  and the 
resulting estimator will be approximately unbiased.  

We implemented several simulation studies comparing 

these three methods for estimating a population total. For 

brevity, we present the results of two of the studies. In these 

studies we constructed two populations of size 500. The 

auxiliary variable is the same in both populations and is a 

random sample from a gamma distribution with shape 

parameter 5 and scale parameter 1. Plots of the two 

populations are given in figure 1. We are not suggesting that 

in practice one would be likely to use the regression 

estimator in the second population. It is presented here 

simply to illustrate what can happen.  

For each population we took 400 random samples of size 

30 and 60 under two different sampling designs. They were 

PPS( x ) and PPS(1 ( 5)x/ + ). We assumed that the 

population mean of x  was known. For each sample we 

calculated the three estimates of the population total. The 

results from the first design are given in table 8. We see that 

CPP is the clear winner. The HT interval estimator’s 

observed frequency of coverage is closest to the nominal 

level of 0.95. But the interval length is ridiculously long. 

This occurs because the reciprocals of the inclusion 

probabilities vary greatly. For the first population, which is 

roughly linear, REG and CPP behave similarly. However, 

for the second population, CPP performs better than REG. 

It’s only shortcoming here is that it under covers with the 

smaller sample size. Under PPS(1 ( 5)x/ + ) the story is 

much the same although the difference between REG and 

CPP is much smaller for the second population. For 

example, when the sample size is 30 the average absolute 

error and frequency of coverage for REG is 131.9 and 0.875 

compared to 124.3 and 0.908 for CPP. When the sample 

size is 60 the numbers for REG are 88.4 and 0.905 

compared to 90.1 and 0.958 for CPP. The average length of 

their intervals are 384 and 560 respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 Plots of the two populations used in the 

simulations in table 8. The correlations for the two 
populations are 0.47 and -0.22 and their totals are 
118,210 and 11,648.7 

 

 

For the second population we did a second set of 

simulations using the PPS( x ) design for sample sizes of 30 

and 60. This time we assumed that the population means of 

x  and 2x  are both known. We then compared the CPP 

estimator which incorporates constraints on both x  and 2x  

with the regression estimator which assumes a quadratic 

function of x  as the model. These estimators are denoted by 

CPP2 and REG2 in the table. At first glance it might seem 

surprising that the results for CPP and CPP2 are essentially 

the same. But upon reflection it is what one should expect. 

The constrained Polya is simulating full copies of the 

population that are “balanced” with respect to ,x  that is 

agree with its known population mean. The additional 

constraint that a simulated copy of the population must be 

“balanced” with respect to 2x  as well adds little 
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information. On the other hand with a sensible model the 

regression estimator can exploit the additional information. 

This results in an improved point estimator but its interval 

estimates still under cover.  

 
Table 8 
Simulating results for the two populations in 

figure 1 when estimating the population total. 
In each case they are based on 400 samples 
which were select using PPS( x ) as the design. 

Note abserr is the absolute value of the 
difference between the estimate and the true 
population total 
 

Method  Ave. of  Ave. of  Ave of  Freq. of  

 estimates abserr  length coverage  

For population 1 with total = 118,210.2  

for a sample size of 30  

HT  118,803.1  8,095.3  38,696.6  0.905  

REG  116,838.1  3,355.3  14,136.4  0.905  

CPP  117,515.7  3,277.3  14,330.7  0.905  

for a sample size of 60  

HT  119,139.2  5,395.6  28,233.3  0.952  

REG  117,041.4  2,213.2  9,561.0  0.910  

CPP  118,041.4  2,195.3  11,836.5  0.938  

For population 2 with total = 11,648.7  

for a sample size of 30  

HT  11,737.2  783.5  4,012.0  0.945  

REG  11,800.3  179.7  533.0  0.745  

CPP  11,689.9  122.4  535.4  0.900  

REG2  11,660.0  97.2  382.3  0.862  

CPP2  11,689.9  122.4  535.4  0.900  

CPPbd  11,683.2  116.5  537.0  0.918  

for a sample size of 60  

HT  11,774.2  564.8  2,908.2  0.955  

REG  11,795.8  155.2  373.1  0.635  

CPP  11,647.9  80.4  524.4  0.978  

REG2  11,663.1  66.7  266.2  0.895  

CPP2  11,651.2  88.4  523.6 0.962  

CPPbd  11,644.6  83.9  552.1  0.978  

 
 
For the second population we did a third set of 

simulations using PPS( x ) as the design for sample sizes of 

30 and 60. In this case we assumed that the population mean 

of x  was contained in the interval (4.45, 5.53). These are 

the 0.45 and 0.65 quantiles of the x  population. The mean 

of this population is 5.02. The results are in table 8 under the 

label CPPbd. We see that the results are very similar to 

those where the population mean of x  was assumed to be 

known.  

All three estimators are using the information contained 

in the auxiliary variable x  but the HT estimator is the only 

one that depends on knowing the sampling design. As we 

have noted, it is well known that Bayesian estimators do not 

use the design probabilities in their computation. In these 

examples we see that CPP is making effective use of the 

information contained in the auxiliary variable. In general, 

the Polya posterior and variations on the Polya posterior, 

like the Constrained Polya posterior, do not rely directly 

upon simple random sampling, stratified random sampling, 

or any other design. Their suitableness and their perfor-

mance are dependent upon the agreement of the structure 

underlying the population and the structure specified in the 

chosen predictive distribution.  

The basic idea underlying the CPP is that one should use 

the sample and the available auxiliary information to 

simulate complete representative copies of the population. 

In simple examples like those given above we see that its 

point estimator should have excellent frequentist properties 

for a wide class of designs and the performance of its 

interval estimator will be adequate if the sample size is not 

to small. Does this mean that it can automatically adjust 

“bad” samples to get good estimates? Not really since with a 

very bad sample, one that agrees poorly with the known 

prior information, two bad things can happen. First, 

extremely unbalance or biased samples will introduce some 

bias into the point estimate. Second, they will severely 

constrain the possible values of p  under the CPP and result 

in a posterior variance that is too small, which will lead to 

interval estimates that are too short and under cover the 

quantity of interest. In more complicated situations further 

study needs to done to discovery when the CPP can 

profitably be employed.  

 
7. Final remarks 

 
One problem with standard frequentist methods is that 

each different problem demands its own solution. Esti-

mating the population median of y  when the population 

mean of x  is known is a different problem than estimating 

the mean of y  when the mean of x  is known. Also, if the 

population mean of x  is not known exactly but is only 

known to belong to some interval of values then the 

standard frequentist methods cannot make use of this 

information. A strength of a Bayesian approach is that once 

you have a posterior distribution which sensibly combines 

the sample with the prior information inference can be done 

for many population parameters of interest simply by 

simulating completed copies of the population.  

Here we have argued that the constrained Polya posterior 

is a sensible method of introducing objective prior 

information about auxiliary variables into a noninformative 

Bayesian approach to finite population sampling. The 

resulting point estimators have a stepwise Bayes justi-

fication which guarantees their admissibility. Their 0.95 

credible intervals will usually be approximate 95% confi-

dence intervals and they give sensible answers for problems 

where there are no standard frequentist procedures avail-

able. This demonstrates an important strength of the Polya 

posterior. Once you can simulate sensible copies of the 
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entire population inference for a variety of problems 

becomes straightforward. On the downside, one needs to 

use MCMC methods for their calculation. All our compu-

tations were done in R (R Development Core Team 2005). 

Two of the authors have recently released an R package 

polyapost which makes it easy for others to use our 

methods. Here we have restricted ourselves to samples of 

less than 100. This was just a matter of convenience so we 

could do our simulations in a reasonable amount of time. In 

practice for a larger specific sample one just needs to run a 

longer chain. Then one can use some of the standard 

diagnostics to decide whether or not it seems to have 

converged.  

 
Appendix 

 

An admissibility proof 
 
The basic theoretical justification for point estimators 

arising from the Polya posterior is that are admissible. The 

proofs of admissibility use the stepwise Bayes nature of the 

Polya posterior. This section presents a proof for point 

estimators based on the constrained Polya posterior.  

In these stepwise Bayes arguments a finite sequence of 

disjoint subsets of the parameter space is selected, where the 

order is important. A different prior distribution is defined 

on each of the subsets. Then, the Bayes procedure is found 

for each sample point that receives positive probability 

under the first prior. Next, the Bayes procedure is found for 

each sample point which receives positive probability under 

the second prior and which was not considered under the 

first prior. Then, the third prior is considered and so on. For 

a particular sample point the value of the stepwise Bayes 

estimate is the value of the Bayes procedure from the step at 

which it was considered. It is the stepwise Bayes nature of 

the Polya posterior that explains its somewhat paradoxical 

properties. Given a sample, it behaves just like a proper 

Bayesian posterior but one never has to explicitly specify a 

prior distribution. For more details and discussion on these 

points see Ghosh and Meeden (1997).  

To prove the admissibility of the estimators arising from 

the Polya posterior for the parameter space [0 )N, ∞  the 

main part of the stepwise Bayes argument first assumes that 

the parameter space is ,NΛ  where Λ  is an arbitrary finite 
set of positive real numbers. Once admissibility has been 

demonstrated for such general ,Λ  admissibility for the 

parameter space [0 )N, ∞  follows easily. A similar argument 

will be used for the constrained Polya posterior.  

Dealing with constraints on finite populations introduces 

some technical problems which are difficult to handle. For 

this reason, we will suppose that the population is large 

enough compared to the sample size that the approximate 

form of the Polya posterior involving the Dirichlet 

distribution is appropriate. For simplicity we assume that the 

population U  is infinite.  

We assume that for all j  in ,U ( )j j iy X a, =  for some 

i  in {1 },k, ...,  where 1 ( 1)( )i i i ma a a += , ...,  are distinct 

vectors in 1mR +  and where k  can be very large. That is, the 

vectors ( )j jy X,  can take on only a finite number of 

values. If ip  is the proportion of ( )j jy X, ’s in the 

population which are equal to ,ia , for i  in {1 },k, ...,  then 

the population mean of Y  is 1 1.
k
i i ip a=∑  

We assume that there is prior information available about 

the auxiliary variables { }i i
jX x j U:= | ∈  for i  in 

{1 },m, ...,  which gives rise to linear equalities and 

inequalities involving the proportions p  of the form  

1 1A p b=  (4) 

2 2A p b≤  (5) 

where 1,A 2A  are 1m k×  and 2m k×  matrices and 1,b 2b  

vectors of appropriate dimensions. In this setting, for 

instance, we may want to estimate  

1

1

( )
k

i i

i

p p a
=

µ = ∑  

subject to the constraints in equations 4 and 5 and where 

1 1i k
i ip=
=∑ =  with 0,ip ≥  for all i  in {1 }.k, ...,  

Consider a sample s  of size n  which for notational 

convenience we will assume consists of n  distinct ia ’s. Let 

sa  denote this set of values. We then let 1 sA ,  and 2 sA ,  be 

the 1m n×  and 2m n×  matrices which are just 1A  and 2A  

restricted to the columns corresponding to the members of 

.sa  Let sp  be p  restricted to the members of .sa  Then the 

constraints on the population given in equations 4 and 5 

translate into the following constraints  

1 1s sA p b, =  (6) 

2 2s sA p b, ≤  (7) 

for the random weights assigned to members of the sample. 

That is, given a sample the constrained Polya posterior is 

just the uniform distribution over the subset of the simplex 

defined by equations 6 and 7.  

A technical difficulty when proving admissible under 

constraints is that even when the population satisfies the 

stated constraints it is always possible to get a sample which 

fails to satisfy them. There are several ways one can handle 

such cases. One possibility is to assume that the constraints 

are wrong and just ignore them. This tactic was used in 

Nelson and Meeden (1998). Another possibility is to use 

prior information to augment the sample so that it satisfies 

the constraints. This can be messy and your answer can 

depend strongly on how you adjust the sample. We will take 

a third approach here.  
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We will assume the sampling design is simple random 

sampling and that the our prior information must be correct. 

In such a situation it might make sense to reject any sample 

which does not satisfy the constraints since it is clearly an 

unrepresentative sample. More specifically, suppose we take 

a simple random sample of size n  from the population and 

observe all i
jx ’s in the sample. Let 1( )s s s

kp p p= , ...,  be 

the proportions of the possible vectors for the jx  that are 

observed in the sample. The element s

ip  is zero whenever 

the vector 2 ( 1)( )i i i ma a a += , ...,  does not appear in the 

sample. If sp  satisfies equations 6 and 7 we keep the 

sample, if not we discard it and try again. We will call this 

sampling plan constraint restricted random sampling. In 

practice, for typical constraints, it will almost never be 

necessary to discard a sample. Although this is a sampling 

plan that would never be used it is not a bad approximation 

to what is actually done.  

More formally, let iZ  be the number of ( )j jy X, ’s in 

the sample that equal ,ia  for i  in {1 },k, ...,  then 

1( )kZ Z, ...,  is 1Multinomial( )kn p p, , ...,  where the 

parameter values belong to  

1 1 1 2 2
1

( ) 1
.

and 0 {1 }

k

k i
i

i

p p A p b A p b p
P

p i k

=

 , ..., = , ≤ , = , 
:=  

 ≥ ∀ ∈ , ..., 

∑
 (8) 

For a given sample 1( )ks z … z= , ,  let  

{ and 0 whenever 0 for 1 }.s s

i iP p p P p p i … k:= | ∈ = = = , , (9) 

We see that we keep a sample if and only if sP  is not 

empty.  

Denote the 1k −  dimensional simplex by  

1

1

( ) 1 0 {1 } .
k

k i i

i

F p p p p i k
=

 
:= ,.., = , ≥ ∀ ∈ ,..., 

 
∑  

For 1i … k= , ,  let ie  denote the vertices of .F  The ie ’s 

are the unit vectors whose thi  value is 1 and is 0 elsewhere.  

Now P  is a convex polytope which is the intersection of 

F  with the space  

1 1 1 2 2{( ) }.kG p p A p b A p b:= , ..., | = , ≤  

A partition of the parameter space P  can be found in the 

following way. Let jF  denote the set of faces of dimension 

j  of the simplex ,F  0 1 1.j k= , ..., −  Then 0F  is the set 

of its vertices, jF  is the collection of the convex hulls of all 

combinations of 1j +  vertices, for 1 2j k= , ..., −  and 

1kF −  is the simplex .F  If int( )jF  is the set of the interiors 

of the faces of dimension ,j  for 1 1,j k= , ..., −  then 

0 1 1{ int( ) int( )}kF F F −, , ...,  determines a partition of the 

simplex .F  If 0 0G F G:= ∩  and int( )j jG F G:= ∩  for 

1 1j k= , ..., −  then 0 1 1{ }kG G G −, , ...,  is a partition of the 

parameter space .P  Note that some of jG ’s might be 

empty. The stages of the stepwise Bayes argument follow 

the nonempty members of the jG ’s.  

If Z  is the sample space of the counts 1( )kZ Z, ...,  then 

for p P∈  the distribution of the counts, say ( )Pf z p|  is 

1Multinomial( )kn p p, , ...,  when the sample size is .n  Let 

FP  be the restriction of the parameter space P  to ,F  where 

F  is any subset of P  and 
FPZ  be the restriction of the 

sample space Z  determined by .FP  

We are now ready to prove the admissibility of the 

constrained Polya posterior estimator of ( )pµ  over .P  

Suppose we are at the stage where we are considering ,jG  

for some 0.j ≥  Assume jG G F= ∩  for some subset is 

nonempty. There are two possible cases.   
Case 1. If the dimension of jG  is zero, i.e., it consists of one 

vector, say 0,p  then we take the prior that puts unit mass on 

this vector. The posterior also then puts unit mass on this 

vector  and  if  z   is  the  unique  member  of  
FPZ  then the 

Bayes estimator is 0( ) ( ( ) ) ( ).
PF

z E p z pπδ = µ | = µ   
Case 2. If the dimension of jG  is greater than zero then the 

distribution of 1( )kZ Z, ...,  restricted to 
FPZ  is  

( )
( ) .

( )F

PF

P
P

Pz Z

f z p
f z p

f z p
∈

|
| =

|∑
 

The prior we consider on FP  is  

{ 0}

( )
( )

PF

F

F i

Pz Z

P
ii p P p

f z p
p

p

∈

| ∈ , >

|
π ,

∑
∏

 

which can be normalized to be a proper prior since 

( )
PF

z Z Pf z p∈∑ |  can be written as { 0}( )
F ii p P p ig p p| ∈ >∏  

where ( )g p  is a bounded function of .p  With this prior, 

the posterior distribution is the Dirichlet density kernel 

restricted to ,FP  

1

{ 0}

( ) ( ) ( ) i

F F F

F i

z

P P P i

i p P p

f p z f z p p p
−

| ∈ , >

| ∝ | π ∝ .∏  

The Bayes estimator of ( )pµ  against ,
FPπ  where p  

belongs to ,FP  is ( ) ( ( ) )
PF

z E p zπδ = µ |  for all z  in 
FPZ . 

Hence, if we use the sequence of priors  

0 1 2 1
{{ } { } { } { }}

F F F FP F G P F G P F G P F Gγ −| ∈ | ∈ | ∈ | ∈π , π , π , ..., π ,  

ignoring the empty sets at each step, then the estimator ( )zδ  

defined by  

( ) ( ) for 1 1
P FF

P iz z z Z F G iπδ = δ ∈ , ∈ , = , ..., γ − ,  (10) 

where kγ =  if k n<  and n  if ,k n≥  is an admissible 

estimator for ( ).pµ  This concludes the proof of the 

following theorem.   
Theorem 1. Under the constraint restricted random 

sampling plan defined by equations 2 and 3 with parameter 
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space defined in equation 8 the constrained Polya posterior 

estimator given in equation 10 for estimating the population 

mean is stepwise Bayes and hence admissible under 

squared error loss.  
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