Hypotheses Testing as a Fuzzy Set Estimation Problem

Glen Meeden & Siamak Noorbaloochi

To cite this article: Glen Meeden & Siamak Noorbaloochi (2013) Hypotheses Testing as a Fuzzy Set Estimation Problem, Communications in Statistics - Theory and Methods, 42:10, 1806-1820, DOI: 10.1080/03610926.2011.599005

To link to this article: https://doi.org/10.1080/03610926.2011.599005

Published online: 11 Apr 2013.

Submit your article to this journal

Article views: 92
Hypotheses Testing as a Fuzzy Set Estimation Problem

GLEN MEEDEN¹ AND SIAMAK NOORBALOOCHI²

¹School of Statistics, University of Minnesota, Minneapolis, Minnesota, USA
²Center for Chronic Disease Outcomes Research, Minneapolis VA Health Care System and Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA

For many scientific experiments computing a \(p \)-value is the standard method for reporting the outcome. It is a simple way of summarizing the information in the data. One theoretical justification for \(p \)-values is the Neyman-Pearson theory of hypotheses testing. However, the decision making focus of this theory does not correspond well with the desire, in most scientific experiments, for a simple and easily interpretable summary of the data. Fuzzy set theory with its notion of a membership function gives a non-probabilistic way to talk about uncertainty. Here, we argue that for some situations, where a \(p \)-value is computed, it may make more sense to formulate the question as one of estimating a membership function of the subset of special parameter points which are of particular interest for the experiment. Choosing the appropriate membership function can be more difficult than specifying the null and alternative hypotheses but the resulting payoff is greater. This is because a membership function can better represent the shades of desirability among the parameter points than the sharp division of the parameter space into the null and alternative hypotheses. This approach yields an estimate which is easy to interpret and more flexible and informative than the cruder \(p \)-value.

Keywords Fuzzy set theory; Hypotheses testing; Membership function; Point estimation; \(p \)-Values.

Mathematics Subject Classification Primary 62F03; Secondary 62G05.

1. Introduction

The concept of \(p \)-value or level of significance was introduced by R. A. Fisher (Fisher, 1925) and is widely used in practice to measure the strength of evidence against a hypothesis. A decision-theoretic and totally frequentist justification of this partially conditional measure of evidence comes from the Neyman-Pearson theory of hypotheses testing; see Lehmann and Romano (2006) for example. The theory...
assumes a sharp break between the hypothesis (which is referred to as the null hypothesis) and an alternative hypothesis and the necessity of making an accept or reject decision. Both of these assumptions make little sense in most scientific work where a simple summary of the information contained in the outcome of an experiment is desired. One approach which attempts to overcome some of these problems is the theory of equivalence testing which is discussed in Wellek (2003). Another modification of the theory allows for an indifference zone between the two hypotheses but this is little used in practice. Both of these alternatives highlight the fact that in many situations the choice of null and alternative hypotheses is not so straightforward. Another problem with the standard theory is that if the true state of nature is in the alternative but close to the boundary and the sample size is large then there is high probability the outcome will be statistically significant although most observers would agree that the result is of no practical importance.

The theory of significance testing requires the summation of probabilities over the observed and less supportive unobserved points of the sample space. Both it and the Neyman-Pearson theory are frequentist theories and hence both violate likelihood principal. Not just in hypotheses testing problems, but more generally, it has often been argued that all the information in the data about the parameter is contained in the likelihood function. In addition to pure Bayesian theories of testing, which follow the likelihood principal, Hacking (1965) suggested using the likelihood ratio to measure the strength of the evidence supporting the null hypothesis vs. the alternative. For a recent discussion of this point of view see Royall (1997). Even so one often desires a measure of how strongly the data speaks against the null hypothesis.

Fuzzy set theory was introduced in Zadeh (1965) and is another approach to representing uncertainty. A fuzzy set A is characterized by its membership function. This is a function whose range is contained in the unit interval. At a point the value of the membership function is a measure of how much we think the point belongs to the set A. A fuzzy set whose membership function is the indicator function of the set, that is it only takes on the values zero or one, is called crisp.

For the most part, statisticians have shown little enthusiasm for using this new terminology to describe uncertainty. In the 1970’s, Max Woodbury developed the notion of Grade of Membership for applications in the health sciences. This notion measures the degree of partial membership of an individual belonging to several possible classes. The theory is developed in some detail in Manton et al. (1994). Taheri (2003) gave a review of applications of fuzzy set theory concepts to statistical methodology. Casals et al. (1986) considered the problem of testing hypotheses when the data is fuzzy and the hypotheses are crisp and Filzmoser and Vierl (2004) introduced the notion of fuzzy p-values for such problems. Arnold (1996) and Taheri and Behboodian (1999) considered problems where the hypotheses are fuzzy and the data are crisp. Parchami et al. (2010) considered fuzzy p-values when the hypotheses are fuzzy and the data are crisp. Blyth and Staudte (1995) proposed a theory which stayed within the general Neyman-Pearson framework and provided a measure of evidence for the alternative hypothesis rather than an accept-reject decision. Dollinger et al. (1996) noted that this approach can be reformulated using fuzzy terminology. Singpurwalla and Booker (2004) proposed a model which incorporates membership functions into a subjective Bayesian setup. However, they do not give them a probabilistic interpretation. Geyer and Meeden (2005) assumed that both the hypotheses and data are crisp and introduced the notion of fuzzy p-values and fuzzy confidence intervals.
Here, we will argue that many scientific problems where a p-value is computed can be reformulated as the problem of estimating the membership function of the set of good or useful or interesting parameter points. Rather than specifying a null and alternative hypothesis we will choose a membership function to represent what is of interest in the problem at hand. We will see that the usual p-value can be interpreted as estimating one particular membership function. We believe this suggests that more attention should be paid to the membership function being estimated. A more careful choice of this membership function will allow a better representation of the realities of the problem under consideration and will avoid some of the difficulties associated with standard methods.

The structure of this article is as follows. In sec. 2, some necessary fuzzy set theory concepts are introduced. Then, in sec. 3, within the context of of a given data set and a one-sided hypothesis testing problem for the binomial distribution, we explain the methodology in three steps. The first step identifies a relevant class of membership functions. In the second step, we select an appropriate member from this class. And, finally, in the third step we find an unbiased estimator for the selected membership function. In sec. 4, we review a general optimal property of UMP tests and their corresponding p-values, and note that this suggests a class of relevant membership functions in the current context. We apply the theory to testing a one-sided hypothesis about the mean of a normal population, both when the variance is known and is unknown. For both situations, a class of relevant membership functions is identified and a method for choosing a particular member is described. An estimator of each member of the class is developed. Finally, the result is applied to a real-world example. In sec. 5, our concluding remarks are presented.

2. Fuzzy Set Theory

We will only use some of the basic concepts and terminology of fuzzy set theory, which can be found in the most elementary of introductions to the subject (Klir and St. Clair, 1997).

A fuzzy set A in the universal set Θ is characterized by its membership function, which is a mapping $m_A : \Theta \rightarrow [0, 1]$. The value $m_A(\theta)$ is the “degree of membership” of the point θ in the fuzzy set A or the “degree of compatibility . . . with the concept represented by the fuzzy set.” (Klir et al., 1997, p. 75). The idea is that we are uncertain about whether θ is in or out of the set A. The value $m_A(\theta)$ represents how much we think θ is in the fuzzy set A. The closer $m_A(\theta)$ is to 1.0, the more we think θ is in A. The closer $m_A(\theta)$ is to 0.0, the more we think θ is not in A.

A natural inclination for statisticians not familiar with fuzzy set theory is to try to give a membership function a probabilistic interpretation. To help overcome this difficulty consider the following situation. You need to buy a car. Let Θ be the set of all cars for sale in your area. Let A be the fuzzy set of cars that you would consider owning. For each car in the area you can imagine assigning it a value between 0 and 1 which would represent the degree of membership of this particular car in the fuzzy set A. For a given car this depends on its age, condition, style, price, and so forth. Here, the membership function measures the overall attractiveness of a car to you. After checking out several cars and assessing the level of their membership in the fuzzy set A, you will buy the one which maximizes the fuzzy membership function.

We will consider two problems where p-values would usually be computed and show how they can be reformulated as a problem of estimating a fuzzy membership
function. In each case, we will first identify a class of possible fuzzy membership functions. Next, we will discuss how a particular membership function can be selected from the class which realistically captures the important aspects of the problem at hand. We will then discuss how the resulting function can be estimated using standard methods.

3. A Binomial Problem

There has been recent interest in using Botox to relieve pain. See, for example, Singh et al. (2008). In a clinical trial, 22 patients with chronic, refractory shoulder pain were injected with a mixture of Botox and lidocaine. After a month the patients were checked to see how many of them had experienced a meaningful reduction in their pain and 10 of the 22 responded that it did. Do these data support the conclusion that Botox could be useful in such situations? Let θ denote the probability that a patient responds to the Botox treatment. The classical analysis would be to select a null hypothesis for θ and compute a p-value. As the first step in our analysis we need to identify a class of possible fuzzy membership functions, defined over the unit interval, which is the universal set for this problem. Each possible membership function represents the usefulness of the treatment as a function of θ. In the next step, the experimenter selects a particular membership function from the class that best reflects their beliefs of the degree of membership of θ in the set of useful treatments.

3.1. A Family of Membership Functions

We begin by recalling some facts about one sided binomial testing problems. Let X be binomial(n, θ) where n is known and $\theta \in [0, 1]$ is unknown and consider the testing problem

$$H: \theta \geq \theta_0 \quad \text{against} \quad K: \theta < \theta_0.$$ \hspace{1cm} (1)

Let $P(X)$ denote the p-value coming from the UMP family of tests. If θ_0 is true and n is large then the distribution of $P(X)$ is approximately uniform on the unit interval and $E_{\theta_0} P(X)$ is approximately 0.5. Let $\phi(X, 0.5, \theta_0)$ denote the UMP level 0.5 test for this problem. Then $P(X)$ is essentially a smoother version of $1 - \phi(X, 0.5, \theta_0)$.

In our example, θ is the proportion of patients which will respond to the Botox treatment. Let A denote the fuzzy set of useful treatments. For any value of θ the clinician needs to assess its degree of membership in this set. This value measures the overall desirability of the new treatment based on the current and perhaps somewhat limited information. This assessment depends on many factors such as its cost, ease of application, severity of side effects and so forth.

The first step in selecting a membership function is choosing a value for θ_0, the “soft break” point between the useful values of θ and the rest of the parameter space. In the case where we are considering a new treatment and there is a well accepted standard treatment we could take θ_0 to be the probability of a positive response under the standard treatment. However, this need not be the case in general. If the new treatment could have less serious side effects, be easier to apply or be significantly cheaper then we could select a value for θ_0 which is less than the probability of response under the standard treatment.
For a positive integer \(m < n \) let \(\phi_m \) denote the UMP level 0.5 test for the testing problem given in (1) based on \(Y_m \) a binomial \((m, \theta)\) random variable. Let \(\lambda_m(\theta) = 1 - E_\theta \phi_m(Y_m) \). Then \(\lambda \) is a strictly increasing function on the unit interval whose range is also the unit interval and it takes on the value \(1/2 \) at \(\theta_0 \). So each such function is a possible membership function along with any finite convex combination of such functions. This is a reasonably rich family of functions which are easy to graph. In many problems it should not to difficult to select a sensible membership function from this class of functions.

After a membership function has been selected then one needs to find an estimator for it. It is well known (Lehmann and Casella, 1998) that a function of \(\theta \) has an unbiased estimator if and only if it is polynomial in \(\theta \) of degree less than or equal to \(n \). Clearly, the family described just above have unbiased estimators. Finding the unbiased estimator of the selected fuzzy membership function is easy if we remember that the unbiased estimator of

\[
\binom{m}{k} \theta^k (1-\theta)^{(m-k)}
\]

is

\[
\delta_{m,k}(x) = \begin{cases}
0 & \text{for } x < k \text{ or } x > n - (m-k), \\
\binom{m}{k} \binom{n-m}{x-k} / \binom{n}{x} & \text{for } k \leq x \leq n - (m-k).
\end{cases}
\]

3.2. The Data Analyzed

In such clinical trials it is known that as many as 25% of the patients can experience a placebo effect. For this reason and the fact that little is known about the efficacy of Botox as a pain reliever we decided to use a soft break point of \(\theta_0 = 0.35 \). Our first step is to choose an appropriate class of membership functions. Here, we consider convex mixtures of the UMP level 0.5 tests based on the sample sizes of 2, 7, 12, 17, and 21. In Fig. 1, the lines are the five membership functions based on these tests. We see that all the membership functions are approximately linear in the neighborhood of \(\theta_0 = 0.35 \). Hence, in this example, the second step, which is the selection of a particular membership function, can come down to specifying its slope at \(\theta_0 = 0.35 \) and to a much lesser extent its behavior further away from this point. The question that needs to be addressed is how important are small differences in the neighborhood of \(\theta_0 = 0.35 \). The more important such differences are the steeper the membership function should be around this point. For this problem the derivative of \(1 - E_\theta \phi_m(Y_m) \) evaluated at \(\theta = 0.35 \) increases from 1.20 to 3.82 as \(m \) goes from 2 to 21. The curve represented by the small circles in Fig. 1 is the membership function which is the convex mixture of these 2 with weights 0.7 on the test based on \(m = 2 \) and 0.3 on the test based on \(m = 21 \). Its slope at 0.35 is \(0.7 \times 1.20 + 0.3 \times 3.82 = 1.99 \). we found its best unbiased estimator as given earlier. The plot of the \(x \)'s in the figure gives the values of its best unbiased estimator for a sample of size 22. In the actual trial 10 patients noted a reduction in their pain. The estimate of this membership function for this outcome is 0.79 indicating some evidence that the treatment belongs to the fuzzy set of useful treatments.

In Fig. 2, the two lines plot the expected value of the usual \(p \)-value and the membership function described in the proceeding paragraph. For a sample of size
Figure 1. For the binomial example the lines are five possible membership functions. The circles are a convex combination of 2 of them and the x’s the estimates of this function for a sample of size $n = 22$.

Figure 2. Plots of the expected value of the p-value and the membership function in the binomial example. The circles are the values of the p-value and the x’s are the estimates of the membership function for a sample of size $n = 22$.
n = 22, the circles plot the values of the p-value and the x’s plot the values of the unbiased estimator of our membership function. The two curves are very similar. Remember however our membership function was selected to represent the realities of a specific problem and does not depend on the sample size. If the sample size was increased, however, the curve of the expected value of the p-value would change, getting steeper and steeper in the neighborhood of $\theta_0 = 0.35$. The p-value is designed to make as sharp of distinction as possible between values on the either side of θ_0.

4. Finding Good Membership Functions

For many of the usual testing problems, where a p-value is now computed, it is possible to use standard theory to define families of possible membership functions. In many cases, it should be possible for a practitioner to select from these families a membership function for their problem. We will see how that works when testing a mean.

4.1. One-Sided Alternative with known Variance

Let X_1, X_2, \ldots, X_n be iid normal(θ, σ^2) where $\theta \in (-\infty, \infty) = \Theta$ is unknown and σ^2 is known. Consider the testing problem

$$H: \theta \leq \theta_0 \quad \text{against} \quad K: \theta > \theta_0$$

Let P denote the p-value coming from the UMP family of tests. If θ_0 is true then P has a uniform distribution on the unit interval (see, for example, Casella and Berger, 2002) while for any point in K its distribution is stochastically larger than the uniform distribution.

Let P' be another p-value which is uniformly distributed on the unit interval when θ_0 is true. We will say such p-values are calibrated. Now P' yields a family of tests. By comparing this family of tests with the family of UMP tests yielding P we have the following well-known optimal property for P. Let $I_H(\theta)$ be the indicator function for the null hypothesis H. Among the class of calibrated randomized p-values P' the p-value P coming from the UMP family of tests minimizes

$$d(\theta) = \begin{cases}
I_H(\theta) - E_0P' & \text{for } \theta < \theta_0, \\
E_0P' - I_H(\theta) & \text{for } \theta > \theta_0
\end{cases}$$

uniformly in θ. Remembering that the expected values of both P' and P are one-half at θ_0 we see that among the class of calibrated p-values $E_0(P)$ does the best job of approximating I_H uniformly in θ.

The usual P value can always be thought of as an unbiased estimator of its expectation. This expectation is a strictly decreasing function which takes on values between 0 and 1. We can interpret it as a membership function for the set of specially designated values of θ. For an observed p-value close to 0 we may infer that the degree of membership for the true value of θ belonging to the special designated set is small. From this point of view it is natural to think of E_0P as a kind of proxy for I_H. For a given value of x, the p-value depends strongly on the choice of θ_0. How should we choose θ_0 so that P is estimating something sensible?
Since the distribution of P when θ_0 is true is uniform on the unit interval this suggests that θ_0 should be selected so that the membership function for the set of specially designated values be 0.5 at θ_0. That is, θ_0 should be chosen to represent a “soft break” point between the special θ’s and the rest of the parameter space. Then $E_\theta P$ will represent a smoother and more realistic version of I_μ which by necessity makes a sharp distinction between the special and non-special values of θ. From this point of view, there is no reason to restrict attention to the usual p-value which is determined once θ_0 has been chosen. Rather, one should use prior information to determine an appropriate fuzzy membership function for the set of special parameter values. Once this is done the value of θ_0 is the point in the parameter space where the membership function takes on the value 0.5. After a membership function has been selected then one needs to find its best unbiased estimator.

Let Φ denote the distribution function of the standard normal distribution. Then for $\lambda > 0$ we claim that the family of functions of the form

$$
\Phi\left(\frac{\lambda \sqrt{n}}{\sqrt{1 + \lambda^2}} \frac{\theta_0 - \theta}{\sigma}\right)
$$

(4)
gives a sensible class of possible membership functions to replace the testing problem stated in (2). Note for a fixed sample size n one can choose λ to adjust the steepness of the membership function in the neighborhood of θ_0. These functions are easy to plot and inspection and simple calculations can often lead to a representing membership function.

Lemma 4.1. Let $\bar{X} = \sum_{i=1}^{n} X_i/n$ and Φ be the distribution function of the standard normal distribution. Then,

$$
E_\theta \Phi\left(\frac{\lambda \sqrt{n}}{\sqrt{1 + \lambda^2}} \frac{\theta_0 - \bar{X}}{\sigma}\right) = \Phi\left(\frac{\lambda \sqrt{n}}{\sqrt{1 + \lambda^2}} \frac{\theta_0 - \theta}{\sigma}\right)
$$

Proof. Let

$$
a = \frac{\theta - \theta_0}{\sigma/\sqrt{n}}
$$

Then by the change of variable formula we have:

$$
E_\theta \Phi\left(\frac{\theta_0 - \bar{X}}{\sigma/\sqrt{n}}\right) = \int_{-\infty}^{\infty} \Phi\left(\frac{\theta_0 - \bar{X}}{\sigma/\sqrt{n}}\right) \frac{1}{\sqrt{2\pi\sigma^2/n}} \exp\left(-\frac{(\theta - \bar{X})^2}{2\sigma^2/n}\right) d\bar{X} = \int_{-\infty}^{\infty} \Phi(\lambda y) \frac{1}{2\pi} \exp\left(-\frac{(y - a)^2}{2}\right) dy = P(Z - \lambda Y \leq 0),
$$

where Z and Y are independent and Z has the standard normal distribution and Y is normal($a, 1$). The result follows easily.

We note in passing that if we let $\lambda = 1/\sqrt{n - 1}$ then the function of θ in (4) becomes $P_\theta(X_1 \leq \theta_0)$ and its estimator given in the lemma is its well known unbiased estimator (see Lehmann and Romano, 2006).
We can also use the lemma to find the expected value of the usual \(p\)-value for this problem. Let

\[
p_\theta(\bar{x}) = P_\theta(\bar{X} \geq \bar{x})
\]

\[
= 1 - \Phi\left(\frac{\bar{x} - \theta_0}{\sigma/\sqrt{n}}\right)
\]

\[
= \Phi\left(\sqrt{n} \frac{\theta_0 - \bar{x}}{\sigma}\right)
\]

then for \(\theta > \theta_0\)

\[
E_\theta p_\theta(\bar{X}) = E_\theta \Phi\left(\sqrt{n} \frac{\theta_0 - \bar{X}}{S}\right) = \Phi\left(\sqrt{n} \frac{\theta_0 - \theta}{\sigma}\right)
\]

In the discussion in this section the universal set is just the parameter space \(\Theta = (-\infty, \infty)\). We have assumed that as the value of \(\theta\) increases the fuzzy membership function of the interesting parameter points, as a function of \(\theta\), decrease. In particular this means that the \(p\)-value for the testing problem stated in (2) is a possible fuzzy membership function and as we have seen it is a member of the of the class of possible membership functions given in Eq. (4).

4.2. One-Sided Alternative with Unknown Variance

Now we will consider the testing problem of Eq. (2) when the population variance is unknown. We assume the membership function we wish to estimate is of the form

\[
\Phi\left(\frac{a}{\sigma} - \theta\right)
\]

where \(a > 0\). The function depends on how far \(\theta\) is from \(\theta_0\) in standardized units, i.e., corrected for the standard deviation. The choice of \(a\) controls how important a given standardized distance is in the fuzzy membership function.

We do not know an unbiased estimator for the function in (5). But we will find an approximate unbiased estimator that works very well. To that end we will prove the following lemma.

Lemma 4.2. Let \(\bar{X} = \sum_{i=1}^{n} X_i/n\), \(S^2 = \sum_{i=1}^{n}(X_i - \bar{X})^2/(n-1)\) and \(\Phi\) be the distribution function of the standard normal distribution. Then,

\[
E_{\theta, \sigma} \Phi\left(\frac{\lambda \sqrt{n}}{\sqrt{V + \lambda^2}} \frac{\theta_0 - \bar{X}}{S}\right) = E\Phi\left(\frac{\lambda \sqrt{n}}{\sqrt{V + \lambda^2}} \frac{\theta_0 - \theta}{\sigma}\right)
\]

where \(V\) is a chi-squared random variable with \(n-1\) degrees of freedom divided by \(n-1\).

Proof. Note

\[
E_{\theta, \sigma} \Phi\left(\frac{\theta_0 - \bar{X}}{S/\sqrt{n}}\right) = E_{\theta, \sigma} \Phi\left(\frac{\lambda(\theta_0 - \theta)}{S/\sqrt{n}} - \frac{\lambda(\bar{X} - \theta)}{S/\sqrt{n}}\right)
\]
\[
= E_{\theta, \sigma} \Phi \left(\frac{\sqrt{n} \lambda (\theta_0 - \theta)}{\sigma \sqrt{S^2 / \lambda^2}} - \lambda \frac{(\bar{X} - \theta) / (\sigma / \sqrt{n})}{\sqrt{S^2 / \lambda^2}} \right)
\]
\[
= E \Phi \left(\frac{\gamma}{\sqrt{V}} - \lambda \frac{Z}{\sqrt{V}} \right)
\]

where \(Z \) and \(V \) are independent random variables and \(Z \) has a standard normal distribution and \(V \) is a chi-squared distribution with \(n - 1 \) degrees of freedom divided by \(n - 1 \) and

\[
\gamma = \lambda \frac{\theta_0 - \theta}{\sigma / \sqrt{n}}.
\]

Note that this expectation depends on the parameters \(\theta \) and \(\sigma \) only through \(\gamma \). To compute it we first condition on \(V = v \):

\[
E \Phi \left(\frac{\gamma}{\sqrt{V}} - \lambda \frac{Z}{\sqrt{V}} \right) = E \left(E \Phi \left(\frac{\gamma}{\sqrt{V}} - \lambda \frac{Z}{\sqrt{V}} \mid V \right) \right) = E \left(E \Phi \left(b - aZ \mid V = v \right) \right), \tag{7}
\]

where

\[
c = \lambda / \sqrt{v} \quad \text{and} \quad d = \gamma / \sqrt{v}.
\]

Let \(Z_1 \) and \(Z_2 \) be independent standard normal random variables. Then,

\[
E \Phi \left(d - cZ \mid V = v \right) = E \Phi \left(d - cZ \right) = P(cZ_1 + Z_2 \leq d) = \Phi \left(\frac{d}{\sqrt{c^2 + 1}} \right) = \Phi \left(\frac{\lambda}{\sqrt{\gamma^2 + \lambda^2}} \frac{\theta_0 - \theta}{\sigma / \sqrt{n}} \right)
\]

Substituting the previous equation into Eq. (7) we see that the proof is complete.

The next step is to use the results of the lemma to find an approximate unbiased estimator of the membership function given in Eq. (5). A simple Taylor series expansion about \(E(V) = 1 \) for the expression in the right-hand side of Eq. (6) gives the following:

\[
E \Phi \left(\frac{\lambda \sqrt{n}}{\sqrt{V + \lambda^2}} \frac{\theta_0 - \theta}{\sigma} \right) \approx \Phi \left(\frac{\lambda \sqrt{n}}{\sqrt{1 + \lambda^2}} \frac{\theta_0 - \theta}{\sigma} \right) \tag{8}
\]

If we let \(a = \sqrt{n} \lambda / \sqrt{1 + \lambda^2} \) then the previous equation and the lemma yield

\[
E_{\theta, \sigma} \Phi \left(\frac{a}{\sqrt{1 - a^2 / n}} \frac{\theta_0 - \bar{X}}{S} \right) \approx \Phi \left(\frac{a \theta_0 - \theta}{\sigma} \right). \tag{9}
\]
Simulation studies show that this approximation works quite well. That is for various choices of \(n \)

\[
\Phi \left(\frac{a \frac{\theta_0 - \bar{X}}{S}}{\sqrt{1 - a^2/n}} \right)
\]

is approximately an unbiased estimator for the membership function given in (5). We recall that the best unbiased estimator of this membership function is well known when \(a = 1 \) (see pp. 93–94 of Lehmann and Casella, 1998). In this case, we compared our approximately unbiased estimator with the best unbiased estimator in a simulation study with \(n = 5 \) and observed that the two behave quite similarly.

One can develop techniques to aid in finding an appropriate membership function of the type given in (5) for this testing problem. In a particular problem to find an appropriate membership function of this type we select \(\theta_0 < \theta_1, \sigma_1 > 0 \) and \(0 < \beta < 0.5 \) and solve the equation

\[
\Phi \left(a \frac{\theta_0 - \theta_1}{\sigma} \right) = \beta
\]

(10)
to get the value of \(a \). This reflects our assessment of the point \((\theta_1, \sigma_1) \) belonging to the set of good parameter values. To see how this could work in practice we consider another example in the next section.

4.3. An Example

An important responsibility of the Veterans Administration (VA) is to monitor the health of veterans. The American Heart Association has made the following recommendations for the level of total blood cholesterol:

- desirable: Less than 200 mg/dL;
- high risk: More than 240 mg/dL;
- borderline high risk: Between 200–239 mg/dL.

The VA is interested in the mean cholesterol level of a cohort of coronary heart disease patients. They plan to take a random sample of individuals and observe their cholesterol levels. How should they analyze the resulting data assuming that they are sampling from a normal population with unknown mean \(\theta \) and unknown variance \(\sigma^2 \)? Hence, for this problem the parameter space or universal set is

\[
\Theta = \{(\theta, \sigma) : lbd_1 < \theta < ubd_1 \text{ and } lbd_2 < \sigma < ubd_2\},
\]

where the \(lbd_i \)'s and \(ubd_i \)'s are bounds for the parameters. In practice, one could think carefully when selecting these bounds but unless they are quite sharp they would play a negligible role in the analysis. One possibility is to compute a simple point estimate for \(\theta \) and make an “informal” judgment about the status of the population. In practice, this judgment depends not only on the value of \(\theta \) but on the value of \(\sigma^2 \) as well. For example, their attitude could be quite different for a population with \(\theta = 220 \) and \(\sigma = 20 \) than for one with \(\theta = 220 \) and \(\sigma = 40 \). A second possibility would be to calculate the \(p \)-value for testing \(H : \theta \leq \theta_0 \) against \(K : \theta > \theta_0 \) where \(\theta_0 \) is some value to be determined. In this example, it is not so clear how to choose \(\theta_0 \). Moreover, whatever value of \(\theta_0 \) is selected it is wrong to
think of it as a sharp cut point between good and bad values of the population mean. Furthermore, the size of the resulting \(p \)-value and its interpretation will very much depend on this choice.

One way to more formally bring these concerns into an analysis is to use fuzzy set theory. To this end, we let \(H \) denote the set of good parameter points where the cholesterol level of the population is of lesser concern. This is done by defining \(m_H \), the membership function of \(H \), the set of the parameter points, \((\theta, \sigma)\), where the cholesterol level of the population is of little or no concern. We begin letting \(\theta_0 = 200 \) which is a weak dividing line between the points of no concern and the rest of the parameter space. Next, we select \(\theta_1 = 215 \) and decide we want our membership function to have the value \(\beta = 0.05 \) at the point \((215, \sigma_1)\) for some choice of \(\sigma_1 \). The rationale behind choosing \(\sigma_1 \) is different than that for choosing \(\theta_1 = 215 \). This later choice is based on medical knowledge about the effects of cholesterol and does not depend on the true but unknown mean for this particular population. On the other hand, our choice for \(\sigma_1 \) should be a reasonable guess for the standard deviation for the population at hand. For this example, we will consider 2 possible choices for \(\sigma_1 \): 30 and 50. We can then use Eq. (10) and our choices for \(\theta_1 \) and \(\sigma_1 \) to find the value of \(a \) to use to define our fuzzy membership function and its estimator.

The data collected by the VA was a random sample of size 4921 with a sample mean of 210.9 and a standard deviation of 43.4. (For more information on the data, see Rubins et al. (2003). For the two membership functions we calculated the approximated unbiased estimators. To help see the influence of sample size on our estimators, we did this twice. Once for the true sample size of 4921 and a second time with sample size 200. The results are given in Table 1.

We see from the table that the estimator is quite robust against sample size but is more sensitive to the choice of \(\sigma_1 \), therefore, it should only be used when a good guess for the population standard deviation is available.

The usual \(p \)-value based on the \(t \)-test for \(\theta \leq 200 \) against the alternative \(\theta > 200 \) for our data is highly significant because of the large sample size. Why not then just estimate \(\theta \)? The problem with this is that one wishes to estimate the degree of membership of the unknown pair of parameter points \((\theta, \sigma)\) in the set of good parameter points where the population’s cholesterol is of little concern. This is not given by a point estimate of the population mean. Our approach requires one to choose a membership function which models our levels of concern over the entire parameter space. Although not as simple as the usual \(p \)-value, it can be more informative.

Table 1

Values of the fuzzy set estimator for the VA data for \(\theta_0 = 200, \theta_1 = 215, \beta_1 = 0.05, \) two choices of \(\sigma_1 \) and two choices of the sample size

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\sigma_1)</th>
<th>(a)</th>
<th>Est</th>
</tr>
</thead>
<tbody>
<tr>
<td>4921</td>
<td>30</td>
<td>3.29</td>
<td>0.204</td>
</tr>
<tr>
<td>4921</td>
<td>50</td>
<td>5.50</td>
<td>0.084</td>
</tr>
<tr>
<td>200</td>
<td>30</td>
<td>3.29</td>
<td>0.198</td>
</tr>
<tr>
<td>200</td>
<td>50</td>
<td>5.50</td>
<td>0.068</td>
</tr>
</tbody>
</table>
5. Concluding Remarks

We presented a theory that uses the estimation of a fuzzy membership function as an alternative method for assessing hypotheses. We restricted the discussion to one-sided hypotheses for the sake of simplicity. It is evident, however, that this approach could be used in many other testing situations where p-values are currently calculated. Here, we have focused on finding unbiased or approximately unbiased estimators of membership functions as an alternative to computing p-values. The most difficult part of using this approach will be in selecting the fuzzy membership function to be estimated. In two very common situations we have demonstrated how this could be done. The first step is to identify a flexible family of possible membership functions. As we have seen standard statistical theory can by useful here. The next step is to select a particular fuzzy membership from our class that represents the realities of the problem under consideration. This is the most novel aspect of our program and requires the practitioner to think carefully about the problem under consideration. Once a fuzzy membership function has been selected it remains to find a good estimator for it.

Maximum likelihood will often provide a sensible estimate. Indeed, since MLE estimators are usually approximately unbiased and are often easy to calculate one can consider a much broad class of estimators of membership functions than the set of possible p-values arising from standard crisp hypotheses. In fact it is the richness of such families that some may find objectionable.

For a Bayesian once the membership function to be estimated has been selected and a prior chosen finding its Bayes estimator, in principle, is straightforward. The Bayesian approach always seems more natural in estimation than in testing. Our approach should work well and eliminate some of the problems associated with testing problems. Point null hypotheses have always been somewhat problematical for Bayesians. For example, Rousseau (2006) discussed a Bayesian approach where a point null is replaced by a small approximating interval hypothesis.

Some authors considered testing hypotheses where the null and alternative are both described by membership functions. These functions usually are piecewise linear. In such a setup they develop an analog of the Neyman-Pearson theory which is quite different from the estimation approach we have presented.

We argued here that the usual Neyman-Pearson theory of hypotheses testing with the sharp division between the null and the alternative and accept-reject rules is not very useful, in practice, for many scientific questions. Moreover, the usual p-value or level of significance does not really fix the problem. Our approach requires a careful assessment of the degree of membership for each parameter point to belong to the special set of designated or interesting values. In selecting the appropriate membership function more attention must be paid than when one is selecting the dividing point between the null and alternative hypotheses in standard methods. We believe that the payoff for the extra work is more useful inferences. We emphasize that there is nothing Bayesian in this. We are not assessing which are the likely or unlikely parameter values.

In their discussion of the notion of a level of significance, Kempthorne and Folks (1971) emphasized that it is the ordering of the data values in strength of evidence against the null which is crucial. Once this is decided the rest follows easily. Note, however, in many problems the sensible order is usually obvious and hence there is only one sensible level of significance for a given data point once θ_0, the dividing point between the hypotheses, is selected. This suggests that the
usual theory of p-values is too crude and does not allow for a more nuanced measure of evidence. Some might argue that this simplicity is in fact a strength of p-values. We disagree and believe that our approach allows for more realistic measures of strength of evidence. We believe that if one has seriously contemplated the implications of various parameter values being true when selecting the membership function to be estimated then the interpretation of the actual estimated value is easier and more informative.

Acknowledgments

The research of the first author was supported by NSF Grant DMS 0406169. The research of the second author was supported by VA HSR&D IIR 09-360.

References

