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Abstract

This paper is devoted to the definition and study of a family of model selection oriented estimators that we shall call T-estimators
(“T” for tests). Their construction is based on former ideas about deriving estimators from some families of tests due to Le Cam
[L.M. Le Cam, Convergence of estimates under dimensionality restrictions, Ann. Statist. 1 (1973) 38–53 and L.M. Le Cam, On
local and global properties in the theory of asymptotic normality of experiments, in: M. Puri (Ed.), Stochastic Processes and Related
Topics, vol. 1, Academic Press, New York, 1975, pp. 13–54] and Birgé [L. Birgé, Approximation dans les espaces métriques et
théorie de l’estimation, Z. Wahrscheinlichkeitstheorie Verw. Gebiete 65 (1983) 181–237, L. Birgé, Sur un théorème de minimax
et son application aux tests, Probab. Math. Statist. 3 (1984) 259–282 and L. Birgé, Stabilité et instabilité du risque minimax pour
des variables indépendantes équidistribuées, Ann. Inst. H. Poincaré Sect. B 20 (1984) 201–223] and about complexity based model
selection from Barron and Cover [A.R. Barron, T.M. Cover, Minimum complexity density estimation, IEEE Trans. Inform. Theory
37 (1991) 1034–1054].

It is well-known that maximum likelihood estimators and, more generally, minimum contrast estimators do suffer from various
weaknesses, and their penalized versions as well. In particular they are not robust and they require restrictive assumptions on both
the models and the underlying parameter set to work correctly. We propose an alternative construction, which derives an estimator
from many simultaneous tests between some probability balls in a suitable metric space. In many cases, although not in all, it
results in a penalized M-estimator restricted to a suitable countable set of parameters.

On the one hand, this construction should be considered as a theoretical rather than a practical tool because of its high com-
putational complexity. On the other hand, it solves many of the previously mentioned difficulties provided that the tests involved
in our construction exist, which is the case for various statistical frameworks including density estimation from i.i.d. variables or
estimating the mean of a Gaussian sequence with a known variance. For all such frameworks, the robustness properties of our
estimators allow to deal with minimax estimation and model selection in a unified way, since bounding the minimax risk amounts
to performing our method with a single, well-chosen, model. This results, for those frameworks, in simple bounds for the minimax
risk solely based on some metric properties of the parameter space. Moreover the method applies to various statistical frameworks
and can handle essentially all types of models, linear or not, parametric and non-parametric, simultaneously. It also provides a
simple way of aggregating preliminary estimators.

From these viewpoints, it is much more flexible than traditional methods and allows to derive some results that do not presently
seem to be accessible to them.
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Résumé

Cet article est consacré à la défintion et à l’étude d’une classe d’estimateurs, que nous appellerons T-estimateurs (“T” pour test),
destinés à faire de la sélection de modèle. Leur construction se fonde sur d’anciennes méthodes de fabrication d’estimateurs à partir
de tests dues à Le Cam [L.M. Le Cam, Convergence of estimates under dimensionality restrictions, Ann. Statist. 1 (1973) 38–53
et L.M. Le Cam, On local and global properties in the theory of asymptotic normality of experiments, in: M. Puri (Ed.), Stochastic
Processes and Related Topics, vol. 1, Academic Press, New York, 1975, pp. 13–54] et Birgé [L. Birgé, Approximation dans les
espaces métriques et théorie de l’estimation, Z. Wahrscheinlichkeitstheorie Verw. Gebiete 65 (1983) 181–237, L. Birgé, Sur un
théorème de minimax et son application aux tests, Probab. Math. Statist. 3 (1984) 259–282 et L. Birgé, Stabilité et instabilité du
risque minimax pour des variables indépendantes équidistribuées, Ann. Inst. H. Poincaré Sect. B 20 (1984) 201–223] et sur des
idées de Barron et Cover [A.R. Barron, T.M. Cover, Minimum complexity density estimation, IEEE Trans. Inform. Theory 37
(1991) 1034–1054] à propos de l’utilisation de notions de complexité pour faire de la sélection de modèle.

Il est bien connu que les estimateurs du maximum de vraisemblance et, plus généralement, les estimateurs par minimum de
contraste, souffrent de diverses limitations de même que leurs versions pénalisées. Parmi celles-ci, on peut noter qu’ils ne sont
généralement pas robustes et ne donnent de bons résultats que moyennant des hypothèses restrictives portant à la fois sur les
modèles et sur l’ensemble des paramètres. Nous proposons ici une construction alternative à partir d’une famille de tests entre les
boules de l’espace des probabilités muni d’une métrique convenable. Dans un certain nombre de situations, l’estimateur obtenu
n’est autre qu’un M-estimateur pénalisé défini sur un certain ensemble dénombrable de paramètres.

Cette construction doit être considérée davantage comme un outil théorique que pratique, compte-tenu de sa complexité nu-
mérique, mais elle permet de régler la plupart des problèmes précités dès que les tests robustes requis existent, ce qui est le cas
dans divers problèmes statistiques tels que l’estimation d’une densité à partir d’un échantillon ou l’estimation de la moyenne d’une
suite de variables gaussiennes indépendantes de même variance connue. Dans de telles situations, les propriétés de robustesse
de nos estimateurs permettent de traiter simultanément les problèmes de minimax et de sélection de modèle dans la mesure où
l’évaluation du risque minimax revient à utiliser notre méthode sur un modèle unique, convenablement choisi. Nous obtenons
alors des bornes du risque minimax qui ne dépendent que de la structure métrique de l’espace des paramètres. Cette construction
s’applique à des problèmes statistiques variés et permet de considérer divers types de modèles, linéaires ou non, paramétriques ou
non, simultanément. La même construction permet également de sélectionner ou combiner divers estimateurs préliminaires.

Pour toutes ces raisons, notre méthode est bien plus flexible que les méthodes traditionnelles et permet en particulier d’obtenir
certains résultats qui ne semblent pas leur être actuellement accessibles.
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

1.1. Some motivations

The starting point for this paper has been the well-known fact that the celebrated maximum likelihood estimator
(m.l.e. for short) and more generally minimum contrast estimators like least squares or projection estimators as well as
their penalized versions do share good properties under suitable but somewhat restrictive assumptions, but otherwise
may not have the right rate of convergence or even be inconsistent. This fact has been recognized for a long time;
examples about the m.l.e. and further references can be found in Le Cam [46].

Another serious deficiency of maximum likelihood (or similar) estimators is their lack of “robustness”. By this,
we mean the property that an estimator still behaves well (its risk does not change too much) if the true underlying
distribution of the observations does not belong to the parameter set but remains close to it. Unfortunately, the perfor-
mances of the m.l.e. can deteriorate considerably owing to some small departures from the assumptions, as shown by
the simple illustration given below in Section 2.3.

After some years of study of minimum contrast estimators, we became convinced of the need for a more flexible
and less demanding alternative method for estimation and model selection. We looked for a method that would avoid
many difficulties connected with the study of penalized minimum contrast estimators: for instance the systematic use
of delicate empirical processes, chaining, or concentration of measures arguments which typically require restrictive
assumptions. We wanted to get rid of entropy with bracketting assumptions and Kullback-Leibler information num-
bers in connection with the m.l.e. and to avoid the various boundedness restrictions that often mar the proofs about
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penalized least squares and projection density estimators. Some illustrations of these difficulties can be found in most
papers and books on the subject, among which (small sample) [58,59,14,5,21,22] or [63]. Further limitations of the
classical methods for model selection are connected with the choice of the models which have to share some special
properties: they should, for instance, be finite dimensional linear spaces generated by special bases, as in Baraud [3]
or be uniformly bounded as in Yang ([66,67] and [70]).

1.2. About T-estimators

In this paper, we present and study an alternative estimation method which is based on two ingredients: one or
several discrete models and a family of tests between the points of the models. By model, we mean an approximating
set for the true unknown distribution of the observation(s). As to the tests, they are tests between balls in suitable
metric spaces of probability measures and therefore enjoy some nice robustness properties. The existence of such tests
is granted for various stochastic frameworks, among which those corresponding to i.i.d. observations, homoscedastic
Gaussian sequences and bounded regression that we shall consider in this paper and to Gaussian regression with
random design which has been studied in Birgé [12].

The resulting estimators, which we call T-estimators (“T” for tests) posess a number of interesting properties:

(i) The maximal risk over some parameter set S of a suitable T-estimator ŝ (depending on S) can be bounded in
terms of simple metric properties of S . This implies that one can derive upper bounds for the minimax risk over
S in terms of those metric properties.

(ii) T-estimators inherit the robustness properties of the tests they are built from, a quality which is definitely not
shared by maximum likelihood estimators. More precisely, if we use as our loss function some suitable distance d ,
the increase of risk incurred when the true parameter s does not belong to S (as compared to the risk when it
does belong to S) is bounded by Cd(s,S), for some constant C independent of s.

(iii) If the T-estimator derives from a family of models, it automatically provides a model selection procedure, tending
to choose the best model (in a suitable sense) among the family. In particular, good choices of the families of
models result in adaptive estimators. From this point of view, one important property of T-estimators is the fact
that they can cope with fairly arbitrary countable families of models, possibly non-linear or infinite dimensional.
In particular, one can mix conventional parametric models with those used for non-parametric estimation.

The main advantage of this flexibility with respect to the structure of the models is to provide a complete decoupling
between the choice of the models and the analysis of T-estimators. The existence of T-estimators depends on the exis-
tence of suitable robust tests which is only connected to the stochastic framework we consider together with the choice
of a proper distance. As to the models’ choice, it should be motivated only by the ideas we have about the true unknown
parameter or the assumptions we make about it. Therefore models will be provided by approximation theory or our
prior information or belief. Moreover, the same families of models may be used for different stochastic frameworks,
leading to similar results. We shall in particular emphasize here the complete parallelism between model selection us-
ing T-estimators within the “white noise framework” and the i.i.d. framework (density estimation) with Hellinger loss.

There is a counterpart to these nice properties: our construction is often complicated. As a consequence, although
our estimators could be implemented in some favourable cases, their complexity will often be too large so that they
can actually be computed. They should be considered as “abstract” estimators providing a good indication of what is
“theoretically” feasible to solve a given estimation problem.

Another price to pay for this level of generality is that our risk bounds will be given up to universal constants that
may be large. We actually decided to sacrifice to simplicity and made no serious effort to optimize the constants.
This would have been at the price of an increased complexity of both the assumptions and the proofs: bounding the
constants efficiently requires to take advantage of the specificity of each particular situation, which is just the opposite
to the philosophy of this paper. The concerned reader could adapt the method to any specific problem he considers in
order to improve the constants.

1.3. Some historical remarks

It has been known for a long time that one could build confidence intervals from suitable families of tests, but,
as far as we know, the idea of using tests between probability balls to build estimators is due to Le Cam who was
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looking for a “universal”
√

n-consistent preliminary estimator for parametric models to replace the m.l.e. In [43]
and [44], Le Cam described the construction of estimators from families of tests and analyzed their performances in
terms of the “dimension” (in a suitable metric sense) of the set of parameters. In [8–10] and [11], using an alternative
construction, still based on testing, we extended Le Cam’s results with an emphasis on the minimax risk for non-
parametric estimation, robustness and the treatment of some cases of dependent variables. Although a more recent
summary of Le Cam’s point of view on this subject appeared in [47], these ideas remained widely unknown since then
(with the exception of Groeneboom [32]) and, to our knowledge, nobody (including the present author) tried to apply
the method to other stochastic frameworks like the Gaussian one for instance, that we consider here, or to extend it.
Related points of view about the relationships between the minimax risk and the metric structure of the parameter
space are to be found in Yatracos [73], Yang and Barron [72], Devroye and Lugosi [28] and Yang [69].

Some fundamental ideas for complexity-based model selection, which are also somewhat related to testing, ap-
peared later in Barron and Cover [6] and Barron [4]. They gave birth to a considerable amount of litterature on model
selection based on penalized minimum contrast estimators and empirical processes techniques, which, unavoidably,
suffer from the same defects as ordinary minimum contrast estimators. Mixing the old idea of building estimators
from tests together with some newer ones about penalization borrowed from [6] and subsequent works will allow us
to substantially improve and generalize the constructions of [8] and [10] in particular towards model selection and
adaptive estimation.

An alternative trend of methods for model selection and adaptation that received a great attention in the recent
years is based on selection or mixing of procedures. These methods, which have more practical relevance, share many
of the advantages of our approach, in particular its flexibility and adaptation properties, but there are some noticeable
differences. We defer a comparison of the two points of view to Section 9. Let us just mention here a few key references
on the subject of aggregation like Juditsky and Nemirovski [37], Nemirovski [50], Yang ([66–68] and [70]), Catoni
([23] and [24]), Tsybakov [56] and Wegkamp [63].

Although we shall study at length the performances of T-estimators, we shall not discuss their optimality properties
here. This would involve the comparison of our upper bounds with lower bounds based on dimensional arguments, as
in [8,10,11,72,69] or [26]. Part of this task has already been achieved there and many other lower bounds results are
known for various special situations. It suffices, in many cases, to compare those known lower bounds with our upper
bounds to check that properly constructed T-estimators are often (approximately) minimax.

1.4. About the content of this paper

We begin our analysis by two introductory sections which give both motivations and heuristics for our construction.
Although they provide some useful hints for the understanding of our somewhat abstract developments, they are
not, strictly speaking, technically mandatory for reading the sequel and the impatient reader could jump directly
to Section 4. We first illustrate, via three examples, some weaknesses of the maximum likelihood method: it does
not work at all when the likelihood process behaves in an erratic way, it is not robust and it can be fooled by the
“massiveness” of the parameter set, even if we merely want to estimate the mean of a Gaussian vector with identity
covariance matrix under the assumption that this mean belongs to some convex, compact subset of some (high-
dimensional) Euclidean space. A careful analysis of the performances of the m.l.e. on a finite set then provides some
hints about a possible solution to the above mentioned problems.

Section 4 describes the abstract stochastic framework we shall work with all along the paper and explains the
construction of T-estimators based on a discrete set S and a family of tests between the points of this set. In Section 5,
we state the assumptions that should be satisfied by S and the tests when S can be viewed as a single model for
the unknown parameter to be estimated. Then we give the resulting risk bounds for T-estimators and show that the
required assumptions are satisfied for the frameworks we consider here: independent variables, Gaussian sequences
and bounded regression. In the next section, we show how to build discrete models and the corresponding T-estimators
in order to bound the minimax risk over some given parameter set S by a function depending on its metric properties
only and which we call its metric dimension. Section 7 explains how to extend the previous construction to the case
when we want to use several (possibly many) models simultaneously. The resulting T-estimators have a risk which is
roughly bounded by the smallest among all risk bounds for the T-estimators derived from one model in the family,
plus (possibly) an additional term due to the complexity of the family of models.
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Section 8 is devoted to various applications. In particular, we show how to mix models for parametric and non-
parametric estimation. In the Gaussian sequence framework, we show that T-estimators not only allow to recover
all the results of Birgé and Massart [17] since they can handle in the same way arbitrary families of linear models,
but also allow to mix other sorts of models with the previous ones, possibly infinite-dimensional like ellipsoids or
finite-dimensional but non-linear like classical parametric models. As to density estimation with Hellinger loss, our
analysis demonstrates that any result about T-estimators we can prove in the white noise framework has a parallel
(modulo a simple translation) for density estimation, which is far from being true with minimum contrast estimators.
In particular we consider here the problem of adaptive estimation over general Besov balls with Hellinger loss, but all
the other results of [17] about the white noise framework could be transfered to density estimation with Hellinger loss
in the same way.

As previously mentioned, one can distinguish between two types of T-estimators: the simplest ones are based on a
single model while a more sophisticated construction can handle many models simultaneously, for instance in order
to derive adaptive estimators. In the case of i.i.d. observations, an alternative approach based on procedure selection
works as follows. First build an estimator on each model, possibly a T-estimator or any other one likes, and select
one of them to get the final estimator. This is a particular case of aggregation of estimators. We consider the problem
of aggregation using T-estimators in Section 9. In particular we show that this two-steps procedure, based on initial
T-estimators for each model, is essentially equivalent to the general procedure when the sample can be split into two
ones with the same distribution. We apply the method to selecting a partition for histogram estimation or a particular
linear approximating space among a family for estimating a bounded regression function, among other examples. We
also investigate the similarities and differences between aggregation procedures and T-estimators.

1.5. Three illustrations with independent variables

Let us conclude this section with three specific applications, as an appetizer for the reader.

Estimating a seemingly uniform distribution. Our first illustration deals with the problem of robust estimation within
the model of uniform distributions on [0, θ ], θ > 0. The difficulty here comes from the fact that our observations
X1, . . . ,Xn, although independent, do not necessarily follow the assumed model.

Proposition 1. Let X1, . . . ,Xn be independent random variables with arbitrary unknown distributions �Pi , 1 � i � n,
on R+. Let Uθ denote the uniform distribution on [0, θ ], θ > 0 and h the Hellinger distance between probabilities.
There exists an estimator θ̂ (X1, . . . ,Xn) such that, whatever the distributions �Pi ,

E
[

sup
1�i�n

h2(�Pi,Uθ̂
)
]

� C inf
θ>0

{
sup

1�i�n

h2(�Pi,Uθ ) + max{log(Γ −1
n |log θ |);1}
n

}
where C denotes a universal constant and

Γn = 33.6 × 105n−1(4.5 exp
[
max

{
(n/84);2

}]− 1
)
. (1.1)

These performances should be compared with those of the maximum likelihood estimator, which is the largest
observation X(n). If the model is true, i.e. X1, . . . ,Xn are i.i.d. Uθ0 , then the risk of the m.l.e. is (2n + 1)−1.
For our estimator the risk is of the right order n−1 apart from the factor max{log(|log θ |/Γn);1} (which equals 1
unless log(|log θ0|) is really huge) and the (unfortunately) large constant C, which is the price to pay for robust-
ness. On the other hand, if the model is not correct because X1, . . . ,Xn are not i.i.d. Uθ0 but it is only slightly
wrong in the sense that sup1�i�n h2(�Pi,Uθ0) � 5/(4n) for some θ0 > 0, the risk of our estimator remains of order
n−1 max{log(Γ −1

n |log θ |);1} while the risk of the m.l.e. may become larger than 0.38 as shown in Section 2.3.

Adaptive estimation in Besov spaces with L1-loss. Our second example deals with adaptive density estimation for
general Besov balls when the loss is the L1-distance between densities.
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Theorem 1. Let X1, . . . ,Xn be an n-sample from some distribution �Ps with density s with respect to Lebesgue measure
on [0,1]k . One can build a T-estimator ŝ(X1, . . . ,Xn) for s such that, if the Besov semi-norm of s satisfies |s|Bα

p,∞ � R

for some p > 0, α > k(1/p − 1)+ and R � 1/
√

n, then, for 1 � q � 79,

Es

[‖s − ŝ‖q

1

]
� C(α,p,q, k)Rkq/(2α+k)n−qα/(2α+k).

As far as we know, all results about this density estimation problem (without additional boundedness assumptions),
even those dealing with the minimax risk for known α and p, are limited to a range of the form r > α > k/p, with r

some positive integer as in Donoho et al. [29]. More recent improved results of Kerkyacharian and Picard [38] extend
this range but they use projection estimators over some wavelet basis and assume some large deviation inequalities for
the empirical coefficients that we are unable to check without additional assumptions on s. By nature, the procedure
is also limited to α < r for some given r depending on the choice of the basis. Our method allows to handle the larger
scale of Besov spaces given by α > (k/p − k)+.

Model selection for bounded regression with random design. In this case, we observe an even number n of i.i.d.
pairs of variables (Xi, Yi), 1 � i � n, with Xi ∈ X and Yi ∈ [0,1]. The distribution µ of Xi on X is unknown, ‖ · ‖2
denotes the norm in L2(µ) and we assume that Yi and Xi are connected in the following way: Yi = s(Xi) + ξi for
some function s from X to [0,1] and E[ξi |Xi] = 0. To derive an estimator of the unknown parameter s we can, for
instance, use a countable family of linear spaces of bounded functions on X and get the following result.

Theorem 2. Given the observations (Xi, Yi), 1 � i � n, a countable family {Tm, m ∈M} of finite dimensional linear
subspaces of bounded functions on X with respective dimensions Dm and a family {∆m, m ∈M} of positive weights
with ∆m � 1 and

∑
m∈M exp[−∆m] � e, one can construct an estimator ŝ which is a function from X to [0,1]

satisfying, for all s,

E
[‖ŝ − s‖2

2

]
� C inf

m∈M

{
inf

t∈Tm

‖t − s‖2
2 + n−1 max

{
(Dm logn),∆m

}}
,

where C denotes a universal constant.

2. The difficulties connected with maximum likelihood estimation

The m.l.e. is known to behave in an optimal way for parametric estimation under suitable regularity assumptions
(see, for instance, Le Cam [41] or the book [60] by van der Vaart) and to have the right rate of convergence in non-
parametric situations under specific entropy assumptions ([57–59,13,54] and [64]). It has nevertheless been recognized
for a long time that it can also behave quite poorly when such assumptions are not satisfied. Many counterexamples to
consistency or optimality of the m.l.e. have been found in the past and the interested reader should look at those given
by Le Cam in [46] which is a real advertisement against the systematic use of the m.l.e. without caution. As Le Cam
said in the introduction of this paper, “one of the most widely used methods of statistical estimation is that of maximum
likelihood . . . . Qualms about the general validity of optimality properties (of maximum likelihood estimators) have
been expressed occasionally.” Then a long list of examples follows, showing that the m.l.e. may behave in a terrible
way. Further ones are to be found in [13], Section 4 and [28], Section 6.4. We shall add three more below. All these
examples emphasize the fact that the m.l.e. is in no way a universal estimator. Indeed, all positive results about the
m.l.e. involve much stronger assumptions (like L.A.N. in the parametric case, or entropy with bracketing conditions
as in [58] and [59]) than those we want to use here. Even if the parameter set is compact, which prevents the m.l.e. to
go to infinity, one can get into troubles for two reasons: either the likelihood process does not behave in a smooth way
locally or the space is so “massive” (in an informal sense, see an example below) that it is not possible to get a local
control of the supremum of the likelihood process.

2.1. Erratic behaviour of the likelihood process

The difficulties caused by irregularity of the likelihood function for the i.i.d. setting, even in the simplest parametric
case of a translation family, are easy to demonstrate. Consider some density f with respect to Lebesgue measure on the
line satisfying f (x) > 0 for all x ∈ R and limx→0 f (x) = +∞. If we observe a sample X1, . . . ,Xn of some translate
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of the density fs(x) = f (x − s) with s ∈ R, the maximum likelihood estimator does not exist since the likelihood
is infinite at every observation. This phenomenon is neither due to the non-compactness of the parameter space (it
remains true if we restrict s to some compact interval) nor to the massiveness of the parameter space, but rather to
the erratic behaviour of the likelihood function. Nevertheless, setting p = ∫ 0

−∞ f (t)dt , the corresponding empirical
p-quantile provides quite a good estimator of s, which means that the statistical problem to be solved is not a difficult
one at all.

2.2. Some difficulties encountered with high-dimensional parameter sets

More subtle than the effects of the lack of smoothness of the likelihood function are the difficulties due to the
“massiveness” of the parameter space. Some asymptotic results in this direction have been given in Section 4 of
[13] relying on the construction of rather complicated infinite dimensional parameter sets. A much simpler and non-
asymptotic illustration of the suboptimality of the m.l.e. when the parameter set is too “massive”, although convex
and compact, is as follows.

Let X = (X0, . . . ,Xk) be a (k + 1)-dimensional Gaussian vector with distribution N (s, Ik+1), where Ik+1 denotes
the identity matrix of dimension k + 1. For any vector s = (s0, . . . , sk) in Rk+1, we denote by s′ its projection onto
the k-dimensional linear space spanned by the k last coordinates and by ‖s‖ its Euclidean norm.

Proposition 2. Let the integer k be not smaller than 128 and

S = {
s ∈ Rk+1 | |s0| � k1/4 and ‖s′‖ � 2

(
1 − k−1/4|s0|

)}
.

The quadratic risk of the maximum likelihood estimator ŝ on S and the minimax risk satisfy respectively

sup
s∈S

Es

[‖s − ŝ‖2]� (3/4)
√

k + 3 and inf
s̃

sup
s∈S

Es

[‖s − s̃‖2]� 5.

This demonstrates that the maximal risk of the m.l.e. may be much larger than the minimax risk when k is large.
The proof is given in Appendix A.

2.3. Lack of robustness of the parametric m.l.e.

We shall conclude this study by showing that the m.l.e. is definitely not a robust estimator in the sense that its risk
can increase dramatically if the parametric assumption is only slightly violated. Let us assume that we observe an i.i.d.
sample of size n � 4 from some unknown distribution �P on [0,1] and we use for our statistical model the parametric
family S of all uniform distributions Uθ on [0, θ ] with 0 < θ � 1. Since �P may not belong to this family, we cannot
use the square of the distance between parameters as our loss function as one would usually do. We have to introduce
a loss function which makes sense when �P /∈ S and replace the distance between parameters by a distance between
distributions. We choose, for reasons that will become clearer later on, the Hellinger distance. Let us recall that the
Hellinger distance h between two probabilities P and Q defined on the same space and their Hellinger affinity ρ are
given respectively by

h2(P,Q) = 1

2

∫ (√
dP −√

dQ
)2

, ρ(P,Q) =
∫ √

dP dQ = 1 − h2(P,Q), (2.1)

where dP and dQ denote the densities of P and Q with respect to any dominating measure (the result being in-
dependent of the choice of such a measure). One can check that ρ(Uθ ,Uθ ′) = √

θ/θ ′ if θ < θ ′. It follows that, if the
parametric model is true (i.e. �P = Uθ for some θ ∈ (0,1]), the risk of the maximum likelihood estimator of θ , which is
the largest observation X(n), is given by Eθ [h2(Uθ ,UX(n)

)] = 1/(2n + 1). Let us now suppose that �P does not belong
to S but has the density

10
[
(1 − 2n−1)1[0,1/10] + 2n−11[9/10,1]

]
with respect to Lebesgue measure. Since ρ(�P ,U1/10) = (1 − 2n−1)1/2, h2(�P ,U1/10) < 5/(4n) for n � 4 and one
would expect the increase of risk due to this small deviation from the parametric assumption to be O(1/n) if the
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m.l.e. were robust. This is not the case: with probability 1 − (1 − 2/n)n > 1 − e−2, X(n) � 9/10 and therefore
ρ(�P ,UX(n)

) < (1/3) + (1/
√

20 ). It follows that

E�P
[
h2(�P ,UX(n)

)
]
>

[
2

3
− 1√

20

]
(1 − e−2) > 0.38.

3. How to rescue the m.l.e., some heuristics

In order to explain our point of view about maximum likelihood estimation, it will be convenient to work within a
specific statistical framework and we shall assume here that our observation is an n-sample X = (X1, . . . ,Xn) ∈ X n

from some unknown distribution �Ps on the measurable space (X ,W), where s belongs to some parameter set S .
We shall denote the corresponding probabilities by Ps . Assuming that our parametrization is one-to-one, we can
turn S into a metric space with metric h, setting h(s, t) = h(�Ps, �Pt ) where h denotes the Hellinger distance given
by (2.1). We shall also assume that S is compact, which implies that our family of probabilities {�Ps, s ∈ S} is
dominated with respective densities d�Ps and, to be consistent with the M-estimators approach, we shall denote by
Λn(t,X) = −∑n

i=1 log(d�Pt (Xi)) minus the log-likelihood at t . Thus the m.l.e. with respect to some set S is the
minimizer of Λn(t,X) for t ∈ S.

3.1. About the m.l.e. on finite sets

As we have seen, the maximum likelihood estimator on S may behave poorly either because the likelihood process
behaves in an erratic way on S or because S is too “massive”. A natural idea to build an alternative estimator is to
approximate the compact set S by a finite subset S such that for s ∈ S one can find t ∈ S with h(s, t) � η and restrict
the maximization of the likelihood to S. Since S is finite, there is no problem with the local behaviour of the likelihood
and the amount of discretization (the size of η) will allow to control the massiveness of S. For simplicity, let us assume
that

Ps

[
Λn(u,X) = Λn(t,X)

]= 0 for all s ∈ S and t, u ∈ S, t �= u. (3.1)

Then the maximum likelihood estimator ŝ on S exists and is unique Ps -a.s.
If s ∈ S, one can bound the deviations of ŝ from s by a simple argument which goes back to Wald [62]. The first

step is to observe that, for all t and u, the errors of likelihood ratio tests between �Pt and �Pu are bounded by

Pt

[
Λn(u,X) � Λn(t,X)

]
� exp

[
n log

(
ρ(�Pu, �Pt )

)]
� exp

[−nh2(u, t)
]
, (3.2)

which follows from (A.5) in Appendix A and (2.1). More precise results in this direction can be found in Chernoff [25].
Now, given η > 0, K � 1 and s ∈ S, we want to bound Ps[h(s, ŝ) � Kη]. For k � 0, we set Sk = {u ∈ S | 2k/2Kη �

h(s,u) < 2(k+1)/2Kη} and denote by |Sk| the cardinality of Sk . We derive from (3.2) that

Ps

[
h(s, ŝ) � Kη

]
� Ps

[∃u ∈ S with h(s,u) � Kη and Λn(u,X) � Λn(s,X)
]

(3.3)

�
+∞∑
k=0

Ps

[∃u ∈ Sk with Λn(u,X) � Λn(s,X)
]

�
+∞∑
k=0

|Sk| sup
u∈Sk

Ps

[
Λn(u,X) � Λn(s,X)

]
�

+∞∑
k=0

|Sk| exp[−2knK2η2]. (3.4)

In order to get a small bound for the right-hand side of (3.4) for K � 1, one should first require that, when K = 1,
the first term of the series, |S0| exp[−nη2], be small, which will determine the choice of η. In particular, one should
require that nη2 � 1. Then one should put a suitable assumption about the massiveness of S implying that |Sk| does
not grow too fast with k so that the sum of the whole series is not much larger than its first term. For this, something
akin to |Sk| � |S0| exp(2k−1) would do.
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3.2. An alternative point of view on the previous analysis

If s ∈ S \ S, one can find s′ ∈ S with h(s, s′) � η, hence Ps[h(s, ŝ) � (K + 1)η] � Ps[h(s′, ŝ) � Kη] and
the previous arguments could be extended straightforwardly, at least for K large enough, if we could bound
Ps[Λn(u,X) � Λn(t,X)] by an analogue of (3.2) when h(s, t) � η and h(u, t) is large enough. This would mean
that the likelihood ratio tests between two points t and u of S do have small errors, when n is large, for testing the
Hellinger balls of radius η and respective centers t and u, provided that h(u, t) is large, which is a robustness property.
Unfortunately, unless one puts some additional assumptions on the likelihood ratios, such a property does not hold in
general, as shown by the following counter-example.

Let µ denote the Lebesgue measure on [0,1], �Pw = w · µ for any density w with respect to µ, s = 1[0,1], λ =
1 − (2n)−1, t = λ−11[0,λ] and let u be any density such that supx∈[0,1] |logu(x)| < +∞. Then ρ2(�Ps, �Pt ) = λ and it
follows from [43] that the sum of the errors of any test between s and t based on a sample of size n � 12 is at least
λ/2 = (1/2)− (4n)−1. This means that we cannot test well whether s or t is true. Nevertheless, even if h(t, u) is close
to one, which means that u is far away from t ,

Ps

[
Λn(u,X) � Λn(t,X)

]
� Ps

[
sup

1�i�n

Xi � λ
]

= 1 −
(

1 − 1

2n

)n

> 1 − e−1/2.

In order to see how we can fix the problem, let us carefully review the previous analysis of the performances of the
m.l.e. on a finite set. The key point is to notice that, by (3.1), the m.l.e. ŝ is the unique point in S such that all likelihood
ratio tests between ŝ and any other point accept ŝ. An equivalent way of stating this fact is to set, for any t ∈ S,
Rt = {u ∈ S | Λn(u,X) < Λn(t,X)} and DX(t) = supu∈Rt

h(t, u), (with the convention supu∈∅ h(t, u) = 0), then
define ŝ as argmint∈S DX(t) since ŝ = argmint∈S Λn(t,X) is equivalent to DX(ŝ) = 0. It follows from the definition
of DX that, for t, u ∈ S, DX(t) ∨ DX(u) � h(t, u) and therefore that h(t, ŝ) � DX(t) ∨ DX(ŝ) � DX(t). Finally, if
h(s, s′) � η,

Ps

[
h(s, ŝ) � (K + 1)η

]
� Ps

[
h(s′, ŝ) � Kη

]
� Ps

[
DX(s′) � Kη

]= Ps

[∃u ∈Rs′ with h(s′, u) � Kη
]
,

since S is finite. This is equivalent to (3.3) but the proof of (3.4) cannot proceed as before because, as we have just
seen, likelihood ratio tests are not robust. Now suppose we can replace the likelihood ratio tests between t and u by
some alternative ones which are robust and redefine Rt accordingly: Rt is the set of points u ∈ S such that the test
between t and u decides u. This still makes sense and the definitions of the function DX and of ŝ = argmint∈S DX(t)

as well. Of course, since we started from some arbitrary family of robust tests, there is no reason anymore that one
could still express ŝ as argmint∈S γn(t,X) for some function γn. Nevertheless, the bound

Ps

[
h(s, ŝ) � (K + 1)η

]
� Ps

[∃u ∈Rs′ with h(s′, u) � Kη
]

(3.5)

still holds and, if we could bound the errors of the new robust tests by some suitable analogue of (3.2), we could
proceed as before from (3.5) to some analogue of (3.4). Typically, we shall require that the robust tests we use satisfy
the following error bound for some constants c and κ :

Ps[the test between t and u decides u] � exp
[−cnh2(t, u)

]
if h(t, u) � κh(s, t). (3.6)

Deriving an estimator of s ∈ S from a family of tests satisfying (3.6) by setting ŝ = argmint∈S DX(t) is actually very
natural: if the true parameter s is close to s′ ∈ S, all the tests between s′ and the points u ∈ S far enough from s′ will
accept t with large probability and DX(s′) should therefore not be large. On the other hand, if u ∈ S is far enough
from s, the test between s′ and u will accept s′ which will result in a large value of DX(u).

Obviously, the previous reasoning essentially relies on the existence of robust tests satisfying an analogue of (3.2)
like (3.6), but it has been known for a long time that such tests do exist, as shown by Le Cam [44] and Birgé [9]. They
actually also exist in other stochastic frameworks, not only for i.i.d. samples, which accounts for the introduction
of the general setting that follows. Note also that the interpretation of estimators in terms of testing was absolutely
essential for our construction. It is indeed, together with the elementary arguments used for deriving (3.4) (counting
the number of points of S contained in balls and bounding the errors of tests), at the chore of our method.
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4. A robust substitute for the (penalized) m.l.e.

4.1. A general statistical framework

We observe some random element X from (Ω,A) to (Ξ,Z) with distribution PX belonging to some set P of
possible distributions on (Ξ,Z) and we have at hand, to serve as parameter set, a semi-metric space (M,d), which
means that the function d is a semi-distance on M , i.e. it satisfies

d(t, t) = 0 and d(t, u) = d(u, t) � 0 for all t, u ∈ M, (4.1)

but not necessarily some version of the triangular inequality:

d(t, u) � A
[
d(t, r) + d(r, u)

]
for all r, t, u ∈ M and some A � 1. (4.2)

For the applications we develop in this paper, d is a genuine distance satisfying (4.2) with A = 1. Nevertheless, part
of the results we shall prove here only require that (4.1) holds and since those particular results will be useful for
further applications (to be given in subsequent papers) which do involve semi-distances, we shall distinguish hereafter
between the results that assume that d is a genuine distance from the others. One could actually only assume that (4.2)
holds with A > 1. This would only affect the value of the constants in all our results. For simplicity, we only consider
here the case A = 1, the extension to the case of A > 1 being straightforward. Even if d is not a distance, we shall use
the following notations for open and closed balls in M with center t and radius r � 0:

Bd(t, r) = {
u ∈ M | d(u, t) < r

}
and �Bd(t, r) = {

u ∈ M | d(u, t) � r
}
, (4.3)

possibly omitting the subscript d when no confusion is possible. The (semi-)distance d(t, S) from some point t ∈ M

to some subset S of M is defined as d(t, S) = infu∈S d(t, u).
Our purpose in this paper is to design estimators of the unknown parameter s = F(PX) where F is some mapping

from P to M . In most examples, the application F is one-to-one and F−1 is merely a parametrization of P by M ,
in which case we shall set Pt = F−1(t), P = {Pt , t ∈ M} and systematically identify t with Pt , M with P and write
indifferently d(Pt ,Pu) or d(t, u). We denote by Ps the probability on (Ω,A) that gives X its true distribution PX ,
by Es the corresponding expectation operator and we set PX = Ps when F is one-to-one. To any measurable map ŝ

from Ξ to M corresponds the estimator ŝ(X). By a model for s we mean any subset (often denoted by S, S′, �S or S)
of M , which may or may not contain s. When speaking of a countable set, we always mean a finite or countable set.
Constants will be denoted by C,C′, c1, . . . or by C(x, y, . . .) to emphasize their dependence on some input parameters
x, y, . . . . For simplicity, the same notation may be used to denote different constants. We shall systematically use x ∨y

and x ∧y for max{x, y} and min{x, y} respectively, we shall denote by |S| the cardinality of the set S, by N� = N\ {0}
the set of positive integers and set


x� = inf{n ∈ N | n � x}; �x� = sup{n ∈ N | n � x} for x ∈ R+. (4.4)

4.2. The construction of T-estimators

4.2.1. Defining T-estimators
The construction of what we shall call a T-estimator (“T” for “test”) requires

(i) a countable subset S of M which plays the role of an approximating set for the true unknown s;
(ii) a non-negative number ε and a positive weight function η from S to R+;

(iii) a family of tests between the points of S.

At this stage, we have to make quite precise what we actually mean by a test between t and u since, in our approach,
there is no hypothesis or alternative or rather we ignore which of the two points will play each role.

Definition 1. Given a random element X with values in Ξ and two distinct points t and u ∈ M , a (non-randomized)
test between t and u is a pair of measurable functions ψ(t, u,X) = 1−ψ(u, t,X) with values in {0;1}, our convention
being that ψ(t, u,X) = 0 means accepting t while ψ(t, u,X) = 1 (or equivalently ψ(u, t,X) = 0) means accepting u.
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We shall stick to this convention throughout the paper. We can now define a T-estimator in the following way.

Definition 2. Let S be a countable subset of M , η be a non-negative function on S and ε � 0. Let {ψ(t, u,X)} be
a family of tests indexed by the pairs (t, u) ∈ S2 with t �= u and satisfying the coherence relationship ψ(u, t,X) =
1 − ψ(t, u,X). Setting Rt = {u ∈ S,u �= t | ψ(t, u,X) = 1}, we define the random function DX on S by

DX(t) =
 sup

u∈Rt

{
d(t, u)

}
if Rt �= ∅;

0 if Rt = ∅.

(4.5)

We call T-estimator (Tε-estimator when we want to emphasize the value of ε) derived from S, η, ε and the family of
tests {ψ(t, u,X)} any measurable application ŝ(X) with values in S satisfying[

DX

(
ŝ(X)

)]∨ [
εη
(
ŝ(X)

)]= inf
t∈S

[
DX(t) ∨ εη(t)

]
. (4.6)

Obviously, T-estimators need neither exist nor be unique in general, but we shall work under assumptions that, at
least, ensure their existence.

4.2.2. A special case: M-estimators
As a special case, we find tests of likelihood ratio type, i.e. tests that derive from the comparison between the

values at t and u of some random function γ (·,X) from M to [−∞,+∞]. Typically, γ (·,X) is a (possibly penalized)
empirical contrast function as defined in Birgé and Massart [13] and Barron et al. [5], the case of likelihood ratio
tests of Section 3.1 corresponding to γ (t,X) = Λn(t,X). In this case, computing a T-estimator derived from S almost
amounts to finding a point minimizing the function t �→ γ (t,X) for t ∈ S. Estimators based on the minimization on
a criterion like γ (t,X) are usually called M-estimators, as in Chapter 5 of van der Vaart [60], and we shall precisely
define them in the following way.

Definition 3. Let γ ′(·,X) be a random function from S to [−∞,+∞], η a weight function from S to R+ and τ a
non-negative number. Set

γ (t,X) = γ ′(t,X) + τη2(t) for all t ∈ S. (4.7)

A family of tests ψ(t, u,X) = 1 − ψ(u, t,X) between t and u with t, u ∈ S will be called a family of M-tests derived
from the function γ ′(·,X) with penalty τη2 if

ψ(t, u,X) =
{

0 if γ (t,X) < γ (u,X);
1 if γ (t,X) > γ (u,X); (4.8)

for all t, u ∈ S, t �= u, the value of ψ being arbitrary when γ (t,X) = γ (u,X). Any minimizer of γ ′(t,X) + τη2(t)

over S will then be called an M-estimator.

Note that the difference between M-estimators and the T0-estimators derived from the tests defined by (4.8) is
rather subtle and only due to the possible differences in case of equality in (4.8). If, for all t, u ∈ S with t �= u,
Ps[γ (t,X) = γ (u,X)] = 0, since S is countable, either there exists a minimizer of γ ′ + τη2 over S and it is the
unique T0- and M-estimator, or there does not exist any M-estimator. More generally, when there exists a unique
minimizer ŝ(X) of γ ′ + τη2, then DX(ŝ(X)) = 0 and ŝ is also the unique T0-estimator. Apart from this situation,
the relationship between T-estimators and M-estimators is not clear in general, although we shall see later that their
properties are quite similar.

4.2.3. Elementary properties
The definition of DX implies that

d(t, u) � DX(t) ∨DX(u) for all (t, u) ∈ S2. (4.9)

Consequently, any Tε-estimator ŝ(X) satisfies, by (4.6),

d
(
t, ŝ(X)

)
�
[
DX(t) ∨ εη(t)

]
for all t ∈ S. (4.10)
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It follows from the definition of Rt that DX(t) should be viewed as a plausibility index playing the role of minus the
(penalized) likelihood at t : if it is large, one should believe that the true s is far from t . If d is a genuine distance
and ε = 0, then (4.10) implies that d(s, ŝ) � inft∈S[d(s, t) +DX(t)] which means that a T0-estimator makes the best
compromise among the points in S between the distance from t to the true s and its plausibility.

To deal with M-estimators, it will be convenient to introduce

R′
t = {

u ∈ S | γ (u,X) � γ (t,X)
}

and D′
X(t) = sup

u∈R′
t

{
d(t, u)

}
, (4.11)

so that

d(t, u) � D′
X(t) ∨D′

X(u) for all (t, u) ∈ S2 (4.12)

and, if ŝ is any minimizer of γ (·,X) over S, ŝ ∈R′
t for all t ∈ S, hence

d
(
t, ŝ(X)

)
� D′

X(t) for all t ∈ S. (4.13)

We shall also use the fact, which follows from (4.8), that{
u ∈ S | γ (u,X) < γ (t,X)

}⊂ �Bd

(
t,DX(t)

)
. (4.14)

4.3. Some basic assumptions

In order to ensure the existence of T- or M-estimators and show that they enjoy nice properties we have to choose
both the set S and the family of tests ψ in a proper way and require that they satisfy some suitable assumptions. Since
we want to mimic the “proof” we gave in Section 3, our tests should satisfy a suitable analogue of (3.6) and we should
have some control on the “massiveness” of S.

4.3.1. Assumptions about our family of tests
In order to be sure that suitable tests exist that warrant the existence of T-estimators we shall always work under

the following assumption and choose S as a subset of MT .

Assumption 1. There exists a subset MT of M , a function δ from M × MT to [0,+∞] and two constants a,B > 0
such that, for any pair (t, u) ∈ M2

T with t �= u and any x ∈ R, one can find a test ψ(t, u,X) satisfying

sup
{s∈M|δ(s,t)�d(t,u)}

Ps

[
ψ(t, u,X) = 1

]
� B exp

[−a
(
d2(t, u) + x

)];
sup

{s∈M|δ(s,u)�d(t,u)}
Ps

[
ψ(u, t,X) = 1

]
� B exp

[−a
(
d2(t, u) − x

)]
.

For M-tests, as given by Definition 3, Assumption 1 derives from part (A) of the more specific one that follows,
setting ψ(t, u,X) = 1 if γ ′(t,X) − γ ′(u,X) > τx and ψ(t, u,X) = 0 if γ ′(t,X) − γ ′(u,X) < τx.

Assumption 2. (A) There exists a subset MT of M , a random function γ ′(·,X) on MT , a function δ from M × MT

to [0,+∞] and three constants τ, a,B > 0 such that, for all x ∈ R and all pairs (t, u) ∈ M2
T with t �= u,

sup
{s∈M|δ(s,t)�d(t,u)}

Ps

[
γ ′(t,X) − γ ′(u,X) � τx

]
� B exp

[−a
(
d2(t, u) + x

)]
.

(B) There exists a constant κ ′ > 0 such that, for all x ∈ R, all s ∈ M and all pairs (t, u) ∈ M2
T with t �= u,

Ps

[
γ ′(t,X) − γ ′(u,X) � τx

]
� B exp

[
a
(
κ ′d2(s, t) − x

)]
.

Under Assumption 1 (or 2(A)), we have to choose suitable values of x in order to get a well-defined family of tests.
Given the weight function η on S ⊂ MT , we shall always base our construction of T-estimators (or M-estimators), as
explained in the previous sections, on the tests provided by these assumptions with x = η2(u) − η2(t). It then follows
that, for all s ∈ M and t, u ∈ S with t �= u,

sup Ps

[
ψ(t, u,X) = 1

]
� B exp

[−a
(
d2(t, u) − η2(t) + η2(u)

)]
. (4.15)
{s∈M|δ(s,t)�d(t,u)}
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Under Assumption 2(A), we get, for each pair (t, u) ∈ S2, t �= u, and γ given by (4.7),

sup
{s∈M|δ(s,t)�d(t,u)}

Ps

[
γ (t,X) � γ (u,X)

]
� B exp

[−a
(
d2(t, u) − η2(t) + η2(u)

)]
. (4.16)

Therefore the M-tests derived from γ ′ according to (4.7) and (4.8) also satisfy (4.15). Note that, in this case, the
function τη2 plays the role of the penalty for penalized maximum likelihood estimators or penalized least squares
estimators. If, moreover, Assumption 2(B) holds, then

Ps

[
γ (t,X) � γ (u,X)

]
� B exp

[
a
(
κ ′d2(s, t) + η2(t) − η2(u)

)]
for all s ∈ M. (4.17)

One should view δ as a function measuring the robustness of the tests ψ(t, u,X) with respect to deviations from
the assumption that t obtains. If δ(s, t) = 0 the probability of rejecting t when s obtains is bounded by the right-
hand side of (4.15) for all u �= t and this remains true as long as s remains “close enough” to t in the sense that
δ(s, t) � d(t, u). If δ(s, t) is large, one can test t efficiently only against points u which are far away. In the simplest
cases, and in particular those we consider in this paper, δ = κd for some κ > 0, but the introduction of a general
δ (which, in particular, may take the value +∞) proves useful in some special situations and does not involve any
additional complication. Note also that not all (semi-)distances do suit our needs: the construction of tests that satisfy
the previous assumption is only possible for some very special (semi-)distances.

4.3.2. Definition and elementary properties of D-models
In order to measure the massiveness of S and, more precisely, to bound the number of points of S that are contained

in balls, we shall introduce the following notion of a D-model (“D” for discrete and dimension).

Definition 4. Let η,D and B ′ be positive numbers and S′ be a subset of the semi-metric space (M,d). It will be called
a D-model with parameters η,D and B ′ if∣∣S′ ∩Bd(t, xη)

∣∣� B ′ exp[Dx2] for all x � 2 and t ∈ M, (4.18)

or equivalently∣∣S′ ∩Bd(t, r)
∣∣� B ′ exp

[
D
[
(r/η) ∨ 2

]2] for all r > 0 and t ∈ M.

The number 2 has no magic meaning here and has been chosen for convenience. Other numbers would do and
we could even parametrize this constant but this would lead to more complicated proofs and results without any
substantial benefit. Finite sets do satisfy this assumption for suitable values of the parameters η,D and B ′ and lattices
in Euclidean spaces as well. Further examples will be given in Section 6. Note that when the distance d is bounded,
as is the case for Hellinger and variation distances, D-models are necessarily finite sets.

Some straightforward consequences of this definition to be used in the sequel, are as follows.

Lemma 1. If S′ is a D-model with parameters η,D and B ′, then it is at most countable and it is also a D-model with
parameters η′,D′ and B ′ for all η′ > 0 and D′ = D[(η′/η)2 ∨ 1]. If, moreover, d is a distance and δ some function
from M ×S′ to [0,+∞] such that δ(s, t) � κd(s, t) for some positive κ , there exists a well-defined minimum distance
operator π ′ from M to S′ satisfying δ(s,π ′(s)) = δ(s, S′) = inft∈S′ δ(s, t). In particular, one can define a minimum
distance operator π from M to S′ satisfying d(s,π(s)) = d(s, S′) = inft∈S′ d(s, t).

In order to check that S′ is a D-model, the following result will sometimes be useful:

Lemma 2. If d is a distance and∣∣S′ ∩Bd(t, xη)
∣∣� B ′ exp[Dx2/4] for all x � 2 and t ∈ S′, (4.19)

then S′ is a D-model with parameters η,D and B ′.

Proof. If d is a distance and S′ ∩ Bd(t, xη) is not empty, it contains at least one point u and is therefore included in
S′ ∩Bd(u,2xη) with u ∈ S′. Hence (4.18) follows from (4.19). �
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5. T-estimators based on a single D-model

In this section, we consider the simplest case of T-estimators, as defined in Section 4.2.1, i.e. those based on a
single D-model S. This is a natural generalization of (non-penalized) m.l.e. estimators, as explained in Section 3.2,
corresponding to the choice η ≡ 0. It then follows from (4.6) that the value of ε is irrelevant so that we can restrict our
study to T0-estimators. Then, (4.15) becomes

sup
{s∈M|δ(s,t)�d(t,u)}

Ps

[
ψ(t, u,X) = 1

]
� B exp

[−ad2(t, u)
]
, (5.1)

for all pairs (t, u), t �= u in S2 and, in the case of M-tests, γ = γ ′ and (4.16) becomes

sup
{s∈M|δ(s,t)�d(t,u)}

Ps

[
γ (t,X) � γ (u,X)

]
� B exp

[−ad2(t, u)
]
. (5.2)

5.1. Working within the general framework

Our aim is to prove some large deviation results for the minimizer(s) of DX or D′
X which allow us, via (4.9)

or (4.12), to derive the existence of T0- or M-estimators and bound their risk. To this end, we have to introduce, for
each integer q � 1 the function ζq defined in the following proposition to be proved in Appendix A.

Proposition 3. Let Y be a non-negative random variable such that

P[Y > y] � α exp(−βy2) for y � ȳ, (5.3)

where α,β and ȳ denote some positive constants. Then, for all w � 0 and q � 1,

E
[
(Y + w)q

]
�
[
1 + αζq(βȳ2)

]
(ȳ + w)q, (5.4)

where ζq is the decreasing function defined on (0,+∞) by

ζq(x) =
√

π eq

2

[
q

2 ex

]q/2

1(0,cq)(x) + q

2
e−x1[cq,+∞)(x); c =

{
1/2 if q � 2πe;
0.612 if q > 2πe.

(5.5)

We now have at hand all the required tools to state the main result of this section.

Theorem 3. Let (M,d) be a semi-metric space for which Assumption 1 holds, let S ⊂ MT be a D-model with pa-
rameters η, D and B ′, D � 1/2, and let {ψ(t, u,X), (t, u) ∈ S2, t �= u} be a family of tests satisfying (5.1) with
2aη2 � 3D. Then, for all s ∈ M such that δ(s, S) < +∞, Ps -a.s. there exists T0-estimators ŝ(X) derived from these
tests and any of them satisfies, for any s′ ∈ S,

Ps

[
d(s′, ŝ) > y

]
< 2.2BB ′ exp[−ay2/6] for y �

[
δ(s, s′)

]∨ (4η). (5.6)

If d is a distance and δ = κd for some κ > 0, then

Es

[
dq(s, ŝ)

]
� (κ + 1)q

[
d(s, S) ∨ 4η

κ

]q[
1 + 2.2BB ′ζq

(
8aη2

3

)]
for q � 1, (5.7)

with ζq given by (5.5). We get in particular, for all s ∈ M ,

Es

[
dq(s, ŝ)

]
� (1 + 0.15qBB ′)(κ + 1)q

[
d(s, S) ∨ 4η

κ

]q

if 1 � q � 16aη2

3
∧ 17. (5.8)

If Assumption 2(A) holds and the function γ satisfies (5.2), under the previous assumptions, there exists at least one
minimizer of the function γ (t,X) with respect to t ∈ S and any such M-estimator ŝ(X) satisfies (5.6), (5.7) and (5.8).

Remarks.

(i) The term involving BB ′ in (5.7) should be considered as a “remainder” term which is small for large values
of aη2.
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(ii) Since D � 1/2, 16aη2/3 � 4 and (5.8) covers at least the case 1 � q � 4.
(iii) The bound (5.7) reveals the relevance of the parameter B ′ which controls the remainder term. Indeed, it is easy

to see that (4.18) is over parametrized since we could always normalize B ′ to one. This is clear if B ′ < 1 and,
when B ′ > 1, we could merely change D to D + (logB ′)/4. If B ′ is smaller than one, this would be a net loss
for the risk bounds. In the opposite case, the modification improves the remainder term but deteriorates the main
one because of the requirement 2aη2 � 3D which typically forces us to enlarge η if we enlarge D. In situations
where D is large, B ′ is compensated by ζq(8aη2/3) � ζq(4D) while enlarging η is not a good strategy. This
accounts a posteriori for the introduction of B ′ in Definition 4, even if we shall often normalize it to one in the
examples.

Proof of Theorem 3. We first want to show that (5.1) or (5.2) (in the case of M-tests) imply that

Ps

[
DX(s′) > y

]
or
Ps

[
D′

X(s′) > y
]
< 2.2BB ′ exp

[
−ay2

6

]
for y � y0 = δ(s, s′) ∨ (4η). (5.9)

To prove this, we set θ = 5/4 and Sk = {t ∈ S | θk/2y � d(s′, t) < θ(k+1)/2y}. Then

Ps

[
DX(s′) > y

]= Ps

[∃t ∈ S with d(t, s′) > y and ψ(s′, t,X) = 1
]

�
+∞∑
k=0

Ps

[∃t ∈ Sk with ψ(s′, t,X) = 1
]
�

+∞∑
k=0

|Sk| sup
t∈Sk

Ps

[
ψ(s′, t,X) = 1

]
. (5.10)

Since Sk ⊂ Bd

(
s, θ(k+1)/2y

) ∩ S and θ(k+1)/2y �
√

θy �
√

θy0 > 2η, it follows from (4.18) that |Sk| �
B ′ exp[θk+1(y/η)2D]. If t ∈ Sk , then d(s′, t) � θk/2y � y0 � δ(s, s′) and we can use (5.1) to derive from (5.10)
and D � 2aη2/3 that Ps[DX(s′) > y] � G(y) with

G(y) = BB ′
+∞∑
k=0

exp

[
θk+1 y2

η2
D − aθky2

]
� BB ′

+∞∑
k=0

exp

[
−aθky2

3
(3 − 2θ)

]
.

Since ay2 � ay2
0 � 16aη2 � 24D � 12, we finally get

G(y) � BB ′ exp

[
−ay2

6

]+∞∑
k=0

exp

[
ay2

6
(1 − θk)

]
� BB ′ exp

[
−ay2

6

]+∞∑
k=0

exp

[
−2

((
5

4

)k

− 1

)]

< 2.2BB ′ exp

[
−ay2

6

]
,

which proves (5.9) for DX(s′). If (5.2) holds, we replace ψ(s′, t,X) = 1 by γ (t,X) � γ (s′,X) and show by the same
arguments that Ps[D′

X(s′) > y] � G(y).
Since DX(s′) is a.s. finite and, by (4.9), the set of points t ∈ S such that DX(t) � DX(s′) is a subset of S ∩

�Bd(s′,DX(s′)) which is finite by (4.18), it follows that {u ∈ S | DX(u) = inft∈S DX(t)} is non-empty and finite. Since
S is countable, it is possible to select an element ŝ of this set in a measurable way, which provides the required
T0-estimator ŝ. Then (5.6) derives from (5.9) and (4.10). If d is a distance we choose s′ = π(s) where π is the
minimum distance operator provided by Lemma 1. Hence d(s, s′) = d(s, S) and (4.10) implies that d(s, ŝ) � d(s, S)+
DX(s′). We may then bound Es[dq(s, ŝ)] from (5.9) via Proposition 3 with Y = DX(s′), α = 2.2BB ′, β = a/6,
ȳ = y0 = κd(s, S) ∨ 4η and w = d(s, S), taking into account that

ȳ + w = κ
[
d(s, S) ∨ (4η/κ)

]+ d(s, S) � (κ + 1)
[
d(s, S) ∨ (4η/κ)

]
. (5.11)

Then (5.7) follows from (5.4) and (5.8) from the fact that 8aη2/3 � 2 and 2πe > 17. For M-tests satisfying (5.2), we
proceed exactly in the same way, (4.14) implying that {t ∈ S | γ (t,X) < γ (s′,X)} is finite, which proves the existence
of a minimizer of γ (·,X). We then conclude as before, replacing (4.9) by (4.12) and (4.10) by (4.13). �
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As an immediate consequence of (5.8), we can derive upper bounds for the minimax risk over subsets S of M . Let
us denote the maximal risk of an estimator ŝ(X) and the minimax risk over S respectively by

R(ŝ,S, q) = sup
s∈S

Es

[
dq(s, ŝ)

]
and R(S, q) = inf

ŝ
R(ŝ,S, q), (5.12)

where the infimum is over all possible estimators ŝ. Then

Corollary 1. Let (M,d) be a metric space, S be a D-model with parameters η, D and B ′, D � 1/2, {ψ(t, u,X),

(t, u) ∈ S2, t �= u} be a family of tests satisfying (5.1) with δ = κd, κ > 0 and 2aη2 � 3D and ŝ be a T0-estimator
(which exists a.s.) derived from these tests, then, for 1 � q � (16aη2/3) ∧ 17,

R(S, q) � R(ŝ,S, q) � (1 + 0.15qBB ′)(κ + 1)q
[(

sup
s∈S

d(s, S)
)

∨ 4η

κ

]q

. (5.13)

5.2. Some particular statistical frameworks

To apply the previous results under Assumption 1, we just have to find a suitable D-model S ⊂ MT with parameters
η and D satisfying 2aη2/3 � D � 1/2. Assumption 1 actually holds for various statistical frameworks. To keep this
paper to an acceptable size, we shall only consider three simple illustrations here, namely independent observations,
Gaussian sequences and bounded regression. The case of Gaussian regression with random design has been considered
in [12]. Further examples will be given in subsequent papers.

5.2.1. Independent observations with an unknown distribution
The independent setting. Here, we observe a set X = (X1, . . . ,Xn) of n independent random variables Xi with
values in (X ,W). We denote by �M the set of all distributions on (X ,W), set Ξ = X n, Z = W⊗n and take for M the
set of all product distributions on (X n,W⊗n): M = {Pt =⊗n

i=1
�Pi, �Pi ∈ �M for 1 � i � n}. As indicated before, we

identify t and Pt and M with the set of parameters t , denoting by Ps the true distribution of X, which is assumed to
belong to M .

If Pt ∈ M is the distribution of an i.i.d. sample, we denote by �Pt the common distribution of the Xi and, for
simplicity, since there will be no ambiguity in the sequel, we shall also denote by �M the subset of M consisting of
those power distributions Pt = �P ⊗n

t so that the distributions Pt with t ∈ �M are those for i.i.d. samples (X1, . . . ,Xn)

with marginal distributions �Pt on X . In this paper, we shall systematically restrict ourselves to considering models
S ⊂ �M , which corresponds to the situation where we assume that our observations are independent and believe that
they are close to i.i.d. but allow some departures from equidistribution.

To turn M into a metric space, we use either the sup-Hellinger distance h̄ of the coordinates or the sup-variation dis-
tance v̄. We recall that the Hellinger distance h is given by (2.1) and the variation distance v between two probabilities
P and Q is defined by

v(P,Q) = 1

2

∫
|dP − dQ| = sup

A

∣∣P(A) − Q(A)
∣∣, (5.14)

where the supremum is over all measurable sets. It is well-known from [43] that the two distances satisfy the inequal-
ities

h2(P,Q) � v(P,Q) � h(P,Q)
√

2 − h2(P,Q). (5.15)

If Pt =⊗n
i=1

�Pi and Pu =⊗n
i=1

�Qi , we define h̄ and v̄ on M by

h̄(t, u) = sup
1�i�n

h(�Pi, �Qi) and v̄(t, u) = sup
1�i�n

v(�Pi, �Qi).

In particular, if u ∈ �M , i.e. Pu = �P ⊗n
u , then h̄(t, u) = sup1�i�n h(�Pi, �Pu) and v̄(t, u) = sup1�i�n v(�Pi, �Pu). If both t

and u ∈ �M , then

h̄(t, u) = h(�Pt , �Pu) and v̄(t, u) = v(�Pt , �Pu), (5.16)

which allows us to identify h̄ with h and v̄ with v on �M and turn it into a metric space with distance either h or v.
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The i.i.d. setting. It corresponds to the particular case where we only consider distributions for i.i.d. samples or
equivalently restrict ourselves to t ∈ �M , as defined for the independent setting, and choose for M either �M itself or
some subset of it, with the metric given either by h or v. For instance, we may take for M the set of all probability
densities t with respect to some measure µ on X and set d�Pt/dµ = t , hence Pt = (t · µ)⊗n.

5.2.2. The Gaussian setting
The Gaussian setting corresponds to the so-called “Gaussian sequence” framework in which we observe a sequence

X = (Xi)i�1 of independent Gaussian variables with known variance σ 2 and respective means si . Then Ξ = RN�
,

Xi ∼ N (si , σ
2) for each i and s = (si)i�1 ∈ M = l2(N

�). We denote by 〈·, ·〉 and ‖ · ‖ respectively the scalar product
and the norm in l2(N

�), by d2 the corresponding distance (d2(s, t) = ‖s − t‖) and Ps the true distribution of X. All
possible distributions Pt for X, with t ∈ l2(N

�), being mutually absolutely continuous, we can choose the centered
distribution P0 = �P ⊗N�

0 with �P0 = N (0, σ 2) for reference measure, getting

dPt

dP0
(X) = exp

[
1

σ 2

(
〈t,X〉 − ‖t‖2

2

)]
. (5.17)

Although the case of Xi ∼ N (si , σ
2) with a known value of σ can be reduced to the case of Xi/σ ∼ N (si/σ,1), it

will be more instructive to give our results within the original framework in order to emphasize the influence of σ .
The Gaussian setting is merely an infinite-dimensional extension of the classical problem of estimating the mean

s of a Gaussian vector with known covariance matrix in Rn which can be viewed as a particular case of the Gaussian
setting with si = 0 for i > n. We recover the classical Gaussian linear regression framework if we assume that s

belongs to some given linear subspace of Rn.
Alternatively, the Gaussian setting can be identified with the classical “white noise framework” which corresponds

to the observation of the process

Y(z) =
z∫

0

s(x)dx + σW(z), 0 � z � 1, (5.18)

where s is an unknown function in L2([0,1],dx) and W is a Wiener process with W(0) = 0. Choosing some or-
thonormal basis {ϕi, i � 1} of L2([0,1],dx) and defining si = ∫ 1

0 s(x)ϕi(x)dx, Xi = ∫ 1
0 ϕi(x)dY(x) leads to the

Gaussian setting. The function s in (5.18) can be identified with the sequence (si)i�1 of its Fourier coefficients with
respect to the basis {ϕi, i � 1} via Plancherel’s formula. Since this correspondence is an isometry, it allows us to
view the white noise framework (5.18) as an alternative representation of the Gaussian setting with parameter space
M = L2([0,1],dx) and distance d corresponding to the L2-norm. Much more on this is to be found in Sections 1
and 6 of [17].

5.2.3. The bounded regression setting
This statistical problem has recently received much attention in view of his connections with the fashionable do-

main of Statistical Learning. A major reference is the book [33] by Györfi, Kohler, Kryżak and Walk and a very recent
one including many additional references is [26] by DeVore, Kerkyacharian, Picard and Temlyakov.

As in the case of independent variables, we can distinguish between two situations.

Bounded regression with random design. We observe an n-sample {(Xi, Yi), 1 � i � n}, Xi ∈ X , Yi ∈ I from
some unknown distribution on X × I where I is a known compact interval of R. Performing if necessary an affine
transform of the Yi , we may assume without loss of generality that I = [0,1], hence Ξ = (X × [0,1])n, which we
shall do throughout this paper. The problem would perfectly fit into our i.i.d. setting if the unknown parameter to be
estimated were the joint distribution of X and Y , but here we focus on the estimation of the conditional mean s of
Y given X, i.e. s(x) = Es[Y |X = x] ∈ [0,1], denoting by µ the unknown marginal distribution of X on X . We may
therefore rewrite this statistical framework in regression form as

Y = s(X) + ξ with X ∼ µ, Y, s(X) ∈ [0,1] and Es[ξ |X] = 0. (5.19)

It then corresponds to random design regression with bounded observations, which is a classical framework used in
Statistical Learning. Here s is the only parameter to be estimated but µ and the conditional distribution of ξ given X
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are unknown nuisance parameters. This is the only case we shall consider in this paper for which the mapping F such
that s = F(PX) is not one-to-one so that s does not determine PX .

Bounded regression with fixed design. It is the same framework as before apart from the fact that, instead of be-
ing i.i.d., the variables X1, . . . ,Xn are now fixed (deterministic), equal to x1, . . . , xn, so that we have independent
observations Y1, . . . , Yn satisfying

Yi = s(xi) + ξi with Yi, s(xi) ∈ [0,1] and Es[ξi] = 0. (5.20)

This situation occurs in particular when we analyze the random design problem conditionally to the values of the Xi .
We do not assume here that all values xi are distinct so that the cardinality of the set X = {x1, . . . , xn} may be smaller
than n.

A unified framework. In order to save space and avoid a lot of redundancies, we shall treat both regression cases
(random and fixed design) simultaneously, using the following conventions: In the random design case, M is the set of
measurable functions from X to [0,1] with L2(µ)-norm ‖ · ‖ = ‖ · ‖2 and the corresponding distance d = d2. We also
set X = {(Xi, Yi), 1 � i � n} and γ ′(t,X) = ∑n

i=1[Yi − t (Xi)]2. In the fixed design case, M is the set of functions
from X = {x1, . . . , xn} to [0,1], which can be identified to the metric space [0,1]|X | with the distance d = dn defined
by d2

n(t, u) = n−1 ∑n
i=1[t (xi) − u(xi)]2 and the corresponding norm ‖ · ‖ = ‖ · ‖n with ‖t − u‖n = dn(t, u). Then

X = {(xi, Yi), 1 � i � n} and γ ′(t,X) =∑n
i=1[Yi − t (xi)]2.

5.3. Application of the general theory to the particular frameworks

5.3.1. The existence of robust tests
Gaussian sequences. It is not difficult to check that Assumption 2 holds in the Gaussian setting since then likelihood
ratio tests are naturally robust as shown by the following proposition.

Proposition 4. Let X = (Xi)i�1 ∈ RN�
be a random sequence with independent Gaussian coordinates of variance

σ 2 and mean vector belonging to l2(N
�). Let Pt denote the distribution of X when the mean vector is t . Then, for all

s, t, u ∈ l2(N
�) and z ∈ R,

Ps

[
log

(
dPu

dPt

)
(X) � z

]
� exp

[
− z

2
− ‖t − u‖(‖t − u‖ − 4‖s − t‖)

8σ 2

]
.

In particular, for all x ∈ R,

sup
{s∈l2(N

�)|‖s−t‖�‖t−u‖/6}
Ps

[
log

(
dPu

dPt

)
(X) � x

12σ 2

]
� exp

[
−‖t − u‖2 + x

24σ 2

]
and, for all s ∈ l2(N

�) and x ∈ R,

Ps

[
log

(
dPu

dPt

)
(X) � x

12σ 2

]
� exp

[‖t − s‖2

2σ 2
− x

24σ 2

]
.

Bounded regression. The case of bounded regression is only slightly more complicated. An application of Bern-
stein’s Inequality actually leads to the following:

Proposition 5. Let X, M , ‖ · ‖ and γ ′(·,X) be defined according to the conventions of Section 5.2.3 for bounded
regression with either random or fixed design. For all s, t, u ∈ M and z ∈ R, if y = 4‖s − t‖2 − ‖t − u‖2/4, then

Ps

[
γ ′(t,X) − γ ′(u,X) � nz

]
� exp

[−3n

100

(
‖t − u‖2 + 98(z − y)

25

)]
. (5.21)

In particular, for all x ∈ R,

sup Ps

[
γ ′(t,X) − γ ′(u,X) � 25nx

98

]
� exp

[−3n

100

(‖t − u‖2 + x
)]

, (5.22)

{s∈M|‖s−t‖�‖t−u‖/4}
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and, for all s ∈ M and x ∈ R,

Ps

[
γ ′(t,X) − γ ′(u,X) � 25nx

98

]
� exp

[
3n

100

(
392‖s − t‖2

25
− x

)]
. (5.23)

Remark. It is easily seen, either from the proof or from a scaling argument, that, if the Yi take their values in [0,A]
instead of [0,1] and M is defined accordingly as a set of functions with values in [0,A], all the previous bounds hold
with 3n/100 replaced by 3n/(100A2). This means that, in all subsequent results dealing with bounded regression,
the value of a should be changed from 3n/100 to 3n/(100A2). In order to save space, we shall not pursue into this
direction leaving such extensions to the reader.

Independent observations. In the general independent setting, likelihood ratio tests are not robust, as we have seen,
and one has to introduce special tests for our purposes. They have been constructed by Huber in [34] (see also [35],
Section 10.3) for the variation distance and by Le Cam in [44] and Birgé in [9] for the Hellinger distance.

Proposition 6. Let �Pt , �Pu be two different distributions on some measurable space X and x ∈ R, d be either the
Hellinger or the variation distance between probabilities on X and α = 1 if d = h or α = 2 if d = v. One can
find a test function ψ (depending on α, t , u and x) defined on X n, with ψ(t, u,X) = 1 − ψ(u, t,X), such that, if
X = (X1, . . . ,Xn) is a set of independent random variables with distribution Ps =⊗n

i=1
�Pi , then

Ps

[
ψ(t, u,X) = 1

]
� exp

[−n
(
d2(t, u) + x

)
/(4α)

]
if sup

1�i�n

d(�Pi, �Pt) � d(t, u)/4

and

Ps

[
ψ(u, t,X) = 1

]
� exp

[−n
(
d2(t, u) − x

)
/(4α)

]
if sup

1�i�n

d(�Pi, �Pu) � d(t, u)/4.

The proofs of the previous propositions are given in Appendix A.

5.3.2. The resulting risk bounds for T-estimators
It follows from the previous section that, in all the frameworks we considered, it is possible to construct families

of tests satisfying Assumption 1 (or 2 for the Gaussian and bounded regression settings) with B = 1 for suitable
values of a and δ = κd . We can take MT = M in all cases, except for the independent non i.i.d. one for which
MT = �M . Applying Theorem 3 in each case leads to the following corollary which covers all the specific frameworks
we consider in this paper.

Corollary 2. Suppose that we want to estimate an unknown element s ∈ M in the independent, the Gaussian or the
bounded regression setting and that S ⊂ MT is a D-model with parameters η,D and B ′.

(i) For independent observations, MT = �M and one can build tests that satisfy Assumption 1 with B = 1, a = n/4
and δ = 4h̄ in the Hellinger case or a = n/8 and δ = 4v̄ in the variation case.

(ii) In the Gaussian setting, MT = M and Assumption 2 holds with B = 1,

γ ′(t,X) = 〈t,X〉 − ‖t‖2

2
, τ = 1

12σ 2
, a = 1

24σ 2
, δ = 6d2 and κ ′ = 12.

(iii) For bounded regression with either random or fixed design, MT = M and Assumption 2 holds with B = 1,
τ = 25n/98, κ ′ = 15.68,

γ ′(t,X) =
n∑

i=1

[
Yi − t (Xi)

]2
or

n∑
i=1

[
Yi − t (xi)

]2
, a = 3n

100
and δ = 4d2 or 4dn.

Therefore, if 2aη2/3 � D � 1/2, we can, in each case, build T0-estimators ŝ that satisfy (5.6), (5.7) and (5.8) for
all s ∈ M with B = 1 and the relevant values of d , a and κ . For the Gaussian and bounded regression settings, the
corresponding M-estimators satisfy the same results.
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Remark. In the independent and bounded regression settings, the distance d is bounded by one and the risk of any
estimator with values in M as well. But it may well happen that the upper bounds in (5.7) and (5.8) be larger than
one, especially for small values of n, because our method is far from optimal at the level of constants. Therefore these
upper bounds and the ones which we shall get later should systematically be truncated to one. In order to simplify the
presentation of our results we shall, most of the time, omit to do this explicitly.

5.3.3. An application to the model of uniform distributions
In order to illustrate the relationship between the classical approach and ours, let us go back to the problem we

considered in Section 2.3 and suppose that we want to estimate some distribution on R+ from n independent observa-
tions X1, . . . ,Xn via the model of uniform distributions Uθ on [0, θ ] with θ > 0. When we say that we use this model,
this means that we believe that the true distribution �Pi of Xi is close to some Uθ (independent of i) but we do not
assume that �Pi belongs to the model. It will be convenient here to reparametrize the uniform distributions, denoting
by �Pt , t ∈ R the uniform distribution on [0, et ], since then

h2(t, u) = h2(�Pt , �Pu) = 1 − exp
(−|t − u|/2

)
� |t − u|/2. (5.24)

Given some α ∈ R, we shall set, for D � 1/2,

η2 = 16.8D/n; J = sup
{
j ∈ N | j � 4.5 exp

[
(4D) ∨ (n/84)

]}; (5.25)

I = [α,α + 4Jη2] and S = {
α + 2η2(1 + 2j), j ∈ N, j � J − 1

}
. (5.26)

It follows from (5.24) that inft∈S h(�Pt , �Pu) � η for all u ∈ I and consequently that, whatever the distribution Ps =⊗n
i=1

�Pi of X,

inf
t∈S

h̄2(Ps,Pt ) = inf
t∈S

sup
1�i�n

h2(�Pi, �Pt ) � 2
[
η2 + inf

t∈I
sup

1�i�n

h2(�Pi, �Pt )
]
. (5.27)

In order to check that S is a D-model, we shall apply the following lemma. Its conclusions go beyond what we need
here but they will prove useful later.

Lemma 3. Let η and S be defined by (5.25) and (5.26). Then, whatever the probability P =⊗n
i=1

�Qi ∈ M ,∣∣S ∩Bh̄(P , r)
∣∣� 4.5 exp

[
D
[
(r/η) ∨ 2

]2]
for all r > 0. (5.28)

Proof. We shall distinguish between two situations. When r2 � 1/5, then (r/η)2 � n/(84D) and (5.28) follows from
(5.25) since |S| = J . If r2 < 1/5, there is obviously nothing to prove if r � inft∈S h̄(P,Pt ) and we can therefore as-
sume that there exists some t ∈ S such that Bh̄(P , r) ⊂ Bh̄(Pt ,2r). If Pu belongs to Bh̄(Pt ,2r), it follows from (5.24)
that 1 − exp(−|t − u|/2) < 4r2, hence (4η2)−1|t − u| < −(2η2)−1 log(1 − 4r2) and the definition of S implies that∣∣S ∩Bh̄(P , r)

∣∣� ∣∣S ∩Bh̄(Pt ,2r)
∣∣< −η−2 log(1 − 4r2) + 1 < (5 log 5)(r/η)2 + 1

since − log(1 − 4r2) < (5 log 5)r2 for r2 < 1/5. Finally (5.28) follows from the lower bound D � 1/2. �
The lemma implies that S is a D-model with parameters η,D and 4.5. We can therefore apply Corollary 2 to S

with D = 1/2, η2 = 8.4/n, B ′ = 4.5 and get, in view of (5.27), the risk bound

Es

[
h̄2(s, ŝ)

]
� C

[
inf
θ∈Θ

sup
1�i�n

h2(�Pi,Uθ ) + n−1
]
,

where Θ denotes the interval [exp(α), exp(α+4Jη2)]. One should note here that it is necessary to put some restriction
on the length of Θ : if it were infinite, the set S would also be infinite and Assumption 2 could not hold since any
Hellinger ball of radius one contains S.

6. Metric dimension and minimax risk

If we consider a stochastic framework for which Assumption 1 holds with MT = M , we can bound the minimax risk
over subsets S of M via Corollary 1. Optimizing the upper bound in (5.13) for given values of q, κ,B and B ′ amounts
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to minimize [(κ/4) sups∈S d(s, S)] ∨ η with respect to those S and η such that S is a D-model with parameters η,D

and B ′ and η2 � 3D/(2a). Since, by Lemma 1, for any η′ > η, one can always replace the pair (η,D) by (η′,D′)
satisfying the same relationship, one can assume that η � (κ/4) sups∈S d(s, S). Therefore, we have to look for the
minimal value of η such that there exists some D-model S with parameters η, D and B ′ satisfying η2 � 3D/(2a) and
η � (κ/4)d(s, S) for all s ∈ S .

It is one purpose of Approximation Theory to find sets with prescribed approximation properties and controlled
massiveness. For instance the entropy numbers of the compact set S can be used to build suitable D-models, although
entropy is not the most adequate tool in our case, as we shall see. Often Approximation Theory provides simple sets
(like finite dimensional linear spaces) S′ which can be used to approximate the elements of S with prescribed accuracy:
sups∈S d(s, S′) � ε, but are not D-models and cannot therefore be used directly for our construction. Some additional
step is needed in order to apply the classical results of Approximation Theory to the construction of T-estimators.
Similar arguments are required to discretize in a suitable way the sets of densities that are used in parametric estimation
as illustrated in Section 5.3.3. It is therefore important to understand how one can derive T-estimators from “natural”
approximation spaces or simple parametric families.

6.1. Introducing metric dimensions

The previous reasoning assumed a fixed value of B ′ and, as we noticed in Section 5.1, there are some possible
balances in (4.18) between B ′ and D, hence η. Playing with all three parameters would make everything more com-
plicated in what follows and we shall set B ′ = 1 for the remainder of Section 6. If one wants to use the influence of
B ′ efficiently, it is better to go back to the general point of view we took in Section 5.

Let us now recall the following definitions from Approximation Theory.

Definition 5. Let (M,d) be a metric space. A subset S of M is η-separated if d(t, u) > η for all pairs (t, u) ∈ S2 with
t �= u; it is called an η-net for S ⊂ M if, for all s ∈ S , one can find t ∈ S such that d(s, t) � η. An η-separated subset
S of S ⊂ M is said to be maximal (in S) if any S′ with S � S′ ⊂ S is not η-separated.

Observe that an η-net for S needs not be a subset of S and that a maximal η-separated subset of S is an η-net for S .
Given S ⊂ M , the values of η such that there exists an η-net Sη for S which is a D-model with parameters η,D,1

and 1/2 � D � 2aη2/3 only depend on some metric properties of S that describe its “massiveness”. In view of
Definition 4, it may seem natural to characterize this massiveness by the function D′ defined on (0,+∞) by

D′(η) = η2 inf
Sη

sup
t∈M; r�2η

r−2 log
(∣∣Sη ∩B(t, r)

∣∣),
where the infimum is over all η-nets Sη for S . This function can be degenerate (D′(η) = +∞ for all η > 0), for
instance when S = l2(N

�), in which case it is of no use. Moreover, it can behave in a rather erratic way: when S =
Z ⊂ M = R, one can show that D′(η) � η2 log 3 for η < 1/2 and D′(1/2) � (log 2)/4. This example also illustrates
the difficulty to compute the function D′ even in the simplest situations. Apart from some quite exceptional cases (if
S = R, then D′(η) = (log 3)/4 for all η > 0), it is impossible to compute it precisely and the best one can do is to
bound it from above and below. It will therefore be more convenient here to work with some upper bound D̃ for D′
that we call a bound for the metric dimension of S .

Definition 6. Let S be a subset of some metric space (M,d) and D̃ be a right-continuous function from (0,+∞)

to [1/2,+∞], such that D̃(x) = o(x2) when x → +∞. We say that S has a metric dimension bounded by D̃ if, for
every η > 0, there exists an η-net Sη for S which is a D-model with parameters η, D̃(η) and 1. If one can choose
D̃(η) = �D ∈ [1/2,+∞) for all η > 0, we say that S has a finite metric dimension bounded by �D. We shall speak of
inner metric dimension bounded by D̃ (or by �D) if Sη ⊂ S for all η > 0.

The restrictions that D̃ be right-continuous and � 1/2 will avoid to introduce additional assumptions in the sequel
and we can always enlarge D̃ to get them. It is easily seen that D̃(λx) � λ2D̃(x) for λ > 1 and we do not know of
any example where the condition D̃(x) = o(x2) when x → +∞ is not satisfied. The introduction of the inner metric
dimension will simplify our further analysis. The following properties are straightforward.
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Proposition 7. If S has a metric dimension bounded by D̃, this remains true for any subset of S and S has an inner
metric dimension D̃′(η) bounded by (25/4)D̃(η/2).

Proof. Let S′
η be a maximal η-separated subset of S (hence an η-net for S) and S be an η/2-net for S which

is a D-model with parameters η/2, D̃(η/2) and 1. Then S is an η/2-net for S′
η so that |S′

η ∩ B(t, xη)| � |S ∩
B(t, (x + 1/2)η)|. The result follows since x � 2 in the definition of the metric dimension. �
6.2. Some historical remarks

The fact that the minimax risk over S can be bounded using its metric properties has already been recognized in the
early seventies by Le Cam ([43] and [44]) who introduced the following notion of metric dimension to measure the
massiveness of a set: he defined the D(η)-metric dimension of S as the smallest number z such that any set in S with
diameter 2x � 2η can be covered by no more than 2z sets of diameter not larger than x. In [8] (Assumption H1, p. 186)
we introduced a slightly different notion of metric dimension, bounding the maximal number of points of some η-net
contained in an arbitrary ball of radius 2j η for j � j0 � 1 by 2jD(η). This is actually very similar to (4.18), apart from
the fact that in our assumption we replaced xD by the less restrictive exp(x2D). The initial definitions may seem more
natural because both were inspired by the example of k-dimensional Euclidean spaces. If S is such a space, any ball of
radius 2η can be covered by 2c1k balls of radius η and there exists an η-net Sη for S such that |Sη ∩B(t, r)| � (r/η)c2k

for all r � 2η and t ∈ S . Apart from the constants c1, c2, these bounds are optimal. Changing these definitions to
Assumption 2 gives slightly more flexibility and simplifies the proofs. There is a little cost for that at the level of
constants but this is a minor point which does not change anything to the philosophy of our approach.

6.3. Bounds for the risk based on metric dimensions

The importance of metric dimensions follows from the fact that if S has a metric dimension bounded by D̃ one can
find, for any η > 0 such that D̃(η) < +∞, an η-net for S which is a D-model. As a consequence, one can bound the
minimax risk on S as soon as one can get a bound for its metric dimension.

Theorem 4. Assume that (M,d) is a metric space such that there exists, for each pair (t, u) ∈ M2, t �= u, a test
ψ(t, u,X) between t and u satisfying the error bound

Ps

[
ψ(t, u,X) = 1

]
� exp

[−ad2(t, u)
]

if d(s, t) � κ−1d(t, u),

for some a > 0 and κ � 4, independent of s, t, u. Let S be some subset of M with a metric dimension bounded by D̃

and set η̃ = inf{x > 0 | 2ax2 � 3D̃(x)}. There exists a T -estimator ŝ such that, for all s ∈ S ,

Ps

[
d(s, ŝ) > (x + 1)η̃

]
< 2.2 exp(−ax2η̃2/6) for x � κ (6.1)

and, for all s ∈ M ,

Es

[
dq(s, ŝ)

]
� C(q)(κ + 1)q

[
d(s,S) + η̃

]q
for q � 1.

In particular, the minimax risk R(S, q) over S is bounded by C(q)(κ + 1)q η̃q .

Proof. The behaviour of D̃ when x → +∞ implies that η̃ is finite and its right-continuity that one can find a D-model
S with parameters η̃, D = D̃(η̃) � 2aη̃2/3 and 1 which is an η̃-net for S . We can therefore apply Theorem 3 with
η = η̃ and d(s, s′) � η̃. Since B = 1 and δ(s, s′) ∨ (4η̃) � κη̃, (6.1) follows from (5.6). The risk bound then follows
from (5.7) since ζq

(
8aη̃2/3

)
� ζq(2). �

Such a theorem actually emphasizes a robustness property of T-estimators that is definitely not shared by the
classical m.l.e. as we demonstrated in Section 2.3: even if s does not belong to S , the T-estimators constructed in
view of bounding the minimax risk over S still have a risk which remains under control. Up to constants depending
on q only, we get the bound for the minimax risk plus an extra dq(s,S) term corresponding to a misspecification in
the statistical model. The translation of the results of Theorem 4 to our particular frameworks leads to the following
corollary.
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Corollary 3. Let us consider, in the i.i.d., the Gaussian or the bounded regression setting a subset S of M with metric
dimension bounded by D̃ with respect to the relevant distance. Let ηn = inf{x > 0 | nx2 � 6αD̃(x)} (with α = 1 in
the Hellinger case and α = 2 in the variation case) for the i.i.d. setting, ησ = inf{x > 0 | x2 � 36σ 2D̃(x)} for the
Gaussian setting and, for the bounded regression setting, ηn = inf{x > 0 | nx2 � 50D̃(x)}. Then one can build in
each case a suitable T -estimator (or an M-estimator for the two last cases) ŝ which satisfies, for all s ∈ M and q � 1,
the following risk bounds.

(i) In the i.i.d. setting

Es

[
hq(s, ŝ)

]
� C(q)

[
ηn + h(s,S)

]q
or Es

[
vq(s, ŝ)

]
� C(q)

[
ηn + v(s,S)

]q
.

(ii) In the Gaussian setting

Es

[‖s − ŝ‖q
]
� C(q)

[
ησ + inf

t∈S
‖s − t‖

]q

.

(iii) In the bounded regression setting

Es

[‖s − ŝ‖q
]
� C(q)

[
ηn + inf

t∈S
‖s − t‖

]q

.

In particular, the minimax risk R(S, q) over S is bounded by C(q)η
q
n or C(q)η

q
σ .

For the i.i.d. setting, we essentially recover (in a slightly more general form), the results of Birgé [8] (see his
Proposition 3.1 and Corollary 2.6). For the Gaussian setting, this corollary applies in particular to finite dimensional
linear subspaces of l2(N

�) and compact finite dimensional non-linear manifolds. As far as we are aware, it has never
been stated before, although it could have been deduced from [8] via our Proposition 4.

6.4. A few typical illustrations

6.4.1. Finite dimensional normed linear spaces
One purpose of Approximation Theory (see, for instance Pinkus [52]) is, given some function space S , to provide

k-dimensional linear spaces Sk such that sups∈S d(s, Sk) � ε where ε is a known function of S and k. Then, if S is an
ε-net for Sk , it is a 2ε-net for S . Finding such nets S amounts to get bounds on the metric dimension of k-dimensional
linear subspaces Sk of normed linear spaces. The following proposition implies together with Theorem 4 that if S is
any subset of a k-dimensional normed linear space, the minimax quadratic risk R(S,2) is bounded by Ca−1k (Ck/n

in the i.i.d. and bounded regression settings and Cσ 2k in the Gaussian setting, as expected).

Proposition 8. Let M ′ be a normed linear space, d be the distance derived from the norm and Vk be some
k-dimensional linear subspace of M ′. If S′ ⊂ Vk , it has a finite inner metric dimension bounded by k log 5 < 5k/3. If
M ′ is a Hilbert space and S′ ⊂ Vk is convex, the dimension bound can be improved to 0.403k ∨ 1/2.

Proof. There exists a maximal η-separated subset S of S′, which is therefore an η-net for S′. By the classical Lemma 4
below (see the proof of Lemma 2.5 page 20 of [59]) S satisfies, for all t ∈ Vk ,∣∣{u ∈ S | ‖t − u‖ < xη

}∣∣� (2x + 1)k � exp
[
kx2(log 5)/4

]
for x � 2. (6.2)

We then conclude from Lemma 2. If M ′ is a Hilbert space, S′ is convex in Vk and t ∈ M ′, there exists t ′ ∈ �S′ such
that d(t, u) � d(t ′, u) for all u ∈ S′ so that (6.2) still holds for t ∈ M ′ which gives the dimension bound k(log 5)/4
< 0.403k. �
Lemma 4. If S is an η-separated subset of some k-dimensional normed linear space Vk , then |{u ∈ S |
‖t − u‖ � xη}| � (2x + 1)k for all x > 0 and all t ∈ Vk .

Note that our bound (6.2) has the right order of magnitude with respect to k: only the constant (log 5)/4 is too
pessimistic. Indeed, a lower-bound argument shows that, if S is an arbitrary η-net for Rk , then |S ∩ B(t,3η)| � 2k .
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This is a rather poor but straightforward lower bound which shows that the metric dimension is bounded from below
by k(log 2)/9. When M ′ is a Hilbert space, one can also build η-nets for Sk , k � 2 (the case of k = 1 being trivial) in
a constructive way but this results in the suboptimal bound 0.458k for the inner metric dimension.

Proposition 9. Let Vk be a k-dimensional linear subspace (identified to Rk) of some Hilbert space M ′ and η be a
positive number. If S ⊂ Vk is the lattice [(2η/

√
k )Z]k , then it is an η-net for Vk and for all t ∈ M ′,∣∣S ∩B(t, r)

∣∣< (πk)−1/2 exp
[
0.458k(r/η)2] for r � 2η.

The result follows immediately from the next lemma, which can be proved as Lemma 2 from [15].

Lemma 5. For all positive integers k, t ∈ Rk , λ > 0 and r > 0,

∣∣(λZ)k ∩B(t, r)
∣∣� (πe/2)k/2

√
πk

(
2r

λ
√

k
+ 1

)k

<
1√
πk

exp

[
k

(
0.73 + log

(
2r

λ
√

k
+ 1

))]
.

6.4.2. Parametric models
The initial construction of Le Cam in [43] was directed towards parametric models, i.e. sets S of distributions that

are smooth images of subsets of Rk . For many such models, or at least compact subsets of them, there is a smooth
relationship of the form (6.3) below between the Euclidean distance on the parameters and the distance d on M (see
Lemma 7 of [43]). In this case, one can mimic the proof of Proposition 8 to get

Proposition 10. Assume that there exists a one-to-one parametrization θ �→ t (θ) ∈ S of S by a subset Θ of Rk ,
a norm ‖ · ‖ on Rk , three positive constants b � b′ and β and an increasing function ξ satisfying ξ(xλ) � xβξ(λ) for
all x � 2, λ > 0, such that

b‖θ − θ ′‖ � ξ
(
d
(
t (θ), t (θ ′)

))
� b′‖θ − θ ′‖ for all θ, θ ′ ∈ Θ. (6.3)

Then the subset S of (M,d) has an inner metric dimension bounded by k[log(b′/b) + β log 5] ∨ (1/2).

Note that, for the i.i.d. setting, (6.3) can only hold for bounded sets Θ since d being either h or v, it is bounded.
An alternative way to deal with a parametric model, when the parametrization t is a smooth mapping from Rk to

some Hilbert space, which may happen in the Gaussian setting, is to consider it as a manifold. It is then useful to
introduce the following

Property 1. A subset V of S enjoys Property 1 if there exists D > 0 such that, for all η, r > 0, t ∈ M and any
η-separated subset Sη of S , |V ∩ Sη ∩B(t, r)| � exp[D[(r/η) ∨ 1]2].

If S is a k-dimensional smooth manifold, for any s ∈ S , one can find a vicinity of s in S for which the projection
onto the tangent space at s is almost isometric. It follows from the arguments used to prove Proposition 8 that there
exists a vicinity Vs of s which enjoys Property 1 with D = 3k/2. If S is compact, one can even assume that Vs =
B(s, r̄) for some r̄ > 0 independent of s. Indeed, if this were not true, by compacity, one could find a sequence (sn)n�1
in S converging to s0 and a sequence (rn)n�1 converging to 0 such that S ∩B(sn, rn) does not enjoy Property 1. This
would contradict the fact that Vs0 enjoys Property 1 since B(sn, rn) ⊂ Vs0 for n large enough. In such a case, we can
bound the metric dimension of S in the following way.

Proposition 11. If S is compact, r̄ > 0 and, for all s ∈ S , B(s, r̄) ∩S enjoys Property 1 with the same value of D, the
metric dimension of S is bounded by

D̃(η) = D(r̄/η)2 + logK

4 ∨ [r̄/(2η)]2
∨ 1/2, (6.4)

where K denotes the minimal cardinality of a covering of S by balls of radius r̄ .
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Proof. If η � r̄ , the K centers of the balls of radius r̄ which cover S provide an η-net S for S with log |S| = logK

and (6.4) holds. If η < r̄ , we take for S a maximal η-separated subset of S and it follows from Property 1 that
|S ∩ B(s, r̄)| � exp[D(r̄/η)2] for all s ∈ S , which implies that |S| � K exp[D(r̄/η)2]. Let t be an arbitrary point in
M . We distinguish between two cases. If 2η � r < r̄/2, then either B(t, r) ∩ S = ∅ and there is nothing to prove, or
B(t, r) ⊂ B(s,2r) ⊂ B(s, r̄) for some s ∈ S. Then |S ∩B(s,2r)| � exp[4D(r/η)2] by Property 1 and (6.4) holds since
r̄ > 4η. If r � (r̄/2) ∨ 2η, then

log
(∣∣S ∩B(t, r)

∣∣)� log
(|S|)� D(r̄/η)2 + logK � D(r̄/η)2 + logK

4 ∨ [r̄/(2η)]2
(r/η)2

and (6.4) holds again. �
6.4.3. Totally bounded sets and entropy numbers

For totally bounded sets, a classical way of measuring massiveness is via entropy numbers. Let us recall their
definition.

Definition 7. If S is totally bounded, its η-covering number N (η) is the smallest number of closed balls of radius η

that are needed to cover it and its η-entropy is H(η) = log2[N (η)].

The η-entropy is non-increasing with respect to η, H(η) = 0 for η large enough and the metric dimension of S is
bounded by [H(η) log 2]/4. One way of bounding H(η) is to find an upper bound for the cardinality of some maximal
η-separated set in S . Much more on the subject, in particular examples of evaluations of H for various sets and
distances, can be found in [39,48,18] and [49] among other references. Nevertheless, the approach based on entropy is
not always adequate for our purpose, even for compact sets. For instance, we have seen that Euclidean balls in M = Rk

with k > 1 have a metric dimension bounded by 0.403k independently of their radius r̄ . But their η-entropy H(η) is
bounded from below by k log2(r̄/η). Using H(η)(log 2)/4, which is at least [k(log 2)/4] log2(r̄/η), as an upper bound
for the metric dimension of those balls would not lead to the right bound when r̄ is large.

6.4.4. Building D-models for bounded regression with random design
There are special difficulties to derive D-models in this case when the distribution µ of the design is unknown

because, even if we know a set S′ with finite metric dimension, for instance a finite-dimensional linear space, we
do not know how to discretize it since the distance d2 is unknown to the statistician. A possible way to bypass this
problem is to start from a finite dimensional linear subspace of the space L∞(X ) of bounded functions on X endowed
with the uniform distance d∞ given by d∞(t, u) = supx∈X |t (x) − u(x)|. If T ′ is a k-dimensional linear subspace of
L∞(X ) which contains the constant functions and T a maximal η-separated subset of T ′ which contains the constant
function t0 ≡ 1/2, T is an η-net for T ′ with respect to d∞ and, if S′ = T ∩Bd∞(t0,1), by Lemma 4, |S′| � (2η−1 +1)k .
Introducing the mapping π̄ from L∞(X ) to M given by

π̄(t) = (t ∧ 1) ∨ 0 for t ∈ L∞(X ), (6.5)

we set S = π̄ (S′). Then S is a D-model for the distance d2 with parameters η, (k/4) log
(
2η−1 + 1

)
and 1. Note here

the presence of the unexpected logarithmic factor due to the use of entropy instead of metric dimension for deriving
the parameters of D-models. Moreover, if s ∈ M , d∞(s, T ) � d∞(s, t0) � 1/2, hence

d2(s, S) � d∞(s, S) � d∞(s, S′) = d∞(s, T ) � d∞(s, T ′) + η.

6.4.5. Ellipsoids
Let us now consider a situation where the function D̃(η) converges to infinity when η goes to 0. Given a non-

increasing sequence a = (ai)i�1 in [0,+∞] with a1 > 0 and limi ai = 0 we define the ellipsoid E(a) ⊂ l2(N
�) as

E(a) =
{

s = (si)i�1

∣∣∣ +∞∑
i=1

(
si

ai

)2

� 1

}
, (6.6)

with the convention that if ai = 0 then si = 0 and if ai = +∞ then si is arbitrary. To bound the metric dimension
of E(a), we observe that

∑+∞
s2 � a2 for k � 0 and s ∈ E(a). Applying this with k = 0 and S0 = {0}, we
i=k+1 i k+1
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can set D̃(η) to any number � 1/2 for η � a1. For η �
√

2ak+1 with k � 1, we set λ = η
√

2/k � 2ak+1k
−1/2 and

Sk = (λZ)k ⊂ l2(N
�) (ti = 0 for i > k if t ∈ Sk). Therefore, if s ∈ E(a), one can find some t ∈ Sk with

d2(s, t) � a2
k+1 + kλ2/4 � kλ2/2 = η2

and Sk is an η-net for E(a). If t ∈ l2(N
�) and r � 2η, it follows from Lemma 5 that

k−1 log
(∣∣Sk ∩B(t, r)

∣∣)< 0.73 + log
(
1 + √

2(r/η)
)
< 0.52(r/η)2.

This proves that the metric dimension of E(a) is bounded by 0.52k when η �
√

2ak+1 and we can finally choose for
D̃ the function given by

D̃(η) = 0.52 inf
{
k ∈ N� | √2ak+1 � η

}
. (6.7)

We can then derive from Corollary 3 and Lemma 6 below the following upper bound for the minimax risk over E(a):

R
(
E(a), q

)
� C(q)

(
inf
k�1

{
ak+1 ∨ σ

√
k
})q

for q � 1. (6.8)

This bound is similar to the one we got for the i.i.d. setting in [8], Section 4. Such a result is not new and just given as
an illustration of the way our method works. It can, for instance, be deduced from Donoho et al. [30] (see also [17],
Section 6.2). An exact asymptotic evaluation of the minimax risk over ellipsoids has been given by Pinsker in [53].

Lemma 6. Let (bk)k�1 be some non-increasing sequence with values in [0,+∞] such that limk→+∞ bk = 0 and let
the function G be defined on (0,+∞) by G(x) = inf{k � 1 | bk � x}. Then, for all t > 0,

inf
{
x | x2 � tG(x)

}= inf
k�1

(
bk ∨ √

tk
)
.

The elementary proof will be omitted.
The problem of estimating some s ∈ E(a) typically occurs when it comes from the filtering of the white noise

framework by the trigonometric basis as explained in Section 5.2.2. It is then of common practice to put some Sobolev-
type restriction on the unknown s, of the form ‖s(α)‖ � R. This amounts to assume that s belongs to the ellipsoid
E(a) = E ′(α,R) defined by (6.6) with coefficients

a1 = +∞ and a2j = a2j+1 = R(2πj)−α for j � 1. (6.9)

We refer to Section 1.1.4 of [17] for additional details. This and (6.7) lead to the following upper bound D̃α,R for the
metric dimension of E ′(α,R):

D̃α,R(η)

0.52
=
{

1 if η �
√

2R(2π)−α;
2j + 1 if

√
2R(2πj)−α > η �

√
2R

[
2π(j + 1)

]−α
, j � 1.

Equivalently,

D̃α,R(η)

0.52
= 2

⌈
1

2π

(√
2R

η

)1/α⌉
− 1, (6.10)

with 
·� given by (4.4). The resulting upper bound for the minimax risk then derives from (6.8):

R
(
E ′(α,R), q

)
� C(q)σ q

[(
R

σπα

)1/(2α+1)

∨ 1

]q

.

This upper bound is known to be sharp, up to the constant C(q).

7. Working with several models

The limitations of our previous approach which amounts to basing our estimation procedure on a single well-
chosen discrete model S appear clearly in the applications. When we estimate a uniform distribution on [0, et ] in
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Section 5.3.3, we have to restrict to a compact set of values for t and when we design a minimax (up to constants)
estimator for the ellipsoid E ′(α,R) in Section 6.4.5, we have to know the values of α and R in order to construct the
estimator. It would clearly be more satisfactory to be able to use several models simultaneously in the construction of
our estimators. For instance, with a countable number of them, one could approximate properly the whole parameter
space in the first problem and if we had at hand one approximating space for each pair (α,R) and could use all of
them together in the second problem, we would not have to know α and R and therefore get an adaptive estimator.
Further motivations for the introduction of several models can be found in [5] and [17].

There are various ways to handle several models simultaneously. One possible way that we shall consider in
Section 9 is to build an estimator on each model and then aggregate them. An alternative solution is to use a penalized
M-estimator, for instance the penalized m.l.e., but this estimator suffers from the same defects as the ordinary m.l.e.
and proving results for the penalized m.l.e. leads to similar technical difficulties, as can be seen from [5,21,22,59]
or [31]. Just as the construction of T-estimators provided an alternative to the ordinary m.l.e., the construction that
follows offers an alternative to the penalized m.l.e.

7.1. T-estimators based on several models

In this set up, S is a union of several D-models which satisfy the following assumption.

Assumption 3. The set S = ⋃
m∈M Sm is a finite or countable union of D-models Sm with respective parameters

ηm,Dm and B ′ and Dm � 1/2 for all m ∈M.

This implies in particular that S is countable and that Lemma 1 applies to each Sm.
In the case of several models, we have to specify a suitable function η on S. We would like that η(t) = ηm when t

belongs to Sm but this is not a proper definition because t may belong to several Sm simultaneously. We therefore set

η(t) = inf{ηm | m ∈ M and t ∈ Sm}. (7.1)

Note that, if we work with a single model (|M| = 1), η is a constant function so that (4.15) reduces to (5.1) and (4.16)
to (5.2) and the case of a single model appears to be a special case of the general one but its treatment is much simpler.

We can now prove a general result about the existence and performances of T-estimators which should be viewed
as the extension of Theorem 3 to the case of several models. Not only the relationship between D and aη2 should now
hold for each model Sm, uniformly in m, but we also require the following additional assumption∑

m∈M
exp[−aη2

m/21] = Σ < +∞, (7.2)

which bounds the “complexity” of our family of models in the sense that it controls the growth of the sequence of
numbers |{m ∈ M | j − 1 < ηm � j}|. This condition should be viewed as an analogue of (3.1) in [6], (19) in [14],
(2.2) in [5] or (3.3) in [17]. It implies in particular that∣∣{m ∈M | ηm � z}∣∣< +∞ for all z > 0. (7.3)

Theorem 5. Let (M,d) be a semi-metric space and Assumptions 1 and 3 hold with S ⊂ MT , (7.2) and

aη2
m � 21Dm/5 for all m ∈M. (7.4)

If the tests ψ satisfy (4.15) with η given by (7.1), for all s ∈ M such that δ(s, S) < +∞, Ps -a.s. there exist
Tε-estimators ŝ(X) if ε > 0 or if M is finite. If 0 � ε � 4, any of them satisfies, for all s′ ∈ S such that δ(s, s′) < +∞,

Ps

[
d(s′, ŝ) > y

]
< (BB ′Σ/7) exp

[−(2/3)ay2] for y � δ(s, s′) ∨ [
4η(s′)

]
. (7.5)

If, moreover, d is a distance and δ = κd , then, for all s ∈ M ,

Es

[
dq(s, ŝ)

]
�
[
1 + (BB ′Σ/7)ζq(22.4)

]
(κ + 1)q inf

m∈M
{
d(s, Sm) ∨ (4ηm/κ)

}q
. (7.6)

In particular, for 1 � q � 79,

Es

[
dq(s, ŝ)

]
� [1 + 10−7BB ′Σ](κ + 1)q inf

{
d(s, Sm) ∨ (4ηm/κ)

}q
. (7.7)
m∈M
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If Assumption 2 replaces Assumption 1, Ps -a.s., there exists at least one M-estimator ŝ = ŝ(X) ∈ S such that
γ ′(ŝ,X) + τη2(ŝ) = inft∈S{γ ′(t,X) + τη2(t)} and any such M-estimator satisfies (7.5), (7.6) and (7.7) under the
same conditions.

Remark. Since Dm � 1/2, it follows from (7.4) and (7.5) that

aη2
m � 2.1 for all m ∈M and ay2 � 16aη2(s′) � 33.6, (7.8)

so that the right-hand side of (7.5) is bounded by 2.7 × 10−11BB ′Σ . Therefore (7.5) implies that Ps[d(s′, ŝ) �
δ(s, s′) ∨ [4η(s′)]] � 1 unless BB ′Σ is very large.

As a consequence of Theorem 5, we can build T-estimators from a suitable discretization of some collection of
approximating models such as those provided by Approximation Theory. The following result is easily comparable to
more classical ones about the performances of penalized estimators as in [5] or [17].

Corollary 4. Let Assumption 1 or 2 hold with MT = M , δ = κd , κ � 4 and let {�Sm}m∈M be a finite or countable
family of subsets of the metric space (M,d) with respective finite metric dimensions bounded by �Dm. Let {∆m}m∈M
be a family of non-negative weights such that∑

m∈M
exp[−∆m/5] = Σ. (7.9)

There exists a T-estimator (or an M-estimator under Assumption 2) ŝ satisfying, for all s ∈ M

Ps

[
d(s, ŝ) > y

]
< (BΣ/7) exp

[−(32/75)ay2] for y � (κ + 1)ȳ, (7.10)

ȳ = inf
m∈M

{
d(s, Sm) ∨

√
21(�Dm ∨ ∆m)/(5a)

}
.

For 1 � q � 79, we get the following risk bound:

Es

[
dq(s, ŝ)

]
�
[

1 + BΣ

107

]
(κ + 1)q inf

m∈M

{
d
(
s,�Sm

)+
√

21

5a
(�Dm ∨ ∆m)

}q

. (7.11)

Proof. For each m, set η2
m = 21(�Dm ∨ ∆m)/(5a) and Dm = �Dm � 1/2 by definition. Then (7.2) and (7.4) hold.

Moreover, the definition of the metric dimension implies that, for each m ∈ M, there exists Sm ⊂ M = MT which
is an ηm-net for �Sm and a D-model with parameters ηm,Dm and 1. Assumption 3 then holds with S = ⋃

m∈M Sm

and B ′ = 1. We may apply Theorem 5 which implies the existence of T-estimators satisfying (7.5) and (7.7) from
which (7.11) follows since d(s, Sm) � d(s,�Sm) + ηm. It follows from (7.3) that one can find some m ∈ M and some
s′ ∈ Sm such that d(s, s′) ∨ ηm = ȳ. Since δ(s, s′) ∨ (4ηm) � κȳ, it follows from (7.5) that

Ps

[
d(s, ŝ) > z + ȳ

]
< (BΣ/7) exp[−2az2/3] for z � κȳ,

from which we derive (7.10). �
Remark. We could, alternatively, adopt a Bayesian point of view. Choosing some prior distribution ν on M with
νm = − log(ν({m})) > 0 for each m and setting ∆m = 5(νm − 14) leads to (7.2) with Σ = e14 so that (7.11) becomes

Es

[
dq(s, ŝ)

]
�
[

1 + B

8

]
(κ + 1)q inf

m∈M

{
d(s,�Sm) +

√
21

a

[ �Dm

5
∨ (νm − 14)

]}q

.

A very small prior probability ν({m}) for the model �Sm, implies a large value of η2
m, which, as we already men-

tioned, can be viewed as a penalty for model Sm. This Bayesian viewpoint should be compared with the one given in
Section 3.4 of [17] for penalized least squares.



L. Birgé / Ann. I. H. Poincaré – PR 42 (2006) 273–325 301
7.2. Proof of Theorem 5

As in Section 5.3, we start by proving some deviation bound for DX and D′
X:

Ps

[
DX(s′) > y

]
or
Ps

[
D′

X(s′) > y
]
� BB ′Σ

7
exp

[
−2ay2

3

]
for y � y0 = δ(s, s′) ∨ [

4η(s′)
]
. (7.12)

It follows from (4.5) and (4.15) that

Ps

[
DX(s′) > y

]= Ps

[∃ t ∈ S with d(t, s′) > y and ψ(s′, t,X) = 1
]

�
∑
t∈S

d(t,s′)>y

Ps

[
ψ(s′, t,X) = 1

]
� B

∑
t∈S

d(t,s′)>y

exp
[−a

(
d2(t, s′) − η2(s′) + η2(t)

)]
, (7.13)

since d(t, s′) > y � δ(s, s′). Under Assumption 2(A), the same bound holds with D′
X(s′) replacing DX(s′) and

{γ (t,X) � γ (s′,X)} replacing {ψ(s′, t,X) = 1}, by (4.16). Let us now bound the right-hand side of (7.13). Us-
ing (7.3) we can index the set M as {mj, j ∈ N, j < |M|} in non-increasing order of the ηm, so that i < j implies
ηmi

� ηmj
. Then we derive from the Sm a partition {S′

m,m ∈M} of S by setting, using this indexing of M,

S′
mk

= Smk
∩
(⋃

j<k

Smj

)c

for all k ∈ N, k < |M|. (7.14)

Since S′
m ⊂ Sm, the S′

m still satisfy Assumption 3 with the same constants ηm, Dm and B ′. We first want to show that∑
t∈S′

p

d(t,s′)�y

exp
[−a

(
d2(t, s′) + η2

p

)]
� B ′

7
exp

[
−35ay2

48
− aη2

p

21

]
. (7.15)

To prove (7.15), we consider two cases.

Case 1: y � 2ηp . Let us observe that, if z � 2ηp , Assumption 3 and (7.4) imply that∣∣{t ∈ S′
p | d(t, s′) < z

}∣∣� B ′ exp
[
(z/ηp)2Dp

]
� B ′ exp[5az2/21].

Setting θ = 91/80, we derive from this bound and (7.8) that

1

B ′
∑
t∈S′

p

d(t,s′)�y

e−ad2(t,s′) = 1

B ′
∑
j�0

∑
t∈S′

p

θj/2y�d(t,s′)<θ(j+1)/2y

e−ad2(t,s′)

�
∑
j�0

exp[5θj+1ay2/21 − aθjy2] �
∑
j�0

exp[−35ay2θj /48]

� exp[−35ay2/48]
∑
j�0

exp
[−(49/2)

[
(91/80)j − 1

]]
< 1.036 exp[−35ay2/48]. (7.16)

Case 2: y < 2ηp . In this case we split the sum in (7.15) into two parts. For d(t, s′) � 2ηp , we can apply the results
of Case 1, i.e. (7.16) with y replaced by 2ηp and then the assumption y < 2ηp , to get∑

t∈S′
p

d(t,s′)�2ηp

exp
[−a

(
d2(t, s′) + η2

p

)]
< 1.036B ′ exp

[−a
(
35ay2/48 + η2

p

)]
.

For y � d(t, s′) < 2ηp , we use (7.4) again to derive
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∑
t∈S′

p

y�d(t,s′)<2ηp

exp
[−a

(
d2(t, s′) + η2

p

)]
� B ′ exp[4Dp − ay2 − aη2

p] � B ′ exp
[−a(y2 + η2

p/21)
]
.

Adding the sums for d(t, s′) � 2ηp and d(t, s′) < 2ηp shows that the resulting bound for Case 2 is larger than the one
we derived for Case 1, so that, for all y � y0,∑

t∈S′
p

d(t,s′)�y

exp
[−a

(
d2(t, s′) + η2

p

)]
� B ′ exp

[
−35ay2

48
− aη2

p

21

](
1.036 exp

[
−20aη2

p

21

]
+ exp

[
−13ay2

48

])

and (7.15) follows from (7.8). Using the fact that our ordering of M has been chosen in such a way that for all t ∈ S,
η(t) = ηp if t ∈ S′

p and summing (7.15) with respect to p ∈M, we deduce from (7.2) that∑
t∈S

d(t,s′)�y

exp
[−a

(
d2(t, s′) + η2(t)

)]
� B ′Σ

7
exp

[
−35ay2

48

]
. (7.17)

Finally (7.12) follows from (7.13) and (7.17) since aη2(s′) � ay2/16.
Since (7.12) holds for y � y0, DX(s′) < +∞, Ps -a.s. for any s′ ∈ S such that δ(s, s′) < +∞. Moreover, S =⋃

m∈M S′
m and, by (4.9),

Tm = {
t ∈ S′

m |DX(t) ∨ εη(t) � DX(s′) ∨ εη(s′)
}⊂ S′

m ∩ �B(s′,DX(s′) ∨ εη(s′)
)
.

It follows that Tm is finite for each m. Then
⋃

m∈M Tm is finite when M is finite. If ε > 0 and ηm > [ε−1DX(s′)] ∨
η(s′), then εη(t) > DX(s′) ∨ εη(s′) for all t ∈ S′

m and Tm is empty. Therefore
⋃

m∈M Tm is again finite by (7.3). In
both cases there exists at least one T-estimator and (7.5) follows from (7.12) and (4.10).

Let us now fix some m ∈ M and set s′ = πm(s) where πm is a minimum distance operator from M to Sm provided
by Lemma 1 via Assumption 3. Then η(s′) � ηm, d(s, s′) = d(s, Sm), ȳ = κd(s, Sm) ∨ 4ηm � y0 and, since ε � 4,
(4.10) implies that

d
(
s, ŝ(X)

)
� d(s, s′) +DX(s′) ∨ εη(s′) � DX(s′) ∨ 4ηm + d(s, Sm).

It follows from (7.12) that

Ps

[
DX(s′) ∨ 4ηm > y

]
� (BB ′Σ/7) exp[−2ay2/3] for y � ȳ

and we may therefore apply Lemma 3 with Y = DX(s′) ∨ 4ηm, α = BB ′Σ/7, β = 2a/3 and w = d(s, Sm), hence
βȳ2 � 32aη2

m/3 � 22.4 by (7.8). Arguing as in the proof of Theorem 3 with S replaced by Sm in (5.11), we get

Es

[
dq(s, ŝ)

]
� (κ + 1)q

[
d(s, Sm) ∨ (4ηm/κ)

]q[1 + (BB ′Σ/7)ζq(22.4)
]
.

An optimization with respect to m, which is arbitrary in M, then leads to (7.6). Since, by (5.5), ζq(22.4)/7 � 10−7 if
q � 79, we derive (7.7).

Let us now assume that Assumption 2 holds and fix s′ ∈ S. We want to show that

θ(y) = Ps

[∃ t ∈ S with γ (t,X) � γ (s′,X) and η(t) � y
] −→
y→+∞0. (7.18)

We may therefore assume that y � y0/2. Setting My = {p ∈M | ηp � y}, we get, since η(t) = ηp if t ∈ S′
p ,

θ(y) �
∑

p∈My

[ ∑
t∈S′

p

d(t,s′)�2ηp

Ps

[
γ (t,X) � γ (s′,X)

]+
∑
t∈S′

p

d(t,s′)<2ηp

Ps

[
γ (t,X) � γ (s′,X)

]]
.

Since 2ηp � 2y � y0 � 4η(s′), we can bound the first term using (4.16) and (7.15):∑
t∈S′

p

d(t,s′)�2η

Ps

[
γ (t,X) � γ (s′,X)

]
� BB ′

7
exp

[
−35ay2

12
− aη2

p

21
+ aη2(s′)

]
,

p
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hence by (7.2), since η(s′) � y/2,∑
p∈My

∑
t∈S′

p

d(t,s′)�2ηp

Ps

[
γ (t,X) � γ (s′,X)

]
� ΣBB ′

7
exp

[
−8ay2

3

]
−→

y→+∞0. (7.19)

Then, we use (4.17), (7.4), d(s, s′) � κ−1δ(s, s′) � y0/4 and y0 � 4η(s′) to get∑
p∈My

∑
t∈S′

p

d(t,s′)<2ηp

Ps

[
γ (t,X) � γ (s′,X)

]
�

∑
p∈My

BB ′ exp
[
4Dp + aκ ′d2(s, s′) + aη(s′)2 − aη2

p

]

� BB ′ exp
[
(ay2

0/16)(κ ′ + 1)
] ∑

p∈My

exp
[−aη2

p/21
]
,

which goes to zero when y → +∞, since, by (7.2),
∑

p∈My
exp

[−aη2
p/21

] −→
y→+∞0. Together with (7.19) this shows

that (7.18) holds. Now, by (4.14),{
t ∈ S | γ (t,X) < γ (s′,X) and η(t) < y

}⊂
⋃

p∈M\My

[
Sp ∩ �B(s′,DX(s′)

)]
.

The set Sp ∩ �B(s′,DX(s′)) is finite a.s. for each p and M \ My as well for any y > 0 by (7.3). This implies that,
with a probability at least 1 − θ(y), {t ∈ S | γ (t,X) < γ (s′,X)} is a finite set and there exists some minimizer ŝ(X)

of γ (·,X). Letting y go to infinity, we conclude from (7.18) that such a minimizer ŝ(X) exists with probability
one. Moreover, by (4.13), any such M-estimator satisfies, for each m ∈ M, d(s, ŝ) � d(s, Sm) + D′

X(πm(s)) and we
conclude as before from (7.12), replacing DX by D′

X and ε by 0.

8. Some applications

8.1. Application to the Gaussian setting

As follows from Proposition 4, for the Gaussian setting, Assumption 2 and therefore (4.16) and (4.17) hold with
γ ′(t,X) = − log(dPt/dP0)(X),

τ = (12σ 2)−2, d = d2, B = 1, a = (24σ 2)−1, κ = 6 and κ ′ = 12.

By (5.17) and (4.7), given η, the corresponding function γ (t,X) can be written as

γ (t,X) = 1

σ 2

[‖t‖2

2
− 〈t,X〉 + η2(t)

12

]
for all t ∈ S, (8.1)

and (4.8) then implies that the relevant tests ψ are the likelihood ratio tests defined by

ψ(t, u,X) =


0 if log

(
dPu

dPt

)
(X) + η2(t) − η2(u)

12σ 2
< 0;

1 if log

(
dPu

dPt

)
(X) + η2(t) − η2(u)

12σ 2
> 0.

(8.2)

This means that Theorem 5 applies to this setting provided that a countable subset S of M = l2(N
�) has been chosen

which satisfies Assumption 3 with (7.2) and (7.4). In such a case, there exists a minimizer over S of the function γ

given by (8.1) with η defined by (7.1) and, since Ps[γ (t,X) = γ (u,X)] = 0 for t �= u and S is countable, such a
minimizer ŝ is a.s. unique, hence is also the unique T0-estimator, as explained in Section 4.2.2. Since it is a minimizer
of ‖t‖2 − 2〈t,X〉 + η2(t)/6, it is merely a penalized least squares estimator on S, as considered in [17], with penalty
η2(t)/6.

Starting with a family of general models with controlled metric dimensions instead of D-models, we can derive
from Theorem 5 the following result, the proof of which is analogue to the one of Corollary 4.
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Corollary 5. Assume that we have at disposal a finite or countable family of subsets {�Sm}m∈M of l2(N
�) with respec-

tive metric dimensions bounded by functions D̃m. Assume moreover that the numbers ηm satisfy the inequalities

η2
m � 100.8σ 2D̃m(ηm) for all m ∈ M and

∑
m∈M

exp

[
− η2

m

504σ 2

]
= Σ < +∞. (8.3)

Then one can build a T0-estimator ŝ which is the unique penalized least squares estimator on some suitable countable
subset S of l2(N

�) and it satisfies, for all s ∈ M ,

Es

[‖s − ŝ‖q
]
� [1 + 10−7Σ]7q inf

m∈M

{
inf

t∈�Sm

‖s − t‖ + ηm

}q

for 1 � q � 79.

If, in particular, the sets �Sm have respective finite metric dimensions bounded by �Dm and (7.9) holds, one gets, for
1 � q � 79,

Es

[‖s − ŝ‖q
]
� [1 + 10−7Σ]7q inf

m∈M

{
inf

t∈�Sm

‖s − t‖ + 10.04σ

√
�Dm ∨ ∆m

}q

. (8.4)

Let us observe that the result given in the second part of this corollary completely parallels, and actually generalizes,
since we are not restricted to considering linear models �Sm, the results of Theorem 2 of [17] for penalized projection
estimators on linear models. Indeed, this theorem involves a family of linear subspaces of l2(N

�) with respective linear
dimensions Dm satisfying

∑
m∈M exp(−LmDm) = Σ ′ < +∞. If we consider such a family of spaces {�Sm}m∈M in

Corollary 5 and set �Dm = Dm/2 and ∆m = 5[LmDm + log(Σ ′/Σ)], then (7.9) is satisfied, �Sm has a finite metric
dimension bounded by �Dm and (8.4) holds. The resulting risk bound is (apart from the constants) the exact analogue
of (3.5) in [17]. As an immediate consequence, all the strategies of model selection and all corresponding adaptation
results (for ellipsoids, lp-balls and Besov bodies) that have been considered for penalized projection estimators in
Sections 5 and 6 of [17] remain valid for T-estimators. The novelty is that Corollary 5 allows us to consider more
sophisticated strategies that possibly mix linear and non-linear models and even allows to consider models which are
not of finite metric dimension. Let us now illustrate these new possibilities by two examples.

8.1.1. Handling a parametric model
Let us consider in M = l2(N

�), the parametric family �S = {t (θ), θ > 0} with ti (θ) = exp(−iθ) for i � 1. If we
suspect that the true s may belong to �S, it seems reasonable to include �S into a list of other models which should take
care of the case when s /∈ �S. For instance we can use �S with a family of linear models such as those studied in [17] or
the family of ellipsoids we shall consider in the next section. We shall prove below that �S has a finite metric dimension
bounded by 4.5. Adding a finite-dimensional model with dimension bounded by �D to a given list {�Sm, m ∈ M} has
little cost. Starting with weights ∆m satisfying (7.9), we merely set ∆ = �D for the new model. This leads only to a
negligeable increase in the risk if s /∈ �S, due to the increase of Σ by exp[−∆/5] < 1, but if s truly belongs to �S, we
recover the classical parametric risk of order

(
σ
√�D)q

. For a deeper analysis of the strategies to use to mix families
of models, we refer to Section 4.1 of [17].

For simplicity, we shall identify t (θ) and θ , setting d2(θ, θ ′) = d2(t (θ), t (θ ′)). Then, for θ < θ ′,

d2
2 (θ, θ ′) =

∑
i�1

[
1

eiθ
− 1

eiθ ′

]2

= 1

e2θ − 1
+ 1

e2θ ′ − 1
− 2

eθ+θ ′ − 1
<

1

e2θ − 1
. (8.5)

Let us set g(x) = (ex − 1)−1 for x > 0. It follows from Taylor’s formula that

d2
2 (θ, θ ′) = g(2θ) + g(2θ ′) − 2g(θ + θ ′) = (θ ′ − θ)2g′′(2θ∗) with θ � θ∗ � θ ′.

Since g′′(x) = ex(ex + 1)(ex − 1)−3 is a decreasing function of x, we may conclude that

(θ ′ − θ)2g′′(2θ ′) � d2
2 (θ, θ ′) � (θ ′ − θ)2g′′(2θ) for all θ < θ ′.

Since it is rather hard to invert g′′, it will prove convenient to replace it by a simpler function. One can indeed check
that

(8/5)x−3 � g′′(x) � 2x−3 for x � 3 and e−x � g′′(x) � (5/4) e−x for x � 3.
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It finally follows that

(θ ′ − θ)2f (θ ′) � d2
2 (θ, θ ′) � (5/4)(θ ′ − θ)2f (θ) for all θ < θ ′, (8.6)

for a decreasing function f given by

f (x) =
{

x−3/5 for x < 3/2;
e−2x for x � 3/2.

Let now η > 0 be given. In order to build an η-net for �S we shall define suitable numbers θk,j for k ∈ Z, j ∈ N. We
first define θk,0 = θk by f (θk) = exp(−3 − k) so that

θk =
{

(3 + k)/2 � 3/2 for k � 0;
5−1/3 exp(1 + k/3) < 3/2 for k < 0.

Then we set

θk,j = θk + 8jη ek/2, Jk = sup{j ∈ N | θk,j < θk+1} and Ik = [θk, θk+1[.
It follows from these definitions that, for any θ ∈ Ik one can find some θ ′ ∈ {θk,j , 0 � j � Jk} ∪ {θk+1} such that
|θ − θ ′| � 4η ek/2, hence by (8.6), d2(θ, θ ′) < η and

sup
θ∈Ik

[(
inf

0�j�Jk

d2(θ, θk,j )
)

∧ d2(θ, θk+1)
]

< η. (8.7)

Moreover, the definition of θk implies that

θk+1 − θk =


1/2 for k � 0;
3/2 − 5−1/3 e2/3 ≈ 0.361 > (1/2) e−1/3 for k = −1;
5−1/3(e4/3 − e) ek/3 ≈ 0.629 ek/3 for k � −2.

(8.8)

Since Jk < (8η)−1 e−k/2(θk+1 − θk), we get

Jk < G(k)/η with G(k) =
{

(1/16) exp(−k/2) for k � 0;
0.079 exp(−k/6) for k < 0.

(8.9)

Set K = inf{k ∈ Z | G(k) < η}. If K + 12 < 0, then η > 0.079 exp(−K/6) and

e2θK+12 − 1 > 2θK+12 = 2 × 5−1/3 exp(5 + K/3) > η−2.

One can check in the same way that this inequality remains true if K < 0 and K + 12 � 0 or if K � 0. Then,
by (8.5), d(θK+12, θ) < η for θ > θK+12 and it follows from the previous arguments that the set S = {θk,j , k < K,

0 � j � Jk} ∪ {θK, . . . , θK+12} is an η-net for �S. Since, for k < K , |S ∩ Ik| = Jk + 1 � 2G(k)/η and for k � K ,
|S ∩ Ik| = 1, we get, for k � 0,∣∣S ∩ [θk,+∞)

∣∣� 1

8η

∑
j�k

exp

(−j

2

)
+ 13 <

0.318

η
exp

(−k

2

)
+ 13 (8.10)

and, for k < 0,

∣∣S ∩ [θk,+∞)
∣∣� 0.158

η

−1∑
j=k

exp

(−j

6

)
+ 1

8η

∑
j�0

exp

(−j

2

)
+ 13

� 0.158

η

∑
j�k

exp

(−j

6

)
+ 13 <

1.03

η
exp

(−k

6

)
+ 13. (8.11)

We are now in a position to bound the cardinality of S∩B(θ ′, r) for θ ′ ∈ �S and r � 2η. Note that the part of the ball that
matters is merely the interval (θ, θ) with θ < θ ′ < θ and d2(θ

′, θ) = d2(θ
′, θ) = r . If the whole interval is contained

in some Ik , then by (8.6), θ − θ � 2r[f (θk+1)]−1/2 = 2r e2+k/2, hence |(θ, θ) ∩ S| = |(θ, θ) ∩ Ik| � e2r/(4η) + 1. If
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θ ∈ Ik−1 and θ ∈ Ik , using the previous argument twice, we get |(θ, θ) ∩ S| � e2r/(2η) + 2. Finally, if θ ∈ Ik−1 and
θ � θk+1, then∣∣(θ, θ) ∩ S

∣∣� ∣∣(θ, θ) ∩ Ik−1
∣∣+ ∣∣S ∩ [θk,+∞)

∣∣� e2r/(4η) + 1 + ∣∣S ∩ [θk,+∞)
∣∣

and by (8.6), 2r � d2(θk, θk+1) � e−2−k/2(θk+1 − θk). If k < 0, it follows from (8.8) that θk+1 − θk > (1/2) ek/3,
hence e−k/6 < 4 e2r and by (8.11),∣∣(θ, θ) ∩ S

∣∣� e2r/(4η) + 14 + 30.5r/η < exp
[
1.125(r/η)2] for r � 2η.

One can check that the same bound holds for k � 0 as well as in the cases we started with. It finally follows from
Lemma 1 that the metric dimension of �S is bounded by 4.5.

8.1.2. An example of roughness penalization
It is of common practice, for estimating an unknown function s belonging to some non-compact class of functions,

like a Sobolev space Wα
2 , to use a penalized maximum likelihood or least squares method with a roughness penalty.

In the previous Sobolev case, it is often recommended to use a penalty proportional to ‖s(α)‖2. Many examples and
further references can be found in Silverman [55], Wahba [61], Eggermont and LaRiccia [31] and Györfi et al. [33].

When the original statistical framework is the white noise framework and we filter it via the trigonometric basis,
the initial estimation problem becomes, as explained in Section 6.4.5, estimate s in the Gaussian setting under the
assumption that it belongs to the ellipsoid E(a) = E ′(α,R) with coefficients ai given by (6.9) for a known value of α

but an unknown value of R = ‖s(α)‖. In order to estimate s, we may consider the family of models �Sm = E ′(α,2mσ)

for m ∈M = N and apply Corollary 5 with η2
m = 53σ 2 22m/(2α+1). It follows from (6.10) with R = 2mσ that

D̃m(ηm)

0.52
= 2

⌈
22m/(2α+1)

2π(53/2)1/(2α)

⌉
− 1 � 22m/(2α+1) = η2

m

53σ 2
,

for all m ∈M. Then (8.3) holds with

Σ = Σ(α) <
∑
m�0

exp
[−22m/(2α+1)/9.51

]
and one can conclude that the corresponding T-estimator ŝ satisfies

Es

[‖s − ŝ‖q
]
�
[
1 + 10−7Σ(α)

]
7q inf

m∈M
{
d2(s,�Sm) + ηm

}q for 1 � q � 79.

If we choose m = inf{j ∈ N | ‖s(α)‖ � 2j σ }, then s ∈ �Sm, 2m � (2σ−1‖s(α)‖) ∨ 1 and we conclude that

Es

[‖s − ŝ‖q
]
� C(q)

[
1 + 10−7Σ(α)

]
σq

[(
σ−1‖s(α)‖)∨ 1

]q/(2α+1)
,

although ‖s(α)‖ is unknown. This is the best one can do from the minimax point of view even when ‖s(α)‖ is known.
We recall that the resulting estimator is a penalized least squares estimator on some discrete set with penalty roughly
proportional to ‖s(α)‖2/(2α+1) (the penalty for the set Sm being proportional to η2

m), which is different from the
classical one. Using a penalty proportional to ‖s(α)‖2 would not lead to the right bound for the risk (see also Section 21
of [33] for similar results with random design regression). The choice of the classical penalty is actually motivated by
computational reasons and solutions of the minimization problem while our penalty is only motivated by dimensional
arguments.

Note that adaptation over all ellipsoids can be obtained in a much simpler way, as explained in Section 6.2 of [17].
The previous construction was merely an illustration of the fact that one can use models of unbounded dimension and
the connection with classical roughness penalties.

8.2. Application to the independent and i.i.d. settings

In the independent or i.i.d. settings, the construction of the estimator is more involved since the tests ψ(t, u,X)

satisfying Assumption 1 are not likelihood ratio tests between t and u and the resulting T-estimators are not penalized
maximum likelihood estimators over some discrete set S. Nevertheless Theorem 5 easily translates to those settings.
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Corollary 6. Assume that we observe n independent random variables with unknown joint distribution Ps , s ∈ (M,d),
where d is either the sup-variation v̄ or the sup-Hellinger distance h̄, and that we have at disposal a finite or countable
family of discrete subsets {Sm}m∈M of the set �M of all distributions for i.i.d. variables. Let those sets Sm satisfy
Assumption 3 with

η2
m � 16.8αDm/n for all m ∈M,

∑
m∈M

exp
[−nη2

m/(84α)
]= Σ < +∞, (8.12)

and α = 2 if d = v̄, α = 1 if d = h̄. Then one can build in each case a T-estimator ŝ such that, for all s ∈ M ,

Es

[
dq(s, ŝ)

]
� [1 + 10−7B ′Σ]5q inf

m∈M
{
d(s, Sm) ∨ ηm

}q
for 1 � q � 79,

with either d = v̄ or d = h̄ according to the metric used.

Proof. It follows from Proposition 6 that in the independent setting, Assumption 1 holds with MT = �M , B = 1,
δ = 4d and a = n/8 when d = v̄, a = n/4 when d = h̄. In view of these values, our assumptions on ηm and Dm

imply (7.2) and (7.4) and the conclusion follows from (7.7) of Theorem 5. �
Models based on uniform distributions. As we noticed in Section 5.3.3, it is not possible, whatever D > 0, to find a
single D-model which is an η-net for the whole set �S = {�P ⊗n

t , t ∈ R}, where �Pt = Uet denotes the uniform distribution
on [0, et ] with t ∈ R. In order to solve this problem, we shall use a device that we call stratification, consisting in
splitting a large model, like �S, which does not have a finite metric dimension into a countable number of pieces, each
one with a finite metric dimension (but not necessarily the same). This method has already been used by Yang and
Barron in [71] and Birgé in [12]. Here, we replace �S (identified to R) by the union of submodels {�Sm, m ∈ Z} with
�Sm = [10−5mΓn,10−5(m + 1)Γn) and Γn given by (1.1).

Proof of Proposition 1. In order to apply Corollary 6 with d = h̄, we first apply the construction of Section 5.3.3 to
each interval �Sm with Dm = [10 log(10−5|m|)]∨ (1/2) and η2

m = 16.8Dm/n. Then the resulting value of J , as defined
by (5.25) with D = Dm, satisfies J > 4.5 exp[(n/84) ∨ 2] − 1 and the corresponding interval I , with α = 10−5mΓn,
has a length

4Jη2
m > 33.6n−1(4.5 exp

[
(n/84) ∨ 2

]− 1
)= 10−5Γn.

It follows that �Sm ⊂ I and the set Sm provided by (5.26) (with η = ηm) is an ηm-net for �Sm. Moreover, by Lemma 3,
the family of sets {Sm, m ∈ Z} satisfies Assumption 3 with B ′ = 4.5. Our choices for Dm and ηm imply that (8.12) is
satisfied and, since Dm > 1/2 is equivalent to |m| � K ′ = 105128,

Σ =
∑
m∈Z

exp[−Dm/5] = e−1/10(2K ′ − 1) + 2 × 1010
∑
i�K ′

i−2 < 4 × 105.

Finally we derive from Corollary 6 that, whatever the true probability Ps ,

Es

[
h̄2(s, ŝ)

]
< 30 inf

m∈M
{
h̄(s, Sm) ∨ ηm

}2 � C inf
m∈M

{
h̄2(s,�Sm) + Dm/n

}
.

If the original parameter θ = et satisfies log θ ∈ �Sm, then 105Γ −1
n log θ ∈ [m,m + 1), hence 10−5|m| � Γ −1

n |log θ | +
10−51m<0 and Dm � [11 log(Γ −1

n |log θ |)] ∨ (1/2), which concludes the proof with θ̂ = exp(ŝ). �
8.3. Density estimation

8.3.1. From Approximation Theory to discrete models
Density estimation in the i.i.d. setting has been the subject of hundreds of papers during the last decades. Modern

results tend to put as few assumptions as possible on the underlying densities and insist on adaptive procedures. In
particular, they rely quite heavily on results from Approximation Theory. Unfortunately, Approximation Theory deals
with approximation of functions, not of densities, and provides approximation spaces, in particular finite dimensional
linear spaces, which are not sets of densities. In this section, we wish to explain how, starting from a D-model with



308 L. Birgé / Ann. I. H. Poincaré – PR 42 (2006) 273–325
some approximation properties, but which is a set of functions, we can replace it by a D-model which is a set of
densities (and can therefore be used for our estimation purposes) and enjoys similar approximation properties. The
following proposition actually covers more general situations. In the case of density estimation, one should understand
M ′ as some function space and M0 as the subset of all density functions in M ′ (with respect to some given reference
measure).

Proposition 12. Let M0 and T be two non-empty subsets of some metric space (M ′, d) with |T ∩ B(t, r)| < +∞ for
all t ∈ M ′ and r > 0. Let π̄ be a mapping from T to M0 such that one of the two following conditions (8.13) or (8.14)
is satisfied for some λ � 1:

d
(
t, π̄(t)

)
� λd(t,M0) for all t ∈ T ; (8.13)

d
(
u, π̄(t)

)
� λd(u, t) for all t ∈ T and u ∈ M0. (8.14)

Then, for any positive ε and η, one can build a subset S′ of π̄(T ) such that∣∣S′ ∩B(t, r)
∣∣� ∣∣T ∩B(t,3r)

∣∣∨ 1 for all t ∈ M ′ and r � η/2 (8.15)

and

d(u,S′) � (2λ + 1 + ε)d(u,T ) for all u ∈ M0. (8.16)

Proof. Once again, our main tool will be a stratification procedure. We fix θ = 1 + ε/(1 + λ) and introduce the
increasing sequence of numbers ηj , j ∈ N given by η0 = 0 and ηj = θj−1η for j � 1. We then set Tj = {t ∈ T |
ηj−1 � d(t, π̄(t)) < ηj } for j � 1 so that T = ⋃

j�1 Tj . Then we define the sets Sj inductively starting from S1 =
π̄ (T1) and, for j > 1, choosing for Sj a maximal ηj -separated subset, therefore an ηj -net, of

T ′
j =

{
t ′ ∈ π̄ (Tj )

∣∣∣ d(t ′,
⋃

1�k<j

Sk

)
> ηj

}
.

We finally set S′ =⋃
j�1 Sj . It follows from this construction that

Sk ∩ Sj = ∅ for k �= j and S′ ∩ �B(u, ηj ) = {u} if u ∈ Sj , j > 1. (8.17)

Moreover, d(π̄(t), S′) � θd(t, π̄(t)) for all t ∈ T . Indeed this is true when t ∈ T1 since then π̄(t) ∈ S1 ⊂ S′ and if
t ∈ Tj with j > 1, d(π̄(t), S′) � ηj = θηj−1 � θd(t, π̄(t)). Therefore, if (8.13) holds, we can write for any t ∈ T and
u ∈ M0,

d(u,S′) � d(u, t) + d
(
t, π̄(t)

)+ d
(
π̄(t), S′)� d(u, t) + (1 + θ)d

(
t, π̄(t)

)
� d(u, t) + λ(1 + θ)d(t,M0) �

[
1 + λ(1 + θ)

]
d(u, t)

and (8.16) follows from our choice of θ and a minimization over t ∈ T . If (8.14) holds, we get

d(u,S′) � d
(
u, π̄(t)

)+ d
(
π̄(t), S′)� λd(u, t) + θd

(
t, π̄(t)

)
� λd(u, t) + θ

[
d(t, u) + d

(
u, π̄(t)

)]
�
[
θ + λ(1 + θ)

]
d(u, t)

and we conclude as before.
Let us now turn to the proof of (8.15). Let t ∈ M ′, r � η/2 be given and J be defined by ηJ � 2r < ηJ+1. Then

J � 1 and d(u,u′) < 2r < ηJ+1 for all u and u′ ∈ B(t, r). Setting S′
J =⋃

1�j�J Sj , we derive from (8.17) that either∣∣(S′ \ S′
J ) ∩B(t, r)

∣∣= 1 hence S′
J ∩B(t, r) = ∅ or (S′ \ S′

J ) ∩B(t, r) = ∅.

In the first case, |S′ ∩B(t, r)| = 1. In the second case, |S′ ∩B(t, r)| = |S′
J ∩B(t, r)|. If u′ ∈ S′

J ∩B(t, r), then u′ = π̄(u)

for some u ∈ Tj with j � J , hence d(u,u′) < ηJ � 2r and d(u, t) < 3r which proves (8.15). �
Remark. If M0 is a linear subspace of a Hilbert space (M ′, d), then the projection operator π̄ onto M0 satisfies both
(8.13) and (8.14) with λ = 1. In any case, if λ > 1, one can always find an approximate minimum distance operator
with respect to M0 which satisfies (8.13).
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8.3.2. Density estimation with Hellinger loss
Let us now show how, given some reference measure µ and a general family of models in the space L2(µ), we can

derive an estimator of a density s with respect to µ from an i.i.d. sample and bound its Hellinger risk.

Theorem 6. Let µ be some positive measure on X , M be the set of all probability densities with respect to µ and ‖ · ‖2
be the norm in L2(µ). Let {�Sm}m∈M be a finite or countable family of subsets of the metric space L2(µ) with respective
finite metric dimensions bounded by �Dm and let {∆m}m∈M be a family of non-negative weights satisfying (7.9). Let
X1, . . . ,Xn be an i.i.d. sample from some distribution �Ps with density s with respect to µ. One can build a T -estimator
ŝ(X1, . . . ,Xn) satisfying, for all s ∈ M and 1 � q � 79,

Es

[
hq(s, ŝ)

]
� C(q)

[
1 + Σ

107

]
inf

m∈M

{
inf

t∈�Sm

‖√s − t‖2 +
√

�Dm ∨ ∆m

n

}q

. (8.18)

Proof. In order to derive suitable D-models Sm from the sets �Sm, we have to apply Proposition 12. Let d2 denote
the distance in L2(µ), g the mapping from M to L2(µ) given by g(w) = √

w and let π̄ be any mapping from
L2(µ) onto g(M) such that d2(t, π̄(t)) � 1.1d2(t, g(M)) for all t ∈ L2(µ). For each m, set Dm = 9�Dm and η2

m =
(84/5)n−1[Dm ∨ ∆m]. It follows that (8.12) holds. Let η′

m = ηm

√
2 and Tm be an η′

m-net for �Sm with respect to the
distance d2 satisfying∣∣Tm ∩Bd2(t, r

′)
∣∣� exp

[�Dm(r ′/η′
m)2] for all t ∈ L2(µ) and r ′ � 2η′

m.

Applying Proposition 12 (with M ′ = L2(µ), M0 = g(M), d = d2, λ = 1.1, ε = 0.1 and η = η′
m) to Tm, we get a subset

S′
m of g(M) with the following properties:∣∣S′

m ∩Bd2(t, r
′)
∣∣� exp

[
9(r ′/η′

m)2 �Dm

]
for all t ∈ L2(µ) and r ′ � 2η′

m; (8.19)

d2(u,S′
m) � 3.3d2(u,Tm) � 3.3[d2(u,�Sm) + η′

m] for all u ∈ g(M). (8.20)

Let us set Sm = g−1(S′
m). Since g is an isometry between (M,d2) and (g(M),

√
2h), it follows from (8.19), with

t = g(w) and r ′ = √
2r , that∣∣Sm ∩Bh(w, r)
∣∣� exp

[
9(r/ηm)2 �Dm

]
for all w ∈ M and r � 2ηm,

which implies that Assumption 3 holds with B ′ = 1. Since, by (8.20),

h(w,Sm) � 3.3
[
d2
(
g(w),�Sm

)
/
√

2 + ηm

]
for all w ∈ M,

(8.18) follows from Corollary 6. �
The interest of such a result is that it requires absolutely no assumption on s and on the approximating sets �Sm apart

from the fact that they have a finite metric dimension in L2(µ). In particular finite dimensional linear spaces will do.
We therefore completely avoid the usual restrictions connected with maximum likelihood estimation like entropy with
bracketing, L∞-bounds on s or the introduction of Kullback–Leibler divergences (compare with [71], Theorem 1, [5]
Theorem 2, [21,22] or [59]).

Remark. If we assume that we know an a priori bound �R for the L∞-norm of the unknown density s, we can
immediately derive from Theorem 6 a bound for the L2-risk. For this we replace the estimator ŝ by ŝ�R = ŝ ∧ �R. Then

‖s − ŝ�R‖2
2 =

∫ (√
s +

√
ŝ�R

)2(√
s −

√
ŝ�R

)2
dµ � 4�R

∫ (√
s −

√
ŝ�R

)2
� 4�R

∫ (√
s − √

ŝ
)2 = 8�Rh2(s, ŝ),

and a bound for Es[‖s− ŝ�R‖2
2] could be derived from (8.18). The resulting estimator ŝ�R is not necessarily a true density

but this could be fixed. Of course, assuming that we know a bound on the L∞-norm of s is rather unrealistic, although
such an assumption has often been used in papers dealing with model selection for density estimation or random
design regression with L2-loss. A general treatment of density estimation using L2-loss requires more technicalities
and will therefore be given elsewhere.
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To illustrate the power of Theorem 6, we give one application relying on the following proposition which partly
summarizes the results of Birgé and Massart [16]. We refer to this paper and the book [27] by DeVore and Lorentz
for details on Besov spaces. In what follows, all constants depend on k, but since k is fixed, we omit to emphasize
this dependence. As to the linear spaces provided by the proposition they are typically linear spans of finite subsets of
some given wavelet basis or spaces of piecewise polynomials.

Proposition 13. Given a positive integer r , one can find for each j � 0 a family {�Sm}m∈Mj (r) of Dj -dimensional

linear spaces of functions on Rk with the following properties:

(i) The integers Dj and |Mj (r)| satisfy

Dj � c1(r) + c2(r)2
jk and log

∣∣Mj (r)
∣∣� c3(r)2

jk, (8.21)

where the constants ci � 1 only depend on r and k;
(ii) for any p > 0, q � 1 and α with r > α > (k/p − k/q)+ and any function t belonging to the Besov space

Bα
p,∞([0,1]k) with Besov semi-norm |t |Bα

p,∞ , one can find some t ′ ∈⋃
m∈Mj

�Sm such that

‖t − t ′‖q � C(r, k,α,p, q)|t |Bα
p,∞2−jα, (8.22)

where ‖ · ‖q denotes the Lq(dx)-norm on [0,1]k .

Restricting ourselves to the case k = 1 for simplicity, we can apply Theorem 6 to the family of models {�Sm}m∈M
with M =⋃

i�1
⋃

j�0 Mj (2i ) provided by the previous proposition. If m ∈ Mj (2i ), we choose

∆m = 5
[
c3(2

i )2j + i + j − 14
]

and �Dm = (
c1(2

i ) + c2(2
i )2j

)
/2,

according to Proposition 8. Then (7.9) holds with Σ < 1.11 × 106. Applying Proposition 13 with t = √
s, r = 2i >

α � 2i−1 and q = 2, we derive from Theorem 6 that, if |√s|Bα
p,∞ � R with α > (1/p − 1/2)+,

Es

[
h2(s, ŝ)

]
� C1 inf

j�0

{
C(α,p)R22−2jα + c4(α)n−12j

}
.

An optimization with respect to j leads to the following result.

Theorem 7. Let X1, . . . ,Xn be an n-sample from some distribution �Ps with density s with respect to Lebesgue measure
on [0,1]. One can build a T-estimator ŝ(X1, . . . ,Xn) such that, if the Besov semi-norm of

√
s satisfies |√s|Bα

p,∞ � R

for some p > 0, α > (1/p − 1/2)+ and R � 1/
√

n, then

Es

[
h2(s, ŝ)

]
� C(α,p)R2/(2α+1)n−2α/(2α+1). (8.23)

Note that the use of Hellinger distance allows to get adaptation for the whole domain α > (1/p − 1/2)+ which is,
to our knowledge, new for density estimation, the usual results being restricted to an interval of the form (1/p, r). We
could prove in the same way a multidimensional analogue.

One can also apply to the i.i.d. setting the results of [17], Section 4.1 to mix several families of approximating
spaces. In particular, one could design a T-estimator that satisfies simultaneously the conclusions of Proposition 1
and Theorem 7. Therefore, if s is the uniform density on [0, θ ] for some θ > 0, we get the usual parametric rate n−1

for the quadratic Hellinger risk while (8.23) applies when
√

s is a density belonging to some Besov ball. This is an
illustration of the fact that T-estimators allow to cope simultaneously with parametric and non-parametric models,
getting the parametric rate if the true distribution is in the parametric model and the non-parametric one otherwise.

8.3.3. A parallel with the white noise framework
One should stress the fact that the results of Theorem 6 about the i.i.d. setting completely parallel those which

hold in the white noise framework. To be more precise, let us observe that Corollary 5 also applies to the white noise
framework via the identification mentioned in Section 5.2.2.
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Corollary 7. Assume we are in the white noise framework, observing the process Y given by (5.18) with unknown
parameter s and that we have at disposal a finite or countable family of subsets {�Sm}m∈M of L2([0,1],dx) with
respective finite metric dimensions bounded by �Dm. If the family of non-negative weights {∆m}m∈M satisfies (7.9),
one can build a T-estimator ŝ(Y ) satisfying, for all s ∈ L2([0,1],dx) and 1 � q � 79,

Es

[‖s − ŝ‖q

2

]
� C(q)

[
1 + Σ

107

]
inf

m∈M

{
inf

t∈�Sm

‖s − t‖2 +
√

�Dm ∨ ∆m

n

}q

. (8.24)

Clearly, (8.18) is the exact analogue of (8.24). This means that any model selection procedure for the white noise
framework based on a T-estimator has an analogue for density estimation with Hellinger loss in the i.i.d. setting which
has exactly the same performances without any additional restriction, modulo the replacement of s in the white noise
framework by

√
s in the i.i.d. setting. In particular, all the results obtained in Section 6 of [17], which are based on

approximation by finite dimensional linear subspaces of L2, can immediately be translated into parallel results for the
i.i.d. setting with Hellinger distance, provided that the assumptions are now put on

√
s. Our Theorem 7 is just one

possible illustration of this fact among many others.
Of course, the previous remark is not a result of asymptotic equivalence of experiments, as defined by Le Cam

([42] and [45]) and illustrated, for instance, by Brown and Low [19] or Nussbaum [51], among other examples. Our
parallelism has some limitations: it holds up to constants, it is restricted to loss functions of the form ‖s − ŝ‖q

2 and
hq(s, ŝ), although this could be generalized via (7.10), and to specific estimators, namely T-estimators. On the other
hand, it has also some advantages: it is non-asymptotic, the parallelism is explicit and it works for classes of functions
for which no equivalence of experiments result exists, as far as we know (for instance the class of densities s on [0,1]
such that

√
s is 1/4-Hölderian).

8.3.4. Density estimation with L1-loss
If we want to use the L1-loss for density estimation, it is enough to get the result for the loss based on the variation

distance since for two probabilities P and Q with respective densities f and g, ‖f − g‖1 = 2v(P,Q). Combining
Corollary 6 and Proposition 12 we get the following analogue of Theorem 6 for the independent setting. The proof
being quite similar, it will be omitted.

Theorem 8. Let µ be some positive measure on X , �Mµ be the set of all probability densities with respect to µ and
‖ · ‖1 be the norm in L1(µ). Let {�Sm}m∈M be a finite or countable family of subsets of the metric space L1(µ) with
respective finite metric dimensions bounded by �Dm and {∆m}m∈M be a family of non-negative weights satisfying
(7.9). Let X1, . . . ,Xn be n independent random variables on X with joint distribution Ps = ⊗n

i=1
�Pi on X n and M

be the set of all such product distributions. One can build a T-estimator ŝ(X1, . . . ,Xn) with values in �Mµ satisfying,
for all s ∈ M , 1 � q � 79, and v̄(s, t) = sup1�i�n v(�Pi, t · µ) for t ∈ �Mµ,

Es

[
v̄q(s, ŝ)

]
� C(q)[1 + 10−7Σ] inf

m∈M

{
inf

t∈�Sm

v̄(s, t) +
√

n−1[�Dm ∨ ∆m]
}q

.

Theorem 1 immediately follows from this last result and Proposition 13 by a proof which is completely similar
to the proof of Theorem 7 and will therefore be omitted. Note here that one can bound the risk of the estimator ŝ of
Theorem 1 even if �Ps is not absolutely continuous with respect to Lebesgue measure µ or if its density s does not
belong to such Besov spaces. If s′ is any density satisfying |s′|Bα

p,∞ � R we get, when k = 1,

Es

[
vq(�Ps, ŝ · µ)

]
� C(α,p,q)Rq/(2α+1)n−qα/(2α+1) + C′(q)vq(�Ps, s

′ · µ).

8.4. Application to bounded regression

In the context of bounded regression, Proposition 5 implies that Assumption 2 holds with γ ′(t,X) being either∑n
i=1[Yi − t (Xi)]2 (random design) or

∑n
i=1[Yi − t (xi)]2 (fixed design),

τ = 25n/98, d = d2 or dn, B = 1, a = 3n/100, κ = 4 and κ ′ = 15.68.
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Arguing as for the Gaussian setting, we see that, given a subset S of M which satisfies Assumption 3, (7.2) and
(7.4), we can apply Theorem 5 and prove the existence of a minimizer ŝ (which is not necessarily unique here) of the
penalized least squares criterion γ ′(t,X) + 25nη2(t)/98 with respect to t ∈ S. More formally, we get:

Corollary 8. In the bounded regression setting (with either random or fixed design) as described in Section 5.2.3, let
S ⊂ M satisfy Assumption 3 with

η2
m � 140Dm/n for all m ∈ M and

∑
m∈M

exp[−nη2
m/700] = Σ < +∞. (8.25)

Then there exists a.s. at least one minimizer over S of the penalized least squares criterion
n∑

i=1

[
Yi − t (Xi)

]2 + 25nη2(t)/98 or
n∑

i=1

[
Yi − t (xi)

]2 + 25nη2(t)/98,

with η(t) = inf{m∈M|t∈Sm} ηm, and any such minimizer ŝ satisfies, for all s ∈ M ,

Es

[‖s − ŝ‖q
]
� [1 + 10−7B ′Σ]5q inf

m∈M

{(
inf

t∈Sm

‖s − t‖
)

∨ ηm

}q

for 1 � q � 79.

8.4.1. The fixed design case
It is not difficult to derive D-models in the context of bounded regression with fixed design and |{x1, . . . , xn}| = n′.

To get a D-model, it suffices to start with a subset T ′ of the metric space (Rn′
, dn) with a metric dimension bounded

by D. For instance a 2D-dimensional linear subspace of Rn′
would do. We can then construct an η-net T for T ′

satisfying (4.18) with S′ = T and B ′ = 1. With π̄ given by (6.5), we get d(u, π̄(t)) � d(u, t) for all u ∈ M and
t ∈ Rn′

. It follows that (8.14) holds with λ = 1, M ′ = Rn′
and M0 = M . We may therefore apply Proposition 12 (with

ε = 0.1 for instance) to T , getting a subset S′ of M which is a D-model with parameters η, 9D and 1, and, by (8.16),
satisfies dn(s, S

′) � 3.1[dn(s, T
′) + η] for all s ∈ M . Starting from a family {T ′

m,m ∈ M} of subsets of Rn′
with

respective metric dimensions Dm/9 and choosing ηm to satisfy (8.25), we can use the previous construction to derive
a family of D-models Sm with parameters ηm, Dm and 1 and apply Corollary 8.

8.4.2. The random design case
The previous construction also applies to the random design case if the distribution µ of the design is known.

Otherwise it cannot be performed by the statistician since it involves the unknown distance d2. We may alternatively
build families of T -models via the uniform distance as explained in Section 6.4.4. Let us give here a simple illustration
of this fact, assuming that n � 30.

For m = (j, k) ∈ N2, let us set |m| = j (k + 1) and define

M = {
m = (j, k) ∈ N2 | 3 � |m| � n/10

}
.

For j ∈ N� we denote by Ij a partition of [0,1] into j intervals of equal length j−1 and for each m ∈M, we consider
the |m|-dimensional linear space Pm of piecewise polynomials on [0,1] of degree not larger than k based on the
partition Ij . This means that the restriction of any element of Pm to any interval of Ij is a polynomial of degree
not larger than k. Setting ηm = [18|m|n−1 log(n/|m|)]1/2 (hence ηm � 3

√
(log 10)/5 ), we use the construction of

Section 6.4.4 to deduce from Pm a D-model Sm with parameters ηm, Dm = (|m|/4) log(2η−1
m + 1) > 1/2 and B ′ = 1

such that

d2(s, Sm) � d∞(s,Pm) + ηm for all s ∈ M.

One can then check that (8.25) holds with Σ < 100, so that Corollary 8 leads to an M-estimator ŝ satisfying, for all
s ∈ M and 1 � q � 79,

Es

[‖s − ŝ‖q
]
� [1 + 10−5]5q inf

m∈M

{
d∞(s,Pm) +

√
18|m|n−1 log

(
n/|m|)}q

. (8.26)

As noticed in Section 6.4.4, the use of approximation in the uniform distance results in the unexpected log(n/|m|)
factor in the risk, as compared, for instance, to what we would get for density estimation. The following example
shows that this entails unusual logarithmic factors in our risk bounds for estimating Hölderian functions.
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Let s have a derivative of order l satisfying the following Hölderian condition for some α ∈ (0,1] and R �
(n/ logn)−1/2:∣∣s(l)(x) − s(l)(x)

∣∣� R|x − y|α for all x, y ∈ [0,1].
It is well-known from Approximation Theory that, if m = (j, l) and β = l + α, then d∞(s,Pm) � C(l)Rj−β . Putting
this bound into (8.26) and optimizing with respect to those m ∈ M with k = l, we get

Es

[‖s − ŝ‖2]�
[
C(l)R2/(2β+1)(n/ logn)−2β/(2β+1)

]∧ 1.

9. Aggregation of estimators

As shown by the results of the previous section, T-estimators allow to select among many models of different types
and therefore provide adaptive estimators. An alternative way to reach the same objective is to start from a large
family of estimation procedures and use an aggregation method to combine them, either selecting one in the family,
or mixing them together. One method, based on some progressive mixing of estimators and information-theoretically
oriented appears in Yang [65] and Catoni [23]. Further developments and adaptation results are to be found in [66,67]
and [24]. An alternative stochastically oriented approach using one half of the sample to design estimators and the
other half to choose between them or mix them together appears in Juditsky and Nemirovski [37] and Nemirovski
[50] or Yang ([68] and [70]). Optimal rates for the various types of aggregation have been given in [37,56] and [70].
Additional results are to be found in [63,2] and [20].

The fact that, in the case of i.i.d. observations, our method can also be used to aggregate preliminary estimators has
been suggested to us by Yannick Baraud and Sacha Tsybakov. Proceeding as in [37], we split the sample in two parts,
use one part to build a countable family of estimators and the second part either to select one estimator in the family
or to combine them together. Since the estimators have been built from an independent sample, they can be viewed
as deterministic points in M for this step as in [56] and [20]. Consequently, we can reduce the analysis of this second
step to the problem of aggregating a countable family of points in M , which is actually a particular case of the general
framework of Section 7.

Although there are similar purposes and results in aggregation methods used by the previously mentioned authors
and model selection based on T-estimators, like trying to get the best of each estimator or model or getting adaptive
results over large classes of functions, there are also some differences. Aggregation methods work with all types of
preliminary estimators and can even mix different ways of combining them (selection, convex or linear aggregation
as in [70] or [20]). Moreover they are generally based on effective algorithms and result in risk bounds involving
much better constants than ours, but they do not provide the initial estimators, while T-estimators can be used to
build initial model-based estimators and possibly mix them with others. Most aggregation results also require some
boundedness assumptions as in [37,66,68,70] or [63]. They also only deal with i.i.d. observations (density estimation
or regression with random design) with one exception for Gaussian sequences with known variance, as explained
by Nemirovski in [50], Chapter 6. This is due to the fact that, by a randomization procedure, one can derive from
a variable X ∼ N (µ,σ 2) a pair of independent variables with distribution N (µ,2σ 2). This allows to duplicate a
Gaussian sequence with only a small increase of the variance and get one sequence to build the initial estimators and
one for the aggregation step. T-estimators can be used for other frameworks like bounded regression with fixed design
where no sample splitting is possible.

9.1. Selecting a point from a countable family

Suppose we are in a statistical framework for which Assumption 1 (or 2) is satisfied and we are given a countable
subset S = {tm, m ∈ M} of MT (possibly preliminary estimators built on an independent sample) and a family of
positive weights {∆m, m ∈ M}. In order to select one point tm̂ in the family from the observations via a selection
procedure m̂(X), we consider the family of models Sm = {tm} and define a function η on S by η(tm) = √

a−1∆m.
From the tests provided by Assumption 1 or 2, we can build Tε or M-estimators tm̂. Their performances are given by
the following simplified version of Theorem 5 especially tailored for this case.
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Theorem 9. Let (M,d) be a metric space and Assumption 1 or 2 hold with δ = κd , κ > 0. Let S = {tm, m ∈ M} be
a countable subset of MT and {∆m, m ∈ M} be a set of weights satisfying∑

m∈M
exp[−∆m] = Σ < +∞ and λ = inf

m∈M
∆m > 0. (9.1)

Let 0 < ε �
√

2. Then, under Assumption 1, Tε-estimators exist Ps -a.s. for all s ∈ M (and also T0-estimators if M is
finite) and M-estimators as well under Assumption 2. Moreover, if tm̂ is any of them, it satisfies, for all q � 1,

Es

[
dq(s, tm̂)

]
�
[
1 + BΣζq(λ)

]
(κ + 1)q inf

m∈M

{
d(s, tm) ∨

[
κ−1

√
2a−1∆m

]}q

. (9.2)

In particular, if λ � 1/2 and 1 � q � (2λ) ∧ 17,

Es

[
dq(s, tm̂)

]
�
(

1 + BΣq

2 eλ

)
(κ + 1)q inf

m∈M

{
d(s, tm) ∨

[√
2a−1∆m

κ

]}q

. (9.3)

Proof. We use here a simplified version of the arguments leading to Theorem 5. Since, for z ∈ R+, {t ∈ S | η(t) � z}
is finite by (9.1), there exists at least one s′ ∈ S such that [κd(s, s′)]∨ (

√
2η(s′)) = inft∈S{[κd(s, t)]∨ [√2η(t)]} = y0

and it satisfies, for y � y0,

Ps

[
DX(s′) > y

]
�

∑
t∈S

d(t,s′)>y

Ps

[
ψ(s′, t,X) = 1

]
� B

∑
t∈S

d(t,s′)>y

exp
[−a

(
d2(t, s′) − η(s′)2 + η(t)2)]

� BΣ exp
[−a

(
y2 − η(s′)2)]� BΣ exp[−ay2/2].

Since εη(s′) � y0, this bound and (4.10) imply that Ps[d(s′, ŝ) > y] < BΣ exp[−ay2/2] for y � y0. It then follows
from Proposition 3, ay2

0 � 2λ and d(s, s′) � κ−1y0 that

Es

[
dq(s, ŝ)

]
�
[
1 + BΣζq(ay2

0/2)
]
(y0 + κ−1y0)

q �
[
1 + BΣζq(λ)

]
(κ + 1)q(y0/κ)q,

which proves (9.2). Then (9.3) follows from (5.5). The case of Assumption 2 is quite similar, with the analogue of
(7.18). We omit the details. �

This theorem applies in particular to the three settings considered in this paper with B = 1 and suitable values of a

and κ , leading to the following corollary which could be used, for instance, for bandwith selection in the i.i.d. setting.

Corollary 9. Given a countable subset S = {tm, m ∈ M} of �M in the independent setting or of M in the Gaussian
or bounded regression settings together with a family of weights {∆m, m ∈ M} satisfying (9.1), one can build in all
cases a selection procedure m̂(X) with values in M and the following properties: for all s ∈ M and q � 1, we get, in
the independent setting,

Es

[
dq(s, tm̂)

]
�
[
1 + Σζq(λ)

]
5q inf

m∈M

{
d(s, tm) ∨

√
(α/2)n−1∆m

}q

,

with α = 1 if d = h̄, α = 2 if d = v̄, in the bounded regression setting,

Es

[
dq(s, tm̂)

]
�
[
1 + Σζq(λ)

]
5q inf

m∈M

{
d(s, tm) ∨

√
(25/6)n−1∆m

}q

,

and in the Gaussian setting

Es

[
dq(s, tm̂)

]
�
[
1 + Σζq(λ)

]
7q inf

m∈M

{
d(s, tm) ∨

(
2σ

√
∆m/3

)}q

.

9.1.1. Aggregating T-estimators based on a single model
In all situations where we can split our sample in two parts, use the first one to build a family of estimators and

the second one to select one estimator in the family, one could, instead of using the construction of Section 7.1 with a
family {Sm, m ∈ M} of D-models, use instead the following procedure: build a T-estimator ŝm on each D-model Sm
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using the first part of the sample, which results in a family of T-estimators {ŝm, m ∈ M}, then use the second part of
the sample to select one estimator s̃ = ŝm̂ according to the recipe of Theorem 9. The method also applies to Gaussian
sequences if we duplicate our observation according to the recipe of Chapter 6 of Nemirovski [50].

The performances of this new two-steps procedure, which results from the successive applications of Theorems 3
and 9, are comparable to those of the one-step procedure of Section 7.1 with risk bounds similar to those derived from
Theorem 5. For the sake of comparison with Corollary 6, we provide below the risk bounds corresponding to the i.i.d.
setting for this two-steps procedure.

Proposition 14. Assume that we observe an even number n of i.i.d. random variables with unknown distribution �Ps ,
s ∈ ( �M,d), where d is either the variation or the Hellinger distance, and that we have at disposal a finite or count-
able family of D-models {Sm}m∈M subsets of the set �M of all distributions for i.i.d. variables and with respective
parameters ηm,Dm and B ′, Dm � 1/2. Assume moreover that

η2
m � 12αDm/n for all m ∈M;

∑
m∈M

exp
[−nη2

m/(8α)
]= Σ < +∞;

with α = 2 if d = v, α = 1 if d = h. Then one can use the procedure described just before to build an estimator s̃ such
that, for all s ∈ �M and q � 1,

Es

[
dq(s, s̃)

]
� C(q,B ′,Σ) inf

m∈M
{
d(s, Sm) + ηm

}q
,

with either d = v or d = h according to the metric used.

Proof. Since n = 2p, we use X1, . . . ,Xp to build on each D-model Sm a T-estimator ŝm = ŝm(X1, . . . ,Xp) and apply
Corollary 2 to each of them. Since, in the i.i.d. setting, κ = 4 and a = p/(4α) = n/(8α), hence 2aη2

m � 3Dm and
8aη2

m/3 � 2, (5.7) becomes

Es

[
dq
(
s, ŝm(X1, . . . ,Xp)

)]
� 5q

[
1 + 2.2B ′ζq(2)

][
d(s, Sm) ∨ ηm

]q for all m ∈M, q � 1.

Working conditionally to X1, . . . ,Xp , we then apply Theorem 9 to the family S = {ŝm, m ∈ M} using the variables
Xp+1, . . . ,Xn. This results in the estimator s̃ = ŝm̂. Since here λ � 3/4, (9.2) becomes

Es

[
dq(s, s̃) | X1, . . . ,Xp

]
� 5q

[
1 + Σζq(3/4)

]
inf

m∈M
{
d
(
s, ŝm(X1, . . . ,Xp)

)∨ [√2ηm/4]}q

and an integration with respect to X1, . . . ,Xp allows us to conclude. �
The advantage of the two-steps procedure is that it allows to mix estimators which are not T-estimators with those

derived from the D-models.

9.1.2. Aggregating preliminary estimators
Let us here illustrate aggregation of preliminary estimators for bounded regression with random design. Suppose

now that we have at hand an n-sample Z1, . . . ,Zn, Zi = (Xi, Yi), with an even number of observations n = 2p and
a countable number of procedures {ŝm, m ∈ M} with values in M to estimate s together with a family of weights
∆m � 1 satisfying

∑
m∈M exp[−∆m] � e (hence λ � 1 and Σ � e in (9.1)). We first evaluate ŝm(Z1, . . . ,Zp) for

each m and then apply Corollary 9 to the second half of the sample, Zp+1, . . . ,Zn, conditionally to the first half, with
S = {ŝm(Z1, . . . ,Zp), m ∈M}. If ŝ is the resulting estimator we get, for q = 2,

Es

[‖ŝ − s‖2
2 | Z1, . . . ,Zp

]
� 50 inf

m∈M
{‖ŝm − s‖2

2 + [
25∆m/(6p)

]}
.

Integrating with respect to Z1, . . . ,Zp leads to

Es

[‖ŝ − s‖2
2

]
� 50 inf

m∈M
{
Es

[∥∥ŝm(Z1, . . . ,Zp) − s
∥∥2

2

]+ [
25∆m/(3n)

]}
. (9.4)

Given a Dm-dimensional linear space Tm of bounded functions on X , we consider the least squares estimator ŝm over
Tm, i.e. the minimizer, with respect to t ∈ Tm, of

∑n
i=1[Yi − t (Xi)]. Then t̂m = π̄ (ŝm), with π̄ given by (6.5), is an

estimator with values in M which, according to Theorem 11.3 of [33], satisfies

Es

[∥∥ŝm(Z1, . . . ,Zp) − s
∥∥2]� C

[
d2(s, Tm) + Dmp−1 logp

]
. (9.5)
2 2
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Together with (9.4), this proves our Theorem 2. We could, for instance, choose for the spaces Tm spaces of piecewise
polynomials of varying degrees over different partitions. Rather than pursuing into this direction, let us analyze the
simplest case of histograms, i.e. polynomials of degree 0. At the price of some extra logarithmic factors due to the
use of (9.5), one could extend the results we get for histograms to truncated least squares estimators over families of
piecewise polynomials with the same partitions by a straightforward application of Theorem 2.

9.2. Partition selection for histograms

We wish to explain here how to select a histogram estimator among a family of them based on different partitions
of the underlying space X , dealing simultaneously with the i.i.d. and the bounded regression with random design
settings. In both cases we assume that we have chosen a countable family M of finite partitions m = {I1, . . . , I|m|} of
X and a family of weights ∆m � 1 on M such that Σ =∑

m∈M exp[−∆m] � 2 e.

9.2.1. The i.i.d. setting
Suppose we observe i.i.d. random variables X1, . . . ,Xn on some measurable space X with unknown distribu-

tion �Ps . Given a finite reference measure µ on X and a finite partition m of X such that µ(Ij ) > 0 for 1 � j � |m|,
the histogram estimator of �Ps based on the partition m has a density ŝm with respect to µ given by

ŝm(X1, . . . ,Xn) = 1

n

|m|∑
j=1

Nj

µ(Ij )
1Ij

, with Nj =
n∑

i=1

1Ij
(Xi). (9.6)

One easily shows that

Es

[
v(�Ps, ŝm · µ)

]
� v(�Ps, s̄m · µ) + 1

2

√ |m| − 1

n
with s̄m =

|m|∑
j=1

�Ps(Ij )

µ(Ij )
1Ij

. (9.7)

Given 2n i.i.d. observations with distribution �Ps and the family M, we can first build all the histograms
ŝm(X1, . . . ,Xn) based on the first n observations as in (9.6) and then select a partition, m̂(Xn+1, . . . ,X2n) ∈ M
using the last n observations which results in a density estimator s̃ = ŝm̂. Applying Corollary 9 with q = 1 and λ � 1
conditionally on X1, . . . ,Xn gives

Es

[
v(�Ps, s̃ · µ) | X1, . . . ,Xn

]
� 10 inf

m∈M

{
v(�Ps, ŝm · µ) +

√
n−1∆m

}
.

Integrating with respect to X1, . . . ,Xn and applying (9.7) leads to

Es

[
v
(�Ps, s̃ · µ)]� 10 inf

m∈M

{
v(�Ps, s̄m · µ) + (1/2)

√|m| − 1 + √
∆m√

n

}
. (9.8)

This result, which allows arbitrary families of partitions and requires no assumption at all on �Ps should be compared,
for instance, with [21,22] and [28]. Note that, if ∆m � c(|m| − 1) for all m ∈ M and some c > 0, this bound corre-
sponds, up to some multiplicative constant depending on c, to the risk bound (9.7) for the best histogram among the
family.

9.2.2. Bounded regression with random design
In the bounded regression with random design setting with observations Z1, . . . ,Zn, Zi = (Xi, Yi), we may anal-

ogously define the histogram (or partitioning) estimator based on the partition m of X , using the convention 0/0 = 0,
by

ŝm(Z1, . . . ,Zn) =
|m|∑
j=1

∑n
i=1 Yi1Ij

(Xi)

Nj

1Ij
, with Nj =

n∑
i=1

1Ij
(Xi).

It follows from (6) page 98 of Beirlant and Györfi [7] and some easy computations that

Es

[‖ŝm − s‖2
2

]
� ‖s̄m − s‖2

2 + |m|/n with s̄m =
|m|∑∫

Ij
s(x)dµ(x)

µ(Ij )
1Ij

. (9.9)

j=1
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Starting with 2n observations, the family M and proceeding as in the i.i.d. setting, we derive again from Corollary 9
that the aggregated estimator ŝ satisfies

Es

[‖ŝ − s‖2
2

]
� C inf

m∈M
{‖s̄m − s‖2

2 + n−1(|m| + ∆m

)}
, (9.10)

with s̄m given by (9.9).

9.2.3. Building special partitions on [0,1]
To illustrate the previous results, let us assume that X = [0,1] and consider a family M = M′

1 ∪ M′
2 ∪ M′

3
of partitions of X defined in the following way. The family M′

1 is a set of so-called regular partitions of the form
m = {I1, . . . , I|m|} with Ij = [(j − 1)/|m|, j/|m|) if j < |m| and I|m| = [(|m| − 1)/|m|,1] with 1 � |m| � n.

To define M′
2 we apply Proposition 13 with r = 1. In this case, if m ∈Mj (1), we can take for each Dj -dimensional

space �Sm provided by the proposition the linear span of some subset of cardinality Dj of the Haar basis including the
function 1[0,1], as follows from [16]. In view of the form of the Haar basis the space �Sm is a subspace of the linear
space of piecewise constant functions based on some partition of X with a cardinality bounded by 3Dj and we shall
also denote by m this partition, taking for M′

2 the set of all such partitions when j varies.
To each increasing sequence J = {0 = x0 < x1 < · · · < xD = 1} we associate the partition mJ = {I1, . . . , ID} with

Ij = [xj−1, xj ) for j < D and ID = [xD−1, xD]. For each positive integer k, we set Jk = {j2−k, j = 0, . . . ,2k} and,
if 2 � D � 2k , we introduce the set Mk,D of all partitions mJ with |mJ | = D and k is the smallest integer such that

J ⊂ Jk . Finally we set M′
3 =⋃

k�1(
⋃2k

D=2 Mk,D).

If we choose ∆m = |m| for m ∈ M′
1, then

∑
m∈M′

1
exp[−∆m] < (e − 1)−1. If m ∈ M′

2, then m ∈Mj (1) for some

j � 0 and we set ∆m = c3(1)2j + j . It follows from (8.21) that
∑

m∈M′
2

exp[−∆m] < e/(e − 1). For m ∈ Mk,D ⊂
M′

3, we choose ∆m = Dk. Since |Mk,D| � (
2k−1
D−1

)
< 2k(D−1),

∑
m∈M′

3

exp[−∆m] =
∑
k�1

2k∑
D=2

|Mk,D| e−Dk <
∑
k�1

2−k
∑
D�2

exp
[−Dk(1 − log 2)

]
< 5/4.

Putting those three bounds together, we conclude that Σ < 2 e, as required.

9.2.4. Approximation properties of the partitions and risk bounds
An immediate application of (9.8) and (9.10) shows that there exist partition selection procedures m̂ such that, for

all �Ps in the i.i.d. setting,

Es

[
v(�Ps, ŝm̂ · µ)

]
� C inf

k�1
inf

2�D�2k
inf

m∈Mk,D

{
v(�Ps, s̄m · µ) +√

Dk/n
}
,

and for all s ∈ M in the bounded regression setting,

Es

[‖ŝ − s‖2
2

]
� C inf

k�1
inf

2�D�2k
inf

m∈Mk,D

{‖s̄m − s‖2
2 + Dk/n

}
.

As compared to the performance of the histogram estimator based on a single partition with D pieces belonging to
Mk,D , we loose at most a factor

√
k or k.

The previous results are valid for all s but they can be improved if s has some regularity properties, due to the
inclusion of M′

1 and M′
2 in M. Let us now focus on the bounded regression setting, extensions to the i.i.d. setting

with the distance v being more or less straightforward.
The partitions in M′

1 are especially directed to the estimation of continuous functions, i.e. of functions with some
modulus of continuity. Given such a modulus of continuity, i.e. a continuous non-decreasing function ω with ω(0) = 0
and ω(1) � 1 (see additional details in DeVore and Lorentz [27]), we denote by Sω the subset of M of those functions
t such that |t (x + y) − t (x)| � ω(y) for all x ∈ [0,1] and 0 � y � 1 − x. Then xω2(x) is increasing from 0 to ω2(1)

and, if µ is the Lebesgue measure, it follows from classical lower bounds arguments based on Assouad’s Lemma (see
[1,11] or [74]) that, for an n-sample and µ the uniform distribution, the minimax risk R(Sω,2) is bounded from below
by

R(Sω,2) � c(nαn)
−1 with

{
αnω

2(αn) = n−1 if ω(1) � n−1/2;
α = 1 otherwise,

(9.11)

n
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c being some universal constant (for similar results in the context of density estimation with Hellinger loss, see [8],
p. 210 or [5], Section 4.1.2). Since it is immediate to check that, for m ∈ M′

1, d∞(s, s̄m) � ω(|m|−1) if s ∈ Sω , we
get from (9.10), independently of µ,

Es

[‖ŝ − s‖2
2

]
� C inf

m∈M′
1

{
ω2(|m|−1)+ 2|m|/n

}
for all s ∈ Sω.

Therefore, given s ∈ Sω and αn defined by (9.11), which implies that 1 � αn � n−1, we can fix m ∈ M′
1 with |m| =


α−1
n � and get

ω
(|m|−1)� ω(αn) � (nαn)

−1/2 �
√|m|/n and |m| � 2α−1

n .

Then, whatever the distribution µ and s ∈ Sω,

Es

[‖ŝ − s‖2
2

]
� 3Cn−1|m| � 6C(nαn)

−1,

which, up to a fixed constant, coincides with the lower bound (9.11) that we got in the case of a uniformly distributed
design.

The partitions in M′
2 are suitable for approximating functions belonging to some Besov spaces. We follow here

the same path we used for the proof of Theorem 7. It follows from (8.22) with q = +∞ that, if s is continuous and
s ∈ Bα

p,∞([0,1]), 1 > α > p−1, with |s|Bα
p,∞ � R, one can find some s̄m which is a piecewise constant function build

on a partition with less than 3Dj pieces and such that

‖s − s̄m‖2 � ‖s − s̄m‖∞ � C(α,p)|s|Bα
p,∞2−jα.

Using the bound (8.21) for Dj and optimizing with respect to j leads to the final bound

Es

[‖ŝ − s‖2
2

]
� CR2/(2α+1)n−2α/(2α+1) for R � n−1/2. (9.12)

If the unknown measure µ has a bounded density with respect to Lebesgue measure, so that µ([x, y]) � A(y − x) for
0 � x � y � 1, then ‖s − s̄m‖2

2 � A
∫ 1

0 [s(z) − s̄m(z)]2 dz and the same argument based on (8.22) with q = 2 shows
that (9.12) indeed holds for 1 > α > p−1 − (1/2) and without the continuity assumption.

9.3. Convex aggregation

For simplicity, we restrict our study of convex aggregation to the i.i.d. setting with the variation distance for
which the application of our method is almost straightforward. Let {t1, . . . , tN } be a finite subset of �M (typically
preliminary estimators). We would like to find the best convex combination of those points to estimate the distribution
of the observations. Let us therefore choose for M the set of all non-void subsets m of {1, . . . ,N} and, when m =
{k1, . . . , k|m|}, take for �Sm the convex envelope of the tk with k ∈ m, i.e.

�Sm =
{ |m|∑

j=1

λj tkj
with λj � 0 for 1 � j � |m| and

|m|∑
j=1

λj = 1

}
. (9.13)

Considering �M as embedded into the normed linear space M ′ of finite signed measures, we can view �Sm as a subset of
an |m|-dimensional linear subspace of M ′ and it follows from Proposition 8 that it has a finite inner metric dimension
bounded by 5|m|/3. Hence, given ηm > 0, one can find a subset Sm of �Sm which is an ηm-net for �Sm and a D-model
with parameters ηm, 5|m|/3 and 1, and Assumption 3 is satisfied. Now observe that the number of elements of M
with cardinality j is

(N
j

)
< (eN/j)j . If we set

η2
m = 168|m|n−1[(1/3) ∨ {

1 + log
(
N/|m|)+ |m|−1(logN − 13.8)

}]
, (9.14)

we can check that (8.12) holds with α = 2 and Σ < e13.8 < 106 and apply Corollary 6 with d = v and B ′ = 1. Since
v(s, Sm) � v(s,�Sm) + ηm, this proves

Theorem 10. Let t1, . . . , tN be N given elements of the set �M of all distributions on X and X1, . . . ,Xn be an
n-sample from some unknown distribution �Ps in �M . For m an arbitrary non-void subset of {1, . . . ,N}, let �Sm denote
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the convex envelope of the tk with k ∈ m as defined by (9.13) and ηm be given by (9.14). One can build a T-estimator
ŝ(X1, . . . ,Xn) such that, whatever �Ps ,

Es

[
vq(s, ŝ)

]
� 1.1(5q) inf

m∈M
{
v(s,�Sm) + ηm

}q
for 1 � q � 79.

In particular,

Es

[
vq(s, ŝ)

]
� C(q) inf

m∈M

{
v(s,�Sm) +

√
|m|n−1

[
1 + log

(
N/|m|)]}q

.

It is worthwhile noticing that ŝ simultaneously performs what is usually called “convex aggregation” (which corre-
sponds to |m| = N ) and estimator selection (which corresponds to |m| = 1), but also convex aggregation over proper
subsets of {t1, . . . , tN }.

Lower bounds for the risk of selection or convex aggregation in the case of random design regression have been
obtained by Tsybakov in [56] and Yang in [70]. Although we deal with a different situation (density estimation with
L1-loss), we may extrapolate them here for the sake of comparison. If the extrapolation is correct, we see that up to
constants, our bound coincides with the lower bounds for selection and for convex aggregation with N � √

n.
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Appendix A

A.1. Proof of Proposition 2

Let c = k1/4. Since k � 128,

c � 3.36 and
√

3k − √
k − 4 − 1.21k1/4 > 0. (A.1)

It follows that, whatever the true value of s ∈ S , Ps[|X0| � c + 1.21] < 0.114 and that ‖X′‖2 has a non-central χ2(k)

distribution. Since a non-central χ2 variable is stochastically larger than a central one, it follows from Lemma 1 of
Laurent and Massart [40] that

Ps

[
‖X′‖2 � k − 2

√
kx

]
� e−x for x > 0. (A.2)

Setting x = k/64 � 2, we conclude, since e−x < 0.136, that

Ps[Ω ′] > 3/4 with Ω ′ = {‖X′‖2 > 3k/4 and |X0| < c + 1.21
}
.

Now assume that the event Ω ′ holds. Since the m.l.e. ŝ is the least squares estimator, ŝ is the minimizer over S of
(X0 − s0)

2 + ‖X′ − s′‖2. On Ω ′, ‖X′‖ >
√

3k/2 > ‖s′‖ and, given s0, the minimum with respect to s′ is obtained for
s′ = 2X′(1 − |s0|/c)/‖X′‖ with value

f (s0) = (X0 − s0)
2 + [‖X′‖ − 2

(
1 − |s0|/c

)]2
.

Since for s0 �= 0,

(c/2)s0f
′(s0) = c(s0 − X0)s0 + 2|s0|

[‖X′‖ − 2
(
1 − |s0|/c

)]
> |s0|

[
2‖X′‖ − 4 − c(c + 1.21)

]
� |s0|

[√
3k − 4 − √

k − 1.21k1/4]
is non-negative by (A.1), f (s0) is minimal when s0 = 0. Therefore, if Ω ′ holds, ŝ0 = 0 and ŝ′ = 2X′/‖X′‖. This
implies that the quadratic risk at s = (s0,0) of the m.l.e. is bounded from below by (3/4)(s2 + 4) with maximum
0
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value (3/4)
√

k + 3 when |s0| = c. On the other hand, the estimator s̃ with s̃0 = X0 and s̃′ = 0 has a quadratic risk
which is uniformly bounded by 5.

A.1. Proof of Proposition 3

Observe that (5.3) implies, if z � ȳ + w, that

P[Y + w > z] = P[Y > z − w] � α exp
[−β(z − w)2]= α exp

[−β(1 − z−1w)2z2].
Therefore, using 1 − w/z � 1 − w/(ȳ + w) = ȳ/(ȳ + w), we get

P[Y + w > z] � α exp
[−β

[
ȳ/(ȳ + w)

]2
z2],

which is the analogue of (5.3) with Y + w replacing Y , ȳ + w replacing ȳ and β[ȳ/(ȳ + w)]2 replacing β . Since
β[ȳ/(ȳ + w)]2(ȳ + w)2 = βȳ2, it suffices to prove (5.4) for w = 0 and then make the relevant parameter changes.
From (5.3), the change of variable x = βy2/q and Stirling’s bound, Γ (x + 1) <

√
π ex(x/e)x valid for x � 1/2, we

get

E[Yq ] − ȳq =
( ∞∫

0

P[Yq � y]dy − ȳq

)
�

∞∫
ȳq

P[Y � y1/q ]dy

� α

∞∫
ȳq

exp(−βy2/q)dy = αβ−q/2 q

2

∞∫
βȳ2

xq/2−1 e−x dx (A.3)

< αβ−q/2Γ

(
q

2
+ 1

)
� αβ−q/2

√
π eq

2

(
q

2 e

)q/2

. (A.4)

Alternatively, when βȳ2 � q/2, we can use the bound (Inequality 45 from Johnstone [36])
∫ +∞
z

xt e−x dx <

(zt+1 e−z)(z − t)−1 for z > t , which gives
∫∞
βȳ2 xq/2−1 e−x dx < (βȳ2)q/2 exp(−βȳ2) so that finally

E[Yq ] − ȳq

αȳq
�
{√

π eq/2
[
q/(2 eβȳ2)

]q/2 for all ȳ > 0,

(q/2) exp(−βȳ2) if βȳ2 � q/2,

which proves (5.4) for w = 0. Both functions x �→ (2 ex/q)−q/2 and x �→ e−x are decreasing on (0,+∞) and they
coincide for x = q/2 which implies that ζq is decreasing for 1 � q � 2π e. The choice of c = 0.612 > 1/2 for q > 2π e
ensures that ζq(cq) < ζq((cq)−) so that ζq is still decreasing for all those values of q .

A.2. Bounding the errors of tests

All the results about tests that we use in this paper are based on the following easy but important lemma.

Lemma 7. Let X1, . . . ,Xn be n random variables on some measurable space X , which, under both probabilities P

or Q, are independent, and let φ be a non-negative measurable function on X such that

EP

[
φ(Xi)

]
� α and EQ

[
1/φ(Xi)

]
� β for 1 � i � n.

Then, for all y ∈ R,

P

[
n∑

i=1

logφ(Xi) � ny

]
� exp

[
n(logα − y)

]
and Q

[
n∑

i=1

logφ(Xi) � ny

]
� exp

[
n(logβ + y)

]
.

In particular, if the Xi are i.i.d. with distribution �P under P and �Q under Q, then, for all x ∈ R,

P

[
n∑

log

(
d �Q
d�P

)
(Xi) � nx

]
� exp

[
n log

[
ρ(�P , �Q)

]− (nx/2)
]

(A.5)

i=1
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and

Q

[
n∑

i=1

log

(
d �Q
d�P

)
(Xi) � nx

]
� exp

[
n log

[
ρ(�P , �Q)

]+ (nx/2)
]
. (A.6)

Proof. It immediately follows from the elementary inequality

P[logY � z] � e−zE[Y ], if P[Y � 0] = 1 (A.7)

and the independence of the Xi with an application to φ =
√

d �Q/d�P . �
Proof of Proposition 4. We get from (A.7) and (5.17)

Ps

[
log(dPu/dPt)(X) � z

]
� e−z/2Es

[
exp

[
(1/2) log(dPu/dPt)(X)

]]
= e−z/2E0

[√
(dPu/dPt)(X)(dPs/dP0)(X)

]
= e−z/2E0

[
exp

[
− 1

2σ 2

(‖u‖2 − ‖t‖2

2
+ ‖s‖2 − 〈X, u − t + 2s〉

)]]
.

Since

‖u‖2 − ‖t‖2

2
+ ‖s‖2 − 〈X, u − t + 2s〉

=
∥∥∥∥u − t

2
+ s

∥∥∥∥2

− 2

〈
X,

u − t

2
+ s

〉
+ ‖u‖2 − 3‖t‖2

4
− 〈s, u − t〉 + 〈u, t〉

2
,

we get

Ps

[
log(dPu/dPt)(X) � z

]
� e−z/2E0

[
p(u−t)/2+s(X)

]
exp

[
− 1

2σ 2

(‖u‖2 − 3‖t‖2

4
− 〈s, u − t〉 + 〈u, t〉

2

)]
= exp

[
− z

2
− ‖u‖2 − 3‖t‖2 − 4〈s, u − t〉 + 2〈u, t〉

8σ 2

]
,

the conclusion follows from the fact that

−‖u‖2 + 3‖t‖2 + 4〈s, u − t〉 − 2〈u, t〉 = −‖t − u‖2 + 4〈s − t, u − t〉 � −‖t − u‖(‖t − u‖ − 4‖s − t‖).
Proof of Proposition 5. It follows the ideas of the proof of Theorem 5 in [15]. Let us start with the random design
case. Setting Zi = [Yi − t (Xi)]2 − [Yi − u(Xi)]2, we get the following decomposition:

Zi = [
u(Xi) − t (Xi)

][
2Yi − t (Xi) − u(Xi)

]
= [

u(Xi) − t (Xi)
][

2
(
s(Xi) − t (Xi)

)+ (
t (Xi) − u(Xi)

)+ 2εi

]
= −[

t (Xi) − u(Xi)
]2 + 2

[
u(Xi) − t (Xi)

][
s(Xi) − t (Xi)

]+ 2εi

[
u(Xi) − t (Xi)

]
. (A.8)

Consequently, since Es[εi |Xi] = 0 and 2|ab| � a2/4 + 4b2,

Es[Zi |Xi] = −[
t (Xi) − u(Xi)

]2 + 2
[
u(Xi) − t (Xi)

][
s(Xi) − t (Xi)

]
� −3

[
t (Xi) − u(Xi)

]2
/4 + 4

[
s(Xi) − t (Xi)

]2
, (A.9)

and finally, setting y = −(1/4)‖t − u‖2 + 4‖s − t‖2,

n−1Es

[
n∑

Zi

]
� −3

4
‖t − u‖2 + 4‖s − t‖2 = y − 1

2
‖t − u‖2. (A.10)
i=1
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It follows from its definition that |Zi | � 1 and (A.8) implies that |Zi | � 2|t (Xi)−u(Xi)|, hence, for any integer k � 2,

1

n

n∑
i=1

Es

[|Zi |k
]
�
(
2‖t − u‖)2 � (k!/2)

(
2‖t − u‖)232−k.

It then follows from Bernstein’s Inequality, as stated in [15], Lemma 8, that, for all x � 0,

Ps

[
n∑

i=1

(
Zi − E[Zi]

)
� nx

]
� exp

[ −nx2/2

(2‖t − u‖)2 + x/3

]
,

hence, by (A.10),

Ps

[
n∑

i=1

Zi � n
(
x − ‖t − u‖2/2 + y

)]
� exp

[−3n

2

x2

12‖t − u‖2 + x

]
for x � 0.

Setting x = z − y + ‖t − u‖2/2, we derive, for z � y − ‖t − u‖2/2, that

Ps

[
n∑

i=1

Zi � nz

]
� exp

[−3n

2

(z + ‖t − u‖2/2 − y)2

12‖t − u‖2 + (z + ‖t − u‖2/2 − y)

]
= exp

[−3n

4

[2(z − y) + ‖t − u‖2]2

2(z − y) + 25‖t − u‖2

]
.

Since

[2(z − y) + ‖t − u‖2]2

2(z − y) + 25‖t − u‖2
� 1

25

(
‖t − u‖2 + 98(z − y)

25

)
provided that the denominator is positive, which is the case here, we finally get

Ps

[
n∑

i=1

Zi � nz

]
� exp

[−3n

100

(
‖t − u‖2 + 98(z − y)

25

)]
for z � y − ‖t − u‖2

2
.

Since this inequality also holds trivially when z < y −‖t −u‖2/2, we have proved (5.21) from which we derive, since
y � 4‖s − t‖2, that

Ps

[
γ ′(t,X) − γ ′(u,X) � nz

]
� exp

[
3n

100

98(4‖s − t‖2 − z)

25

]
for all z ∈ R,

and (5.23) follows. If ‖s − t‖ � ‖t − u‖/4, then y � 0 and (5.21) implies that

Ps

[
γ ′(t,X) − γ ′(u,X) � nz

]
� exp

[−3n

100

(
‖t − u‖2 + 98z

25

)]
, for all z ∈ R,

which gives (5.22) and concludes the proof for the random design. The proof for the fixed design case is identical:
just replace Xi by xi , Es[εi |Xi] by Es[εi] and Es[Zi |Xi] by Es[Zi] in (A.9).

Proof of Proposition 6. If d = v, let us consider in the metric space ( �M,v) of distributions on X the two closed balls
B(t) and B(u) with respective centers t and u and radius v(t, u)/4. It follows from Section 7 of Huber [34] that there
exists a least favorable pair (t0, u0), with t0 ∈ B(t) and u0 ∈ B(u), for testing between those balls, which means that,
for all z ∈ R,

Pv

[
log

(
d�Pu0

d�Pt0

(X)

)
� z

]
� Pt0

[
log

(
d�Pu0

d�Pt0

(X)

)
� z

]
for all v ∈ B(t)

and

Pv

[
log

(
d�Pu0

d�Pt0

(X)

)
� z

]
� Pu0

[
log

(
d�Pu0

d�Pt0

(X)

)
� z

]
for all v ∈ B(u).

Let then ψ(t0, u0,X) = 1 − ψ(u0, t0,X) be any likelihood ratio test between �Pt0 and �Pu0 of the form

ψ(t0, u0,X) =
{

0 if
∑n

i=1 log
[
(d�Pu0/d�Pt0)(Xi)

]
< z,

1 if
∑n log

[
(d�P /d�P )(X )

]
> z.
i=1 u0 t0 i
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If Pt0 = �P ⊗n
t0

and Pu0 = �P ⊗n
u0

, the classical properties of stochastic ordering imply that

Ps

[
ψ(t0, u0,X) = 1

]
� Pt0

[
ψ(t0, u0,X) = 1

]
if v̄(s, t) � v(t, u)/4

and similarly,

Ps

[
ψ(u0, t0,X) = 1

]
� Pu0

[
ψ(u0, t0,X) = 1

]
if v̄(s, u) � v(t, u)/4.

Since (A.5), (A.6) and (2.1) imply that

Pt0

[
ψ(t0, u0,X) = 1

]
� exp

[−nh2(�Pu0,
�Pt0) − z/2

]
and

Pu0

[
ψ(u0, t0,X) = 1

]
� exp

[−nh2(�Pu0 ,
�Pt0) + z/2

]
,

and, by (5.15),

h2(�Pu0 ,
�Pt0) � v2(�Pu0 ,

�Pt0)/2 �
[
v(t, u)/2

]2
/2,

the conclusion follows for the variation distance if we set z = nx/4.
If d = h, we consider, in the metric space ( �M,h) of distributions on X , the two closed balls B(t) and B(u) with

respective centers t and u and radius h(t, u)/4. It follows from Theorem 1, p. 485 of Le Cam [45] that one can find a
non-negative measurable function φ on X , such that∫

φ d�Pv � 1 − h2(t, u)/4 if v ∈ B(t);
∫

(1/φ)d�Pv � 1 − h2(t, u)/4 if v ∈ B(u).

The conclusion then follows from Lemma 7 with y = x/4 and

ψ(t, u,X) =
{

0 if
∑n

i=1 log
[
φ(Xi)

]
< nx/4,

1 if
∑n

i=1 log
[
φ(Xi)

]
> nx/4.
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