Introduction to hypotheses testing

A sadistic monarch hands one of his subjects a coin and states that the probability of tossing a head, say \(p \), is either 0.3 or 0.8. The subject is required to toss the coin 5 times and then to state whether she believes \(p \) to be either 0.3 or 0.8. If the subject makes the correct decision she wins 100 pieces of gold. If she says \(p = 0.8 \) when \(p = 0.3 \) she will go to jail for 7 years. If she says \(p = 0.3 \) when \(p = 0.8 \) she will go to jail for 1 month.

The dilemma facing the subject can be formulated as a statistical testing problem.

Let \(X \sim \text{Binomial}(5, p) \). After observing \(X \) we must decide between the two hypotheses

\[
H : p = 0.3 \quad K : p = 0.8
\]

\(H \) is call the Null hypothesis.

\(K \) is called the Alternative hypothesis.

Before actually tossing the coin 5 times the subject can perform a thought experiment where she just imagines tossing the coin. For each possible outcome of \(X = x \) she can decide whether or not she would reject \(H \), that is decide \(p = 0.8 \). (For us rejecting \(H \) is the same as accepting \(K \). Similarly accepting \(H \) is the same as rejecting \(K \).)

A strategy for the subject is to determine for what points in \(\{0, 1, 2, 3, 4, 5\} \), the sample space of \(X \), she wishes to reject \(H \). We will call such a set a critical region and denote it by \(C \). How should the subject evaluate a possible critical region? Our answer depends on the lack of symmetry in the consequences of making the two types of error.

The two types of error are:

1. Type I error: Rejecting \(H \) when in fact \(H \) is true.
2. Type II error: Accepting \(H \) when in fact \(K \) is true.

For the subject the Type I error is deciding \(p = 0.8 \) when \(p = 0.3 \) is true and the Type II error is deciding \(p = 0.3 \) when \(p = 0.8 \). Note that for the subject the Type I error is the more serious of the two. The theory is based on this assumption and a testing problem needs to be set up to reflect this fact.

To evaluate a critical region \(C \) we must find the probability of making the Type I error when \(H \) is true and the probability of making the Type II error when \(K \) is true and we are using \(C \).

\[
\alpha = \alpha(C) = \text{Probability of making Type I error}
\]

\[
= P_H(X \in C)
\]

\[
= \sum_{x \in C} \binom{5}{x} (0.3)^x (0.7)^{5-x}
\]
and

\[\beta = \beta(C) = \text{Probability of making Type II error} \]
\[= P_K(X \notin C) \]
\[= \sum_{x \notin C} \binom{5}{x} (0.8)^x (0.2)^{5-x} \]

We evaluate the critical region \(C \) by considering its two error probabilities \(\alpha = \alpha(C) \) and \(\beta = \beta(C) \).

<table>
<thead>
<tr>
<th>(C)</th>
<th>(\alpha(C))</th>
<th>(\beta(C))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{1, 2, 3, 4, 5}</td>
<td>0.8319</td>
</tr>
<tr>
<td>2</td>
<td>{2, 3, 4, 5}</td>
<td>0.4718</td>
</tr>
<tr>
<td>3</td>
<td>{3, 4, 5}</td>
<td>0.1630</td>
</tr>
<tr>
<td>4</td>
<td>{4, 5}</td>
<td>0.0308</td>
</tr>
<tr>
<td>5</td>
<td>{5}</td>
<td>0.0024</td>
</tr>
<tr>
<td>6</td>
<td>{0, 1, 2, 3, 4, 5}</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>\emptyset</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>{0, 1, 2}</td>
<td>0.8369</td>
</tr>
</tbody>
</table>

Note the critical region 8 is silly. In fact all of the critical regions from 1 through 5 are better than it.

One can prove that the critical regions 1 through 7 are the only sensible ones for this testing problem.

No best choice among 1 through 7. The answer depends on how strongly the subject wishes to avoid making the Type I error.