HW 4

1. Let X be a random variable with two possible probability functions f_0 and f_1 defined just below

X	1	2	3	4	5	6
$f_0(x)$	5/20	4/20	3/20	3/20	3/20	2/20
$f_1(x)$	1/20	2/20	3/20	3/20	5/20	6/20

For testing $H : f_0$ against $H : f_1$ find the MP level α test. Graph the lower boundary of the set

$$S = \{ (E_0 \phi(X), E_1 \phi(X)) : \text{ all tests } \phi \}$$

2. Let X be a random variable which takes on values in the interval (0,1). Consider two possible densities for X given by

$$f_0(x) = 1$$
 for $0 < x < 1$

and

$$f_1(x) = 2x$$
 for $0 < x < 1$

For testing $H : f_0$ against $H : f_1$ find the MP level α test. Let $w(\alpha)$ be the power of this test. Find the value of α for which $w(\alpha) - \alpha$ is maximum. Graph the set $S = \{(E_0\phi(X), E_1\phi(X)): \text{ all tests } \phi\}.$

3, Let X be a random variable whose family of possible probability functions, indexed by $\theta \in \Theta = (0, 1)$ is given below:

X	1	2	3	4	5
$f_{\theta}(x)$	$\frac{\theta}{8(1+\theta)}$	$\frac{3\theta}{8(1+\theta)}$	$\frac{4\theta}{8(1+\theta)}$	$\frac{3}{8(1+\theta)}$	$\frac{5}{8(1+\theta)}$

Using just X (i.e. a sample of size 1) solve the following problems.

i) Find the MP level $\alpha = 0.2$ test for testing $H : \theta = 0.5$ against $K : \theta = 0.75$. For any test ϕ let $\alpha(\phi)$ and $\beta(\phi)$ be the probability of the type I and type II errors. Graph the set $N = \{\alpha(\phi), \beta(\phi) : \text{ for all test } \phi\}$

ii) Find the UMP level $\alpha = 0.2$ of $H: \theta = 0.5$ against $K: \theta > 0.5$.

iii) Let $0 < \theta_1 < \theta_2 < 1$ be given. For testing $H : \theta = \theta_1$ against $K : \theta = \theta_2$ graph the set N. For testing $H : \theta \leq \theta_1$ against $K : \theta > \theta_1$ find a UMP level α test when $0 < \alpha < 1$. (Hint:You many need to consider several cases depending on the size of α .

4. Let $X = (X_1, \ldots, X_n)$ be a sample from the uniform distribution on $(0, \theta)$

i) For testing $H: \theta \leq \theta_0$ against $K: \theta > \theta_0$ show that any test is UMP at level α for which $E_{\theta_0}\phi(X) = \alpha$, $E_{\theta}\phi(X) \leq \alpha$ for $\theta \leq \theta_0$, and $\phi(x) = 1$ when $\max(x_1, \ldots, x_n) > \theta_0$.

ii) For testing $H : \theta = \theta_0$ against $K : \theta \neq \theta_0$ show that a unique UMP test exists and is given by $\phi(x) = 1$ when $\max(x_1, \ldots, x_n) > \theta_0$ or $\max(x_1, \ldots, x_n) \leq \theta_0 \alpha^{1/n}$ and $\phi(x) = 0$ otherwise.

5. Let X be a random variable taking on the values 1, 2, ..., n. Let f and g be two possible probability functions for X and consider testing H : f against K : g.

i) Suppose K is known to be true a priori with probability $\pi \in (0, 1)$. Assuming zero-one loss, explain what is meant by "the test ϕ is Bayes against π ". Find the form of such a Bayes test.

ii) Let r(i) = g(i)/f(i) for i = 1, ..., n. Assume that

$$0 < r(1) \le r(2) \le \dots \le r(n) < \infty$$

and that at least one $r(i) \neq 1$. Let $\pi \in (0,1)$ be fixed and let ϕ_{π} be a Bayes test against π .

Suppose now that instead of just observing X we may observe two iid copies of X to use in testing H against K. Although ϕ_{π} is just a test based on one observation it can obviously be thought of a s a test for the two observation problem as well, where it just ignores the second observation. Now it may happen that ϕ_{π} is also Bayes against π for the 2 observation problem. We denote this by saying "2=1" for ϕ_{π} . Finally, a test is nontrivial if it is neither identically 0 nor 1. For a nontrivial test ϕ_{π} prove that 2 = 1 for ϕ_{π} if and only if there exists an i_0 such that $1 < i_0 \leq n$ and

$$r(1) = r(2) = \dots = r(i_0 - 1) < \frac{1 - \pi}{\pi} < r(i_0) = \dots = r(n)$$
 (1)

and

$$\frac{1-\pi}{\pi} = r(1)r(n)$$

iii) Let R^1 be the risk set for the one observation problem, i.e. is the collection of all possible type I and type II errors for testing H against K. Let R^2 be the risk set for the two observation problem. Assuming equation (1) holds for some π , graph R^1 and R^2 .

6. Let F be a continuous function defined on [0,1] satisfying F(0) = 0, F(1) = 1, F'(t) and F''(t) exist for $t \in (0,1)$, F''(t) < 0 for $t \in (0,1)$ and $\lim_{t\to 1} F'(t) \ge 0$. Let N(F) be the closed convex set which contains (0,0)and (1,1) and is symmetric with respect to the point (1/2,1/2) whose upper boundary is given by F. For a simple vs simple hypothesis testing problem let $N = \{(\alpha(\phi), \beta(\phi)) : \text{ for all tests } \phi\}$. Show that there exist some simple vs simple hypothesis testing problem for which N(F) = N.

7. Typically, as α varies the most powerful level- α tests for testing a hypothesis H against a simple alternative are nested in the sense that the associated rejection regions, say R_{α} . satisfy $R_{\alpha} \subset R_{\alpha'}$ for any $\alpha < \alpha'$ This relation always holds when H is simple, but the following example shows that it need not be satisfied for composite H. Let X take on the values 1, 2, 3 and 4 with probabilities given by

	1	2	3	4
f_0	2/13	4/13	3/13	4/13
f_1	4/13	2/13	1/13	6/13
q	4/13	3/13	2/13	4/13

Show that for testing $H : f_0$ or f_1 against K : q the MP level $\alpha = 5/13$ test rejects when x = 1 or x = 3 and the MP level $\alpha = 6/13$ test rejects when x = 1 or x = 2

8. Let X_1, \ldots, X_m and Y_1, \ldots, Y_n be independent samples from $N(\mu, 1)$ and $N(\nu, 1)$, and consider testing $H : \nu \leq \mu$ against $K : \nu > \mu$. Show that there exists a UMP test and that it rejects H when $\overline{Y} - \overline{X}$ is too large. (If $\mu_1 < \nu_1$ is a particular alternative, the distribution assigning probability 1 to the point $\nu = \mu = (m\mu_1 + n\nu_1)/(m+n)$ is least favorable.)

9. p-values. Consider a family of tests of $H: \theta = \theta_0$ (or $\theta \le \theta_0$), with level- α rejection regions S_α such that

a) $P_{\alpha_0}\{X \in S_{\alpha}\} = \alpha$ for all $0 < \alpha < 1$,

b) $S_{\alpha_0} = \bigcap_{\alpha > \alpha_0} S_\alpha$ for all $0 < \alpha < \alpha_0$.

Note b) implies that $S_{\alpha} \subset S_{\alpha'}$ for $\alpha < \alpha'$.

Then the *p*-value $\hat{\alpha}$ is given by

$$\hat{\alpha} = \hat{\alpha}(x) = \inf\{\alpha : x \in S_{\alpha}\}\$$

i) When $\theta = \theta_0$, the distribution of $\hat{\alpha}$ is uniform on (0,1).

ii) If the tests S_{α} are unbiased, the distribution of $\hat{\alpha}$ under any alternative θ satisfies

$$P_{\theta}\{\hat{\alpha} \le \alpha\} \ge P_{\theta_0}\{\hat{\alpha} \le \alpha\} = \alpha$$

So that it is shifted toward the origin.