HW 4

1. Let X be a random variable with two possible probability functions f_{0} and f_{1} defined just below

X	1	2	3	4	5	6
$f_{0}(x)$	$5 / 20$	$4 / 20$	$3 / 20$	$3 / 20$	$3 / 20$	$2 / 20$
$f_{1}(x)$	$1 / 20$	$2 / 20$	$3 / 20$	$3 / 20$	$5 / 20$	$6 / 20$

For testing $H: f_{0}$ against $H: f_{1}$ find the MP level α test. Graph the lower boundary of the set

$$
S=\left\{\left(E_{0} \phi(X), E_{1} \phi(X)\right): \text { all tests } \phi\right\}
$$

2. Let X be a random variable which takes on values in the interval $(0,1)$. Consider two possible densities for X given by

$$
f_{0}(x)=1 \quad \text { for } 0<x<1
$$

and

$$
f_{1}(x)=2 x \quad \text { for } 0<x<1
$$

For testing $H: f_{0}$ against $H: f_{1}$ find the MP level α test. Let $w(\alpha)$ be the power of this test. Find the value of α for which $w(\alpha)-\alpha$ is maximum. Graph the set $S=\left\{\left(E_{0} \phi(X), E_{1} \phi(X)\right)\right.$: all tests $\left.\phi\right\}$.

3 , Let X be a random variable whose family of possible probability functions, indexed by $\theta \in \Theta=(0,1)$ is given below:

X	1	2	3	4	5
$f_{\theta}(x)$	$\frac{\theta}{8(1+\theta)}$	$\frac{3 \theta}{8(1+\theta)}$	$\frac{4 \theta}{8(1+\theta)}$	$\frac{3}{8(1+\theta)}$	$\frac{5}{8(1+\theta)}$

Using just X (i.e. a sample of size 1) solve the following problems.
i) Find the MP level $\alpha=0.2$ test for testing $H: \theta=0.5$ against $K: \theta=0.75$. For any test ϕ let $\alpha(\phi)$ and $\beta(\phi)$ be the probability of the type I and type II errors. Graph the set $N=\{\alpha(\phi), \beta(\phi)$: for all test $\phi\}$
ii) Find the UMP level $\alpha=0.2$ of $H: \theta=0.5$ against $K: \theta>0.5$.
iii) Let $0<\theta_{1}<\theta_{2}<1$ be given. For testing $H: \theta=\theta_{1}$ against $K: \theta=\theta_{2}$ graph the set N. For testing $H: \theta \leq \theta_{1}$ against $K: \theta>\theta_{1}$ find a UMP level α test when $0<\alpha<1$. (Hint:You many need to consider several cases depending on the size of α.
4. Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be a sample from the uniform distribution on $(0, \theta)$
i) For testing $H: \theta \leq \theta_{0}$ against $K: \theta>\theta_{0}$ show that any test is UMP at level α for which $E_{\theta_{0}} \phi(X)=\alpha, E_{\theta} \phi(X) \leq \alpha$ for $\theta \leq \theta_{0}$, and $\phi(x)=1$ when $\max \left(x_{1}, \ldots, x_{n}\right)>\theta_{0}$.
ii) For testing $H: \theta=\theta_{0}$ against $K: \theta \neq \theta_{0}$ show that a unique UMP test exists and is given by $\phi(x)=1$ when $\max \left(x_{1}, \ldots, x_{n}\right)>\theta_{0}$ or $\max \left(x_{1}, \ldots, x_{n}\right) \leq$ $\theta_{0} \alpha^{1 / n}$ and $\phi(x)=0$ otherwise.
5. Let X be a random variable taking on the values $1,2, \ldots, n$. Let f and g be two possible probability functions for X and consider testing $H: f$ against $K: g$.
i) Suppose K is known to be true a priori with probability $\pi \in(0,1)$. Assuming zero-one loss, explain what is meant by "the test ϕ is Bayes against π ". Find the form of such a Bayes test.
ii) Let $r(i)=g(i) / f(i)$ for $i=1, \ldots, n$. Assume that

$$
0<r(1) \leq r(2) \leq \cdots \leq r(n)<\infty
$$

and that at least one $r(i) \neq 1$. Let $\pi \in(0,1)$ be fixed and let ϕ_{π} be a Bayes test against π.

Suppose now that instead of just observing X we may observe two iid copies of X to use in testing H against K. Although ϕ_{π} is just a test based on one observation it can obviously be thought of a s a test for the two observation problem as well, where it just ignores the second observation. Now it may happen that ϕ_{π} is also Bayes against π for the 2 observation problem. We denote this by saying " $2=1$ " for ϕ_{π}. Finally, a test is nontrivial if it is neither identically 0 nor 1 . For a nontrivial test ϕ_{π} prove that $2=1$ for ϕ_{π} if and only if there exists an i_{0} such that $1<i_{0} \leq n$ and

$$
\begin{equation*}
r(1)=r(2)=\cdots=r\left(i_{0}-1\right)<\frac{1-\pi}{\pi}<r\left(i_{0}\right)=\cdots=r(n) \tag{1}
\end{equation*}
$$

and

$$
\frac{1-\pi}{\pi}=r(1) r(n)
$$

iii) Let R^{1} be the risk set for the one observation problem, i.e. is the collection of all possible type I and type II errors for testing H against K. Let R^{2} be the risk set for the two observation problem. Assuming equation (1) holds for some π, graph R^{1} and R^{2}.
6. Let F be a continuous function defined on $[0,1]$ satisfying $F(0)=0$, $F(1)=1, F^{\prime}(t)$ and $F^{\prime \prime}(t)$ exist for $t \in(0,1), F^{\prime \prime}(t)<0$ for $t \in(0,1)$ and $\lim _{t \rightarrow 1} F^{\prime}(t) \geq 0$. Let $N(F)$ be the closed convex set which contains $(0,0)$ and $(1,1)$ and is symmetric with respect to the point $(1 / 2,1 / 2)$ whose upper boundary is given by F. For a simple vs simple hypothesis testing problem let $N=\{(\alpha(\phi), \beta(\phi))$: for all tests $\phi\}$. Show that there exist some simple vs simple hypothesis testing problem for which $N(F)=N$.
7. Typically, as α varies the most powerful level- α tests for testing a hypothesis H against a simple alternative are nested in the sense that the associated rejection regions, say R_{α}. satisfy $R_{\alpha} \subset R_{\alpha^{\prime}}$ for any $\alpha<\alpha^{\prime}$ This relation always holds when H is simple, but the following example shows that it need not be satisfied for composite H. Let X take on the values $1,2,3$ and 4 with probabilities given by

1		2	3	4
f_{0}	$2 / 13$	$4 / 13$	$3 / 13$	$4 / 13$
f_{1}	$4 / 13$	$2 / 13$	$1 / 13$	$6 / 13$
q	$4 / 13$	$3 / 13$	$2 / 13$	$4 / 13$

Show that for testing $H: f_{0}$ or f_{1} against $K: q$ the MP level $\alpha=5 / 13$ test rejects when $x=1$ or $x=3$ and the MP level $\alpha=6 / 13$ test rejects when $x=1$ or $x=2$
8. Let X_{1}, \ldots, X_{m} and Y_{1}, \ldots, Y_{n} be independent samples from $N(\mu, 1)$ and $N(\nu, 1)$, and consider testing $H: \nu \leq \mu$ against $K: \nu>\mu$. Show that there exists a UMP test and that it rejects H when $\bar{Y}-\bar{X}$ is too large. (If $\mu_{1}<\nu_{1}$ is a particular alternative, the distribution assigning probability 1 to the point $\nu=\mu=\left(m \mu_{1}+n \nu_{1}\right) /(m+n)$ is least favorable.)
9. p-values. Consider a family of tests of $H: \theta=\theta_{0}$ (or $\theta \leq \theta_{0}$), with level- α rejection regions S_{α} such that
a) $P_{\alpha_{0}}\left\{X \in S_{\alpha}\right\}=\alpha$ for all $0<\alpha<1$,
b) $S_{\alpha_{0}}=\cap_{\alpha>\alpha_{0}} S_{\alpha}$ for all $0<\alpha<\alpha_{0}$.

Note b) implies that $S_{\alpha} \subset S_{\alpha^{\prime}}$ for $\alpha<\alpha^{\prime}$.
Then the p-value $\hat{\alpha}$ is given by

$$
\hat{\alpha}=\hat{\alpha}(x)=\inf \left\{\alpha: x \in S_{\alpha}\right\}
$$

i) When $\theta=\theta_{0}$, the distribution of $\hat{\alpha}$ is uniform on $(0,1)$.
ii) If the tests S_{α} are unbiased, the distribution of $\hat{\alpha}$ under any alternative θ satisfies

$$
P_{\theta}\{\hat{\alpha} \leq \alpha\} \geq P_{\theta_{0}}\{\hat{\alpha} \leq \alpha\}=\alpha
$$

So that it is shifted toward the origin.

