
HW 3

1. Let X1 and X2 be independent random variables each Bernoulli(θ) where
θ ∈ {1/4, 3/4}. Let D = Θ and assume squared error loss. Let ∆ be all non-
randomized decision rules base on (X1, X2). Let ∆T be all non-randomized
decision rules base on T = X1 + X2. Show that there is a member of ∆ −∆T

which is not dominated by any member of ∆T .
2. Let X1, . . . , Xn be iid each Poisson(λ) where λ ∈ (0,+∞) = Θ. Let

D = [0,+∞) and assume convex loss. Show that if γ(λ) has an unbiased
estimator then it can be expressed as a power series in λ. Find the best unbiased
estimator of γ(λ) = λi where i is some poiitive integer. Show that the best
unbiased esitmator of

γ(λ) = Pλ(X1 = k) = exp(−λ)λk/k!

is

δ(t) =
1

nk

(
t

k

)
(1− 1/n)t−k for 0 ≤ k ≤ t

= 0 otherwise

(1)

where T =
∑n
i=1Xi

3. Let X be Poisson(λ) where λ ∈ {0, 1, . . . }. Show that X is not complete.
4. LetX1, . . . , Xn be iid each uniform on {1, 2, . . . , N} whereN ∈ {1, 2, . . .} =

Θ. Show that T (X1, . . . , Xn) = maxXi is complete and sufficient. Let the de-
cision space D be the set of real numbers. Let Γ be the class of all functions
defined on Θ having unbiased estimators. Show that Γ is the class of all real-
valued functions defined on Θ. Given a γ ∈ Γ find an explicit representation for
its unbiased estimator. Apply this to the case where γ(N) = N .

5. Let X be a random variable with

fθ =

(
θ

x

)
(1/2)θ for x = 0, 1, . . . , θ

= 0 otherwise

(2)

We wish to estimate γ(θ) = θ with squared error loss and with the decision
space D equal to the set of real numbers.

i) If Θ = {0, 1, 2, . . . } show that X is complete and sufficient and find the
best unbiased estimator of θ.

ii) If Θ = {1, 2, . . .} show that X is no longer complete and that there does
not exist a best unbiased estimator for θ.

iii) If Θ = {1, 2, . . .} and D = {1, 2, . . .} show that a best unbiased estimator
of θ exists. Find this estimator.

6. Consider a coin with unknown probability θ ∈ [0, 1] of coming up heads.
Let a and n be known integers satisfying 1 < a < n. Consider the experiment
which consists of the tossing the coin independently until a heads are observed
or n tosses are completed (i.e. the coin is tossed at most n times).
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The outcomes of such an experiment can be represented as a random walk
in the plane. The walk starts at (0, 0) and moves one unit to the right or up
according to whether the first toss is a head or a tail. From the resulting point,
(1, 0) or (0, 1) it again moves a unit to the right or up and continues in this way
until it reaches a stopping point.

i) Give the probability of an outcome which contained h heads and t tails in
some specified order.

ii) Consider the statistic T which is the total number of tails observed when
the the random walk stops. Find the probability distribution of T (as a function
of θ) and show that T is sufficient for this model.

iii) Prove that T is complete for this model.
iv) Find the best unbiased estimator of θ.
7. Consider the following idealized situation. An urn contains an infinite

number of coins. A fraction θ of the coins is of Type I where each has probability
λ of coming up heads on a given toss while the remaining fraction of the coins is
of a second type, say Type II, where each has probability 1 of coming up heads
when tossed. The two types of coins are indistinguishable however. Suppose N
coins are selected at random from the urn and let N1 be the number of coins
that are of Type I. Then suppose that each of the selected coins are tossed and it
is observed that x1 of the tosses resulted in a tail where (0 < x1 < N). Assume
that the prior distributions for θ and λ are independent beta distributions where
θ ∼ beta(a, b) and λ ∼ beta(α, β)

i) Find the posterior distribution (up to the normalizing constant) of p(N1 |
x1).

ii) Now suppose that all of the coins that turned up heads on the first set
of tosses are all tossed again and this time there were x2 tails observed where
0 < x2 < N − x1. Now find p(N1 | x1, x2) up to the normalizing constant.

8. Suppose events are happening in time over the unit interval. With prob-
ability θ, assumed to be known, the distribution of the events follows a Poisson
process with intensity parameter λ or with probability 1−θ there is some change
point x ∈ (0, 1) such that on [0, x) the events follow a Poisson process with pa-
rameter λ1 and on [x, 1] the events follow a Poisson process with parameter
λ2.

When no change point exist we take as our prior for λ the exponential
distribution (i.e., g(λ) = exp(−λ) for λ > 0). When a change point does exist
our prior for λ1 and λ2 are independent exponentials. Given that a change point
does exist our prior distribution for where it occurs is uniform(0,1) independent
of the priors for λ1 and λ2.

Suppose we have have observed the process over the unit interval and the
data consists of k events occurring at times 0 < t1 < t2 < · · · < tk < 1. For
0 < x < 1 let k(x) be the number of events that occurred in [0, x).

i) Show that under this model the probability of observing these data is

θ/2k+1 + (1− θ)φ(data)
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where

φ(data) =

∫ 1

0

xk(x)

(1 + x)k(x)+1

(1− x)k−k(x)

(2− x)k−k(x)+1
dx

ii) Find the posterior probability that a change point exists.
9. Consider a decision problem where both the parameter space Θ and the

decision space D are the set of real numbers. We will consider two possible loss
functions

L1(θ, d) = exp[a(d− θ)]− a(d− θ)− 1

where a 6= 0 is a fixed, known real number and

L2(θ, d) = (θ − d)2 + C2φ(d)

where C > 0 is a fixed known real number and

φ(d) =

{
0 if d = 0
1 if d 6= 0

i) Let g be a prior density for θ with mean µ, variance σ2 and moment
generating function ψ. For each of the loss functions find the Bayes estimator
for θ for the no data problem for the prior g.

ii)Now consider the data problem where the distribution of X given θ is
Normal(θ,1) and the prior g is Normal(µ, σ2). Find the Bayes estimator for the
data problem for each of the two loss functions.

iii) Briefly describe scenarios where the two loss functions would be more
reasonable than squared error loss.

10. Let X be a real valued random variable with {fθ : θ ∈ Θ} a family of
everywhere positive densities. Assume Θ is an open interval of real numbers.
Assume that this family of densities has the monotone likelihood ratio property
in X.

i) Show that if ψ is a non-decreasing function of x then Eθψ(X) is a non-
decreasing function of θ.

Hint: let θ1 < θ2 and consider the sets

A = {x : fθ2(x) < fθ1(x)} and B = {x : fθ2(x) > fθ1(x)}

ii) Now let ψ be a function with a single change of sign. That is, there exists
a value x0 such that ψ(x) ≤ 0 for x < x0 and ψ(x) ≥ 0 for x ≥ x0. Show that
there exist θ0 such that

Eθψ(X) ≤ 0 for θ < θ0 and Eθψ(X) > 0 for θ > θ0

unless Eθψ(X) is either positive for all θ or negative for all θ.
Hint: let θ1 < θ2 and show that if Eθ1(X) > 0 then Eθ2(X) > 0.
11. Let X be a normal random variable with mean θ and variance equal to

one. Let g(θ) = exp−α(θ) be a prior distribution for −∞ < θ < ∞. We are
interested in studying the behavior of the posterior distribution of θ given x,
p(θ | x), for large values of x.
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Let λ(θ) = θ2/2 + α(θ). We suppose that λ′, the derivative of λ, exists and
that there exist constants K and M such that for θ ≤ K, λ′(θ) ≤ M and for
θ > K, λ′ is strictly increasing and everywhere greater than M .

i) Show that for x sufficiently large p(θ | x), as a function of θ is maximized
at θ = (λ′)−1(x) where (λ′)−1 is the inverse of λ′ on the set θ > K.

ii) For x > K let y = (λ′)−1(x). For such a y find the posterior distribution
of θ given y.

iii) Suppose that α′′(·) exists for all θ and that infθ α
′′(θ) ≥ a > −1 and

limθ→∞α
′′(θ) = c where −1 < c <∞.

Let fy be the posterior density of θ − y given y. Show that for every real
number z

lim
y→∞

fy(z) =

√
1 + c

2π
exp {−z

2

2
(1 + c)}

In addition show that there exist constants c1, c2 and c3 such that for y > c3

fy(z) ≤ c1 exp(−c2z2) for z ∈ (−∞,∞)

Hint: It may be useful to expand α(y + z) in a Taylor series about y.
iv) Let δg(x) be the Bayes estimate of θ against the prior g when the loss is

squared error. What do the above results imply about the behavior of δg(x) for
large values of x.
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