1. Consider a decision problem with $D=\left\{d_{1}, d_{2}\right\}, \Theta=\{0,1\}$ and sample space $\mathcal{X}=\{1,2\}$. Suppose $f_{0}(1)=1 / 2$ and $f_{1}(1)=1 / 3$ and the loss function is give by the table

	$\theta=0$	$\theta=1$
d_{1}	1	3
d_{2}	4	2

Suppose the non-randomized decision function

$$
\delta=\left(\delta(1)=d_{i}, \delta(2)=d_{j}\right)
$$

is represented by (i, j) then the four non-randomized decision functions are $(1,1),(1,2),(2,1)$ and (2,2).
i) Show that every behavorial decision function is a randomized decision function.
ii) Evaluate the risk vector for each of the four non-randomized decision functions and graph the risk set.
iii) For any prior $\pi=P(\theta=0)$ find a Bayes rule against π.
2. Consider a decision problem with $D=[0,1], \Theta=\{0,1\}$ and sample space $\mathcal{X}=\{1,2\}$. Let $f_{\theta}(1)=(1+\theta) / 3$, and $L(0, d)=d^{2}$ and $L(1, d)=1-d$. For any prior $\pi=P(\theta=0)$ find a Bayes rule, graph the lower boundary of the risk set and find a minimax rule.
3. Let X be $\operatorname{binomial}(n, \theta)$ where n is known and $\theta \in \Theta=(0,1)$ is unknown. Let $D=[0,1]$ and $L(\theta, d)=(\theta-d)^{2}$.
i) Show that $\delta(X)=X / n$ is not a Bayes estimator of θ.
ii) Show that δ is the unique Bayes estimator of θ when the loss function is $L(\theta, d)=(\theta-d)^{2} /(\theta(1-\theta))$ and the prior distribution for θ is the uniform distribution.
4. Let $\Theta=(0,1], D=[0,1]$ and

$$
L(\theta, d)=\min \left\{\frac{(\theta-d)^{2}}{\theta^{2}}, 2\right\}
$$

Let X be $\operatorname{binomial}(n, \theta)$ where n is known. Show that the rule $\delta^{*}(x)=0$ for $x=0,1, \ldots, n$ is the unique minimax decision rule.
5. Let X be a random variable with two possible density functions $f_{\theta_{1}}(\cdot)$ and $f_{\theta_{2}}(\cdot)$. Let $\pi=P\left(\theta=\theta_{1}\right)$ be the prior probability for θ_{1} and $\pi(x)=$ $P\left(\theta=\theta_{1} \mid X=x\right)$. Let

$$
h(x)=\pi f_{\theta_{1}}(x)+(1-\pi) f_{\theta_{2}}(x)
$$

Show that

$$
\begin{gathered}
\int \pi(x) h(x) d x=\pi \\
\int \pi(x) f_{\theta_{1}}(x) d x \geq \pi
\end{gathered}
$$

6. Let Z be a real valued random variable with $E(|Z|)<\infty$. Let D be the real line and

$$
\begin{aligned}
L(z, d) & =k_{1}(z-d) \quad \text { for } \quad d \leq z \\
& =k_{2}(d-z) \quad \text { for } \quad d \geq z
\end{aligned}
$$

where k_{1} and k_{2} are positive constants. Let d^{*} be a number which satisfies

$$
P\left(Z \leq d^{*}\right) \geq \frac{k_{1}}{k_{1}+k_{2}} \quad \text { and } \quad P\left(Z \geq d^{*}\right) \geq \frac{k_{2}}{k_{1}+k_{2}}
$$

Show that

$$
E\left(L\left(Z, d^{*}\right)\right)=\inf _{\infty<d<\infty} E(L(Z, d))
$$

7. Let $\Theta=\left\{\theta_{1}, \ldots, \theta_{n}\right\}$ be a set of real numbers. Let g be a prior distribution on Θ, that is $g\left(\theta_{i}\right) \geq 0$ and $\sum_{i=1}^{n} g\left(\theta_{i}\right)=1$. Let D be the real numbers. Let $L(d, \theta)=W(|d-\theta|)$ where W is a non-negative function defined on $[0, \infty]$. Let $\phi(d)=\sum_{i=1}^{n} W\left(\left|d-\theta_{i}\right|\right) g\left(\theta_{i}\right)$
i) Show that if W^{\prime} and $W^{\prime \prime}$ exist on $[0, \infty)$, with $W^{\prime}(0)=0, W^{\prime \prime}(0)=0$ and $W^{\prime \prime}(a)>0$ for $a>0$ then ϕ is minimized at the unique point d^{*} satisfying

$$
\sum_{\theta_{i}>d^{*}} W^{\prime}\left(\theta_{i}-d^{*}\right) g\left(\theta_{i}\right)=\sum_{\theta_{i}<d^{*}} W^{\prime}\left(d^{*}-\theta_{i}\right) g\left(\theta_{i}\right)
$$

ii) Suppose W^{\prime} and $W^{\prime \prime}$ exist on ($0, \infty$ with $W^{\prime \prime}(a)<0$ for $a>0$ and that W is right continuous at zero. Show that ϕ is minimized at a point d^{*} where $d^{*}=\theta_{i}$ for some choice of i.

