HW 1

1. Let θ be uniformly distributed on $[0,1]$ and let F be a distribution function. Define

$$
G(y)=\sup \{x: F(x) \leq y\}
$$

Show that the random variable $G(\theta)$ has F as its distribution function.
2. Let F and G be two 1-dimensional distribution functions. Let

$$
H_{0}(x, y)=\max \{F(x)+G(y)-1,0\} \text { and } H_{1}(x, y)=\min \{F(x), G(y)\}
$$

Show that H_{0} and H_{1} are 2-dimensional distribution functions, each with F and G as their marginals. Furthermore show that if H is another 2dimensional distribution function with marginals F and G then

$$
H_{0}(x, y) \leq H(x, y) \leq H_{1}(x, y) \text { for all }(x, y)
$$

3. Let Y be $\operatorname{Poisson}(\lambda)$ and let X given $Y=y$ be $\operatorname{binomial}(y, p)$ where $0<p<1$ is fixed. Note the distribution $\operatorname{binomial}(0, p)$ puts mass 1 at 0. Find the marginal distribution of X.
4. Let $X=\left(X_{1}, \ldots, X_{n}\right)$ where X_{i} 's are independent and X_{i} is $\operatorname{Poisson}\left(\lambda_{i}\right)$ where $\lambda_{i}>0$. Find the conditional distribution of X given $\sum_{i=1}^{n} X_{i}=k$
5. Let X_{1} and X_{2} be independent random $\operatorname{Normal}(0,1)$ random variables. find the distribution of $Y=X_{1} / X_{2}$.
6. Let X_{1}, \ldots, X_{n} be independent random variables where X_{i} is gamma $\left(\alpha_{i}, \beta\right)$ and where the α_{i} 's and β are all greater than zero. For $i=1, \ldots, n-1$ let $Y_{i}=X_{i} / Y_{n}$ where $Y_{n}=\sum_{i=1}^{n} X_{i}$.
i) Find the joint distribution of Y_{1}, \ldots, Y_{n} and note that Y_{1}, \ldots, Y_{n-1} are independent of Y_{n}.
ii) Show that the joint density of Y_{1}, \ldots, Y_{n-1} is given by
$f\left(y_{1}, \ldots, y_{n-1}\right)=\frac{\Gamma\left(\sum_{i=1}^{n-1} \alpha_{i}\right)}{\prod_{i=1}^{n-1} \Gamma\left(\alpha_{i}\right)} \prod_{i=1}^{n-1} y_{i}^{\alpha_{i}-1}\left\{\left(1-\sum_{i=1}^{n-1} x_{i}\right)^{\alpha_{i}-1}\right\}$ for $\left(y_{1}, \ldots, y_{n-1}\right) \in \Delta_{n-1}$
where

$$
\Delta_{n}=\left\{\left(y_{1}, \ldots, y_{n-1}\right): y_{i} \geq 0 \text { and } \sum_{i=1}^{n-1} y_{1} \leq 1\right\}
$$

iii) Find the marginal distribution of Y_{1}, \ldots, Y_{k} where $1 \leq k \leq n-1$.
iv) Find $E\left(Y_{i}\right), \operatorname{Var}\left(Y_{i}\right)$ and $\operatorname{cov}\left(Y_{i}, Y_{j}\right)$

