HW 1

1. Let θ be uniformly distributed on [0,1] and let F be a distribution function. Define

$$G(y) = \sup\{x : F(x) \le y\}$$

Show that the random variable $G(\theta)$ has F as its distribution function.

2. Let F and G be two 1-dimensional distribution functions. Let

 $H_0(x,y) = \max\{F(x) + G(y) - 1, 0\}$ and $H_1(x,y) = \min\{F(x), G(y)\}$

Show that H_0 and H_1 are 2-dimensional distribution functions, each with F and G as their marginals. Furthermore show that if H is another 2-dimensional distribution function with marginals F and G then

$$H_0(x,y) \le H(x,y) \le H_1(x,y)$$
 for all (x,y)

3. Let Y be $Poisson(\lambda)$ and let X given Y = y be binomial(y, p) where 0 is fixed. Note the distribution <math>binomial(0, p) puts mass 1 at 0. Find the marginal distribution of X.

4. Let $X = (X_1, \ldots, X_n)$ where X_i 's are independent and X_i is Poisson (λ_i) where $\lambda_i > 0$. Find the conditional distribution of X given $\sum_{i=1}^n X_i = k$

5. Let X_1 and X_2 be independent random Normal(0,1) random variables. find the distribution of $Y = X_1/X_2$.

6. Let X_1, \ldots, X_n be independent random variables where X_i is gamma (α_i, β) and where the α_i 's and β are all greater than zero. For $i = 1, \ldots, n-1$ let $Y_i = X_i/Y_n$ where $Y_n = \sum_{i=1}^n X_i$.

i) Find the joint distribution of Y_1, \ldots, Y_n and note that Y_1, \ldots, Y_{n-1} are independent of Y_n .

ii) Show that the joint density of Y_1, \ldots, Y_{n-1} is given by

$$f(y_1, \dots, y_{n-1}) = \frac{\Gamma(\sum_{i=1}^{n-1} \alpha_i)}{\prod_{i=1}^{n-1} \Gamma(\alpha_i)} \prod_{i=1}^{n-1} y_i^{\alpha_i - 1} \{ (1 - \sum_{i=1}^{n-1} x_i)^{\alpha_i - 1} \} \text{ for } (y_1, \dots, y_{n-1}) \in \Delta_{n-1}$$

where

$$\Delta_n = \{(y_1, \dots, y_{n-1}) : y_i \ge 0 \text{ and } \sum_{i=1}^{n-1} y_1 \le 1\}$$

iii) Find the marginal distribution of Y_1, \ldots, Y_k where $1 \le k \le n-1$.

iv) Find $E(Y_i)$, $Var(Y_i)$ and $cov(Y_i, Y_j)$